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DIMER PYRUVATE KINASE M2 REGULATES de novo COLLAGEN SYNTHESIS 

AND CROSSLINKING IN PATHOLOGICAL FIBROSIS 

 

 

by 
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Under the Direction of Zhi-Ren Liu, PhD 

 

ABSTRACT 

 

Fibrosis is a pathologic condition of abnormal accumulation of collagen fibrils. Collagen 

is synthesized and secreted from myofibroblasts. Collagen is a major extracellular matrix (ECM) 

protein composed of mainly (Gly-X-Y)n triplets repeats with >30% Gly residue. During fibrosis 

progression, myofibroblasts must upregulate glycine metabolism to meet the need for collagen 

synthesis. We report here that pyruvate kinase M2 (PKM2) is upregulated in myofibroblasts. 

Myofibroblast differentiation promotes dimerization of PKM2. Dimer PKM2 slows the flow rate 

of glycolysis. Dimer PKM2 channels glycolytic intermediates to de novo glycine synthesis, which 

facilitates collagen synthesis and secretion in myofibroblasts. Our results show that PKM2 

activator that convert PKM2 dimer to tetramer inhibits fibrosis progression in mouse models of 

liver and lung fibrosis. Furthermore, PKM2 activator alters glycolysis pathway, which 



 

 

 

consequently affects the reverses fibrosis by reducing glycine production in vivo. Our study 

uncovers a novel role of PKM2 in tissue/organ, suggesting a possible strategy for treatment of 

fibrosis diseases. Furthermore, secreted collagen is crosslinked in the extracellular space by the 

lysyl oxidase (LOX) family proteins. LOX is secreted by the activated myofibroblasts under 

hypoxic conditions. PKM2 mediates Hif-1α activity in cells under hypoxic conditions. Here, we 

report that the PKM2- Hif-1α axis induces LOX expression in fibroblasts and cancer cells. PKM2-

Hif-1α complex regulates LOX transcription by directly binding to LOX promoter. Here we show 

that PKM2 activators reduce PKM2-HIF1α association and thereby its nuclear localization. PKM2 

activators reduce the production and hence the secretion and the crosslinking capacity of LOX 

family proteins.  
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1 INTRODUCTION 

1.1 GLYCOLYSIS 

1.1.1 Physiological Glycolysis 

Glycolysis is an energy conversion pathway is many organisms. This pathway exists 

commonly in all organisms, both prokaryotic and eukaryotic cells. In eukaryotic cells, glucose 

enters through the GLUT family of receptors. Glucose is then metabolized by a series of enzymatic 

reactions in the cytosol. These enzymatic reactions are broadly classified into three stages. Stage 

1 is a phosphorylation event which traps the glucose in the cell. In the first phosphorylation event, 

glucose is converted into G6P by hexokinase. G6P is then converted into F6P by PFI and then a 

second phosphorylation step leads to the formation of F-1,6-BP. Stage 2 comprises of cleavage 

events where the 6-carbon glucose/fructose units are cleaved into 3 carbon units. The reaction then 

proceeds to stage 3. Herein, the 3 carbon units are interconvertible, and ATP is synthesized when 

they are oxidized to pyruvate in the final step of glycolysis. Pyruvate is then readily oxidized into 

AcCoA in the mitochondria which then enters the citric acid cycle or the tricarboxylic acid cycle 

to produce ATP via oxidative phosphorylation (figure 1.1) (Berg, Tymoczko et al. 2015). 
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Figure 1.1 Glycolysis – An overview. 

 

This figure illustrates the flow of glucose through the various stages of glycolysis, undergoing several 

phosphorylation and oxidation events to produce pyruvate and ATP. 

 

Energy requirements in the cell are primarily met by the conversion of glucose into 

pyruvate which yields 2 molecules of ATP per glucose molecule. Pyruvate is oxidized by PDH 

into AcCoA in the mitochondria. The generated AcCoA enters the TCA cycle by reacting with 
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oxaloacetate to form citrate. Citrate is then moved through several enzymatic reactions to yield 

oxaloacetate again which feeds into the TCA cycle forming a closed metabolic loop. The total 

yield of ATP from the TCA cycle is 2 per molecule of pyruvate which enters the mitochondria. 

While the TCA cycle itself yields only 2 ATP molecules, these are from substrate level 

phosphorylation. Most of the ATP yield comes from the generation of high energy molecules, 

NADH and FADH2 which participate in the electron transport chain to yield 15 and 3 ATP 

molecules per molecule of glucose respectively. Therefore, the total net gain of ATP from one 

molecule of glucose is around 30-32 molecules of ATP (figure 1.2) (Ryan, Murphy et al. 2019). 

 

 

Figure 1.2 TCA cycle. 
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This figure depicts the movement of pyruvate through the energy generating steps of the TCA cycle in the 

mitochondria, thus generating high energy NADH and FADH2 which feed into the electron transport chain.  

 

1.1.2 Warburg Effect 

 Glycolysis in proliferating cells is altered to suit their metabolic needs. Proliferating 

cells need more ATP in order to meet their biosynthetic requirement. Along with the increased 

ATP need, the dividing cells incur a large requirement of nucleotides, amino acids, and lipids. To 

meet with this increased requirement, these cells switch to an altered metabolic state known as the 

Warburg effect. During the advent of Warburg effect, these cells switch away from oxidative 

phosphorylation by redirecting the pyruvate to lactate instead of transporting into the 

mitochondria. By doing so, these cells switch to a less efficient way to produce ATP. During 

physiologic glycolysis, one molecule of glucose yields anywhere between 30 to 36 molecules of 

ATP. But, during the Warburg phase, these cells yield only around 4 moles of ATP per glucose 

molecule.  

 Given the lower amounts of ATP produced per molecule of glucose, how do these 

proliferating cells remain viable is a big question. During division, ATP hydrolysis usually 

provides energy for many of the biochemical reactions responsible for replication. Apart from 

these reactions, these cells have other requirements which extend beyond ATP. These 

requirements generally include amino acids, nucleotides and fatty acids. In dividing cells, the most 

consumed nutrients are glucose and glutamine, therefore, these molecules are the main source of 

ATP. But directing all these nutrients solely towards oxidative phosphorylation to maximize ATP 

output is counterintuitive to proliferating cells. These cells need other macromolecules in order to 

divide, and the Warburg effect shunts the carbons from glucose into production of AcCOA for 
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fatty acid synthesis, glycolytic intermediates for amino acid synthesis and the pentose phosphate 

pathway for NADPH and nucleotide synthesis. Therefore, all proliferating cells adopt this altered 

form of glycolysis to reduce ATP output and shunt glycolytic intermediates towards anabolic 

process of the biomacromolecules required for cell division (figure 1.3) (Vander Heiden et al., 

2009). 

 

 

Figure 1.3 The Warburg effect 

This figure demonstrates the altered states of glycolysis undertaken by cells based on their proliferative 

state and metabolic demand. 
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1.2 PYRUVATE KINASE 

1.2.1 Alternative splicing of M gene 

 Pyruvate kinase (PK) is the final rate limiting step in glycolysis. PK catalyzes the 

phosphorylation of ADP into ATP from PEP. PK has 4 isoforms PKM1, PKM2, PK-L and PK-R. 

These isoforms have differential expression in different tissues. PK-L and PK-R are expressed in 

the liver and erythrocytes respectively. PKM1 and PKM2 are expressed in various tissues. PKM1 

is found in all adult tissues and PKM2 is found in embryonic tissues. PKM2 is also found in several 

tumor types and is widely implicated in altered metabolic states in tumors.  

 The PKM gene is alternatively spliced to form transcripts which are encoded to 

either PKM1 or PKM2. Both M1 and M2 transcripts have 12 exons and the inclusion of either 

exon 9 or exon 10 dictates the generation of PKM1 and PKM2 respectively. The generation of 

these isoforms requires the inclusion of exon 9 to generate PKM1 and to generate PKM2, exon 9 

is repressed and exon 10 is included. Exon 9 repression and subsequent exon 10 inclusion is tightly 

controlled by the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins. hnRNPA1 

and hnRNPA2 aide in the repression of exon 9 therefore leading to the inclusion of exon 10. Exon 

10 inclusion also requires the binding of the serine/arginine-rich splicing factor 3 (SRSF3) protein 

to exon 10. The alternative splicing of the M gene is tightly controlled by multiple repressors and 

the SRSF3 mediated inclusion. These factors contribute to the expression of PKM2.  

1.2.2 PKM in glycolysis 

 Pyruvate kinase catalyzes the final step of glycolysis. Herein, the high energy 

phosphate group from phosphoenolpyruvate (PEP) is transferred to adenosine diphosphate (ADP) 

and yields adenosine triphosphate (ATP) and pyruvate. Catalysis occurs by simultaneous binding 

of PEP and ADP to the active site of pyruvate kinase by complexing with Mg2+ cation. The 
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phosphate group from PEP is transferred to ADP leaving the less stable enol form of pyruvate 

bound to pyruvate kinase. The enolpyruvate is then tautomerized by accepting a proton from a 

water molecule. The products then leave the active site following tautomerization. Both PKM1 

and PKM2 share primary and tertiary structures for the active sites and therefore exhibit similar 

substrate binding specificities. Apart from ADP, pyruvate kinase can also catalyze the transfer of 

phosphate group to guanine diphosphate (GDP), uridine diphosphate (UDP) and cytidine 

diphosphate (CDP). Though these substrates can be phosphorylated by pyruvate kinase, their 

binding affinity is lower than that of ADP.  

 Pyruvate kinase is a tetrameric protein of identical monomers. Each monomer is comprised 

of A, B and C domains and a small N-terminal domain. The A domain is the largest domain 

containing a symmetrical triosephosphateisomerase (TIM) barrel arrangement of 8 alpha-helices 

and 8 parallel beta sheets. The active site of the enzyme is located at the end of the 8/8 TIM 

barrel. The B domain is a mobile domain which closes the active site upon binding to the substrate-

Mg2+ ion complex. The C domain is present on the opposite side of the A domain and contains the 

binding site for fructose 1,6 bisphosphate (FBP). This domain placement is common to all isoforms 

of PK except for domain C which is different in PKM2 isoform which is encoded by exon 10 

inclusion. 

The tetramer is arranged in a dimer of dimers configuration, wherein a homodimer is bound 

to another homodimer. The dimer-dimer interaction is via the C domains of the two subunits. The 

amino acids encoded in the C domain is different in the M1 and M2 isoforms and are responsible 

for the differences in binding of FBP and subsequently its allosteric regulatory functions. The 

tetramer conformation of PK is the most active form. PKM1 is a constitutively active tetramer but 

also retain catalytic activity in its dimer form. Unlike PKM1, PKM2 is not a constitutively active 
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tetramer. PKM2 isoform can undergo reversible association and disassociation of the active 

tetramer conformation under certain conditions. Dilution of PKM2 leads to the disassociation of 

the active tetramer into its dimer form and thus loses its catalytic activity. In this condition, the 

activity of PKM2 is only at 4% of that of the tetramer. This reversible activation of PKM2 by FBP 

allows for regulation of its enzymatic activity. 
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1.2.3 Activators and Inhibitors of PKM2 

 The interchangeable conformations of PKM2 allows it to be activated and inhibited by 

various factors thus leading it to be in dimer or in tetramer states. Tetramer PKM2 is the most 

active isoform and has the most glycolytic activity. The activation of PKM2 is commonly 

potentiated by FBP in a physiological system. In the absence of these activators, PKM2 has a low 

affinity to PEP and the affinity of PEP is increased in the presence of glycolytic intermediate, 

fructose-1,6-bisphosphate.  

 FBP binds to PKM2 at a distinct site away from the active site and upon binding, increases 

PEP affinity and promotes tetramerization. This FBP-bound PKM2 is now in its active state 

leading to increased glycolysis. FBP is an allosteric activator only for PKM2 but not PKM1 due 

to structural differences at the binding pocket. PKM1 exists as a stable tetramer that has 

constitutive activity and does not require allosteric activation. PKM1 and FBP-bound PKM2 are 

identical in their kinetic parameters. They both exhibit the same three-dimensional conformation 

with the structural differences only in the areas encoded by the differential exons 9-10. PKM1 and 

PKM2 differ only in their FBP binding site and its dimer-dimer interface.  

 Apart from FBP, there are several other activators which can bind to PKM2 and 

allosterically activate it. Most of the activators are amino acids and other non-glycolytic 

metabolites, which allows for regulation of PKM2 activity with other metabolic pathways in the 

cell. Although these metabolites bind to PKM2 and allosterically activate it, they usually require 

high concentration. Phenylalanine (Phe) and alanine (Ala) are some of the few amino acids which 

can bind to PKM2. Phe and Ala are both allosteric inhibitors of PKM2.  

 Phenylalanine reduces both PKM1 and PKM2 activity by decreasing its affinity to PEP. 

The Phenylalanine binding site is distinctly different from the FBP binding site and the active site. 
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Phe-bound PKM2 stays in a unique conformation state wherein the active site is left in an open 

conformation and stabilizes PKM2 in its tetramer state but in an inactive state. This inactive state 

of PKM2 can only be partially reversed by FBP binding. Alanine on the other hand has a different 

mechanism of allosteric inhibition.  When alanine is bound to PKM2, it favors the formation of 

the dimer state. However, the binding of alanine is completely reversed by the binding of FBP thus 

stabilizing the tetramer state. Serine is an allosteric activator of PKM2, and it is a direct competitor 

of alanine and binds to the same binding pocket. 

A non-amino acid inhibitor of PKM2 is the thyroid hormone T3. Triiodo-L-thyronine (T3) 

is an allosteric inhibitor of PKM2. T3 binds to the monomeric form and stabilizes it in its inactive 

monomeric state. Allosteric inhibition of PKM2 by T3 can be reversed in the presence of FBP. An 

intermediate of de novo purine synthesis pathway is succinylaminoimidazolecarboxamide ribose-

5-phosphate (SAICAR) is an allosteric activator of PKM2. However, it does not bind to any other 

M isoforms. PKM2 activity can also be modulated by synthetic activators. These designed 

molecules bind to the dimer-dimer interphase of PKM2 and sequesters PKM2 in its active 

tetrameric state. These molecules can bind to the dimer form of PKM2 in nanomolar 

concentrations. The binding site of the synthetic activators is distinctly different from the FBP 

binding site and whether the synthetic molecule binding site can be occupied by endogenous 

activators is currently unknown.  

1.2.4 Synthetic Activators 

 Activators of PKM2 have been synthesized by two different classes of compounds, the 

diarylsulfonamides and the pyridazinones. The diarylsulfonamide class of activators are 

substituted in their R-groups and are classified as the N, N’-diarylsulfonamides analogues. These 

analogues are synthesized by a series of coupling, deprotection and a second coupling reaction. 
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Mono-boc protected piperazine is coupled to aryl sulfonyl chloride to yield boc-protected N-

arylsulfonamides. The intermediates are then deprotected and subsequently coupled to another 

substituted N-arylsulfonamide to yield N, N’-diarylsulfonamides. The diarylsulfonamide class 

compounds are designated as DASA. In the numerous compounds tested, DASA-10 and DASA-

58 are the most efficient in increasing the activity of PKM2. The pyridazinone class of activators 

are substituted thieno[3,2-b]pyrrole[3,2-d]pyridazines. These class of compounds require a series 

of reaction schemes (Jiang et al., 2011). The pyridazinone class compounds are designated TEPP. 

Of the numerous TEPP family compounds tested, TEPP-46 are the most efficient in increasing the 

activity of PKM2.  

 All the above-mentioned synthetic activators, in both classes, DASA-10, DASA-58 and 

TEPP-46, are selective only for PKM2 and have no binding efficiency towards PKM1. This is 

consistent with the lack of allosteric regulation in PKM1. Crystallography studies with the 

activators show that one active tetramer contains 2 molecules of the activators and 4 molecules of 

FBP which indicates that the activators bind to different sites than that of FBP. FBP binds to the 

C-C interface between the two dimers of PKM2. The activators bind deep within the A-A interface 

of the dimer pair. The activator binding pocket accommodates the molecules via polar interactions 

and van der Waals forces with the pocket lining residues.  

 Once bound to the dimer-dimer interface, these activators force the tetramer conformation 

of PKM2 and increase its binding affinity to PEP therefore increasing the glycolytic activity of 

PKM2. The selective synthetic activation of PKM2 promotes the resolution of Warburg effect 

usually observed in proliferating cells, most widely observed in cancer cells. Due to this, there are 

many metabolic changes that occur within the cancer cells when treated with PKM2 activators. 

These metabolic changes mimic that of the cells which express PKM1. When treated with the 
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activators, the PK activity is increased by around 60% thereby depleting the glycolytic 

intermediates formed in the advent of Warburg effect in these cells. Since the PK activity is 

increased, the shunting of pyruvate into lactate is reduced and the increased pyruvate is shunted 

into tricarboxylic acid (TCA) cycle. Glycolytic intermediates can be used for the de novo lipid 

synthesis and treatment with PKM2 activators reduce lipid production from glucose. They also 

reduce the lipogenic acetyl-CoA produced from glucose. Almost all the anabolic pathways 

branching from glycolytic intermediates are thereby reduced upon treatment with activators. The 

anabolic pathways include NADPH production from the pentose phosphate pathway, serine from 

de novo amino acid synthesis, ribose-5-phosphate from de novo purine synthesis pathway. The 

properties of these activators are tested in a variety of cancers and they show similar affinity to 

PKM2 in vitro as well as in vivo. 

1.2.5 Regulation of PKM2 

 Pyruvate kinase can be phosphorylated in the cell in response to extracellular signaling. 

These signaling events are usually in response to a growth factor mediated tyrosine 

phosphorylations. Upon growth factor action, several intracellular kinases are activated and can 

phosphorylate a myriad of proteins. PKM2 can be readily phosphorylated at the Y105 residue by 

c-Src kinase. Upon phosphorylation, PKM2 is inactivated thus reducing its kinase activity. PKM2 

has a phosphor-tyrosine binding binding domain upon binding to which releases bound FBP from 

its binding pocket. This release of FBP renders PKM2 inactive in its dimeric form thereby reducing 

its activity.  

 Phosphor-tyrosine binding nature of PKM2 makes up for its relative abundance in a cancer 

cell. Since tyrosine phosphorylated proteins can bind to multiple tetramers of PKM2 and release 

bound FBP, it allows for reduction in PKM2 activity despite a low tyrosine phosphorylated protein 
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to PKM2 ratio in the cell. The interaction between PKM2 and phosphor-tyrosine residues is 

dependent on the K433 residue on PKM2. Tyrosine phosphorylation yields a net negative charge 

to which the positively charged side chain of K433 can bind. The relevance of this interaction is 

due to the presence of the FBP binding site present at this location. The lysine side chain directly 

interacts with the phosphate group on FBP. Therefore, the binding of phosphor-tyrosine can 

directly interact with the PKM2-FBP binding and promote its release from the binding pocket thus 

reducing its activity.  

 PKM2 is phosphorylated on its tyrosine residue Y105. Phosphor-PKM2 can now act as a 

binding partner to the K433 residue and facilitating the release of FBP from the tetramer binding 

pocket. The interaction between Y105 phosphorylated PKM2 and an FBP-bound PKM2 leading 

to FBP release leads to the inactivation of PKM2 and sequesters it in its dimer form. FBP has an 

AC50 value of around 7M, so the ability of FBP to be bound to PKM2 and restrain it in its active 

tetramer is very high as the intracellular concentration of FBP is around 80M. The reversal of the 

ability of FBP to be bound to the highly expressed PKM2 under intracellular concentrations of 

FBP requires consistent growth factor stimulation and subsequent tyrosine phosphorylation of 

downstream proteins, including PKM2 itself. This sustained growth factor signaling and phosphor-

tyrosine binding of PKM2 and its continual release of FBP keeps PKM2 is a continuous state of 

inactivity. This growth factor fueled inactivity of PKM2 signifies the relationship between 

glycolysis and tyrosine signaling and the subsequent buildup of glycolytic intermediates.  

1.2.6  Non-canonical functions of PKM2 

 The canonical function of PKM2 is the glycolytic phosphorylation of ADP using PEP as 

the donor of its high energy phosphate group. This reaction occurs by simultaneous binding of 

PEP and ADP to their respective binding sites. Binding of ADP to the active site can double as a 
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binding site for other proteins wherein upon binding they get phosphorylated using PEP as the 

phosphate source. Therefore, PKM2 can act as a protein kinase with albeit using PEP instead of 

ATP. Tetrameric PKM2 in its FBP bound state can innately bind to ADP in its active site and 

phosphorylate it thus carrying out its glycolytic function leading to the production of pyruvate 

whereas dimeric PKM2 facilitated by the release of FBP from its binding site is rendered inactive 

either by its phosphorylation, acetylation or succinylation.  

In the cytoplasm, PKM2 can bind to HuR, an RNA binding protein which plays a role in 

mRNA stability and translational efficiency. PKM2 is found to be a binding partner of 

tristetraprolin, an mRNA binding protein. After binding to tristetraprolin, it phosphorylates it and 

leads to is degradation and upregulates breast cancer proliferation. The mitochondrial anti-protein 

Bcl2 is a binding partner of PKM2. Under oxidative stress, PKM2 translocates to the mitochondria 

wherein PKM2 phosphorylates Bcl2 at T69 and is stabilized. Phosphorylated Bcl2 does not 

undergo ubiquitination, therefore PKM2 aids in the adaptation of cancer cells to oxidative stress.  

Dimeric PKM2 can relocate to the nucleus under specific stimuli. In the nucleus, dimer 

PKM2 has a multitude of functions. It serves in the regulation of transcription and epigenetic 

modifications. Upon EGFR activation, -catenin is phosphorylated at Y333. Phosphor--catenin 

can now bind to PKM2 and this complex is translocated to the nucleus. In the nucleus, this complex 

binds to the CCND1 promoter and leads to HDAC3 removal, histone acetylation and cyclin D1 

transcription. It can also phosphorylate stat3 at Y705 leading to its binding to MEK5 promoter and 

upregulates cell proliferation. Beside transcription factor activation, PKM2 has been shown to 

phosphorylate MLC2, BUB3 and ERK1 and ERK2. It can also associate with NF-B and HIF-1 

to promote angiogenesis by activating the expression of the HIF response element (HRE) target 

gene VEGF-A. Upon binding to HIF-1 in bone marrow derived macrophages (BMDM), PKM2-
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HIF-1 complex upregulates the transcription of IL-1 and upregulate a pro-inflammatory 

response in these macrophages. With the increasing evidence of the nuclear relocation and function 

of PKM2, there is some evidence to support the contrary. Using [32P]-labeled PEP and PKM2 null 

mice experiments, some evidence exists that PEP dependent phosphorylation is not a common 

occurrence in cells. 

Extracellular PKM2 is a recently researched area wherein PKM2 is packaged in exosomes 

and secreted out of the cell and into the extracellular space. PKM2 is a packaged protein in these 

exosomes and has a communicative role between host and recipient cells. Secreted PKM2 is shown 

to have angiogenic properties, wherein, PKM2 promotes tumor growth by increasing the 

proliferation, migration and tube formation properties of endothelial cells. PKM2 secreted by 

colon cancer cells acts via autocrine signaling and activates cell migration via the PI3K/AKT and 

the WNT/-catenin pathway. Apart from cancer cells, PKM2 secretion has been observed to be 

secreted from neutrophils and aids in wound healing via activation of endothelial cells and 

promotes angiogenesis. PKM2 is also shown to bind to EGFR and phosphorylate it and activates 

EGFR pathway leading to cell proliferation in breast cancer cells. Liquid chromatography/mass 

spectrometry (LC/MS) analyses show that the secreted PKM2 is the dimer form of PKM2. Mutant 

PKM2 (R399E) is mostly in its dimer form and dimer PKM2 has better extracellular response than 

its tetrameric form.  

1.3 COLLAGEN 

1.3.1 Collagen in Physiology 

 Collagen is the most abundant protein in vertebrates. Collagen consists of a right-

handed bundle of three parallel, left-handed polyproline type-2 helices. There are several types of 

collagen and are classified based on their distribution, composition and pathology. The categories 
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are fibrillar, network forming, fibril-associated collagens with interrupted triple helices (FACIT), 

membrane-associated collagens with interrupted triple helices (MACIT) and multiple triple helix 

domains and interruptions (MULTIPLEXIN). Twenty-eight different collagens have been 

identified and they are of different categories mentioned above. 

 The structural motif of collagen has three parallel polypeptide strands in a left-handed 

polyproline type 2 helical coil. This helical coil is a tightly packed triple helix which mandates 

glycine to be every third residue in the peptide strand. The resulting repeating sequence is denoted 

as XaaYaaGly sequence. The Xaa and Yaa could be any other amino acid. The Xaa and Yaa are 

often proline and hydroxyproline respectively. The ProHypGly conformation is the most common 

triplet found in collagen. These triple helices are known as tropocollagen (TC), assemble to form 

macroscopic fibers which is found in tissue, bone and basement membranes. All members of the 

collagen family are secreted proteins and are deposited as the part of the extracellular matrix 

(ECM). All the collagens in the ECM is arranged in supramolecular assemblies. The collagens in 

the ECM play a mechanical role in the structural organization of the tissue.  

 Fibrillar collagens are the principal source of tensile strength in animal tissues. They are of 

indeterminate length and vary in their diameter from 12nm to >500nm. The fibrils are in a periodic 

structure and it is due to regular staggering of triple helical assembly. The XaaYaaGly organization 

of collagen is a part of fibrillar collagen and contains about 1000 residues and is an uninterrupted 

chain. Fibrillar collagens are synthesized as pro-collagens with the N and C propeptides at the end 

of each triple helical domains. The propeptides are cleaved by pro-collagen N or C proteinases. 

The pro-collagen N-proteinase belongs to the A Disintegrin And Metalloproteinase and 

Thrombospondin motifs (ADAMTS) family. The pro-collagen C-proteinase belongs to the Bone 

Morphogenic Protein (BMP) family. Cleavage of pro-collagens by these proteinases exposes the 
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telopeptide sequences which are short non-triple helical extensions of the chains. The fibrils are 

stabilized a non-reducible covalent crosslink between the triple helix and the telopeptides. These 

crosslinked peptides are essential for the mechanical maintenance of tissues.  

 Individual pro chains undergo numerous post translational modifications which include 

hydroxylation of proline and lysine residues, glycosylation of lysine and hydroxyproline residues, 

sulfation of lysine residues. Once these modifications are completed, the assembly of the triple 

helix chain commences, and the formation of the triple helix ceases any further post translational 

modifications. In the endoplasmic reticulum, procollagen is bound to its chaperone protein, heat 

shock protein 47 (HSP47). The binding of HSP47 to the triple helix is required for its stabilization. 

Another protein, secreted protein acidic and rich in cysteine (SPARC), might also act as a 

chaperone for collagen, as its absence leads to defective collagen deposition and mechanical 

organization of tissues.  

1.3.2 Collagen in Fibrosis 

During the advent of fibrosis, activated fibroblasts are triggered by fibrotic stimuli which 

include the pro-inflammatory response from the infiltrated macrophages. The major cytokine 

released by these pro-inflammatory macrophages is transforming growth factor – beta (TGF-β). 

TGF- β is the major activator of quiescent fibroblasts residing in the organ. These fibroblasts are 

activated by TGF- β binding to two of its receptors TGF R1-R2 dimers to form a heterotetrameric 

receptor complex. The receptor is then auto-phosphorylated to trigger downstream signaling 

through secondary messengers. Canonical signaling of TGF- β is usually triggered by the 

phosphorylation of SMAD family of proteins at their SSXS (Ser-Ser-X-Ser) motif. This activation 

triggers the formation of a complex consisting of 2 rSMADs and one common SMAD (SMAD4). 

This complex then localizes to the nucleus and triggers gene transcription. The rSMADs binding 
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to the co-SMAD, SMAD4 regulate the genes transcribed by the upstream signal. During the 

activation event of fibroblasts by TGF- β triggers the phosphorylation and activation of SMAD3 

which was figured to be the major SMAD responsible for the activation of fibroblasts. The 

involvement of other SMADs is relatively non-implicative in the activation of fibroblasts (Gu et 

al., 2007). 

 The trigger of SMAD3 activation in fibroblasts triggers the transcription for an array of 

genes which mark the activation of fibroblasts. The upregulation of alpha-smooth muscle actin 

converts the fibroblasts into mechanically tensile cells capable of contractile function. These 

special cells are termed as myofibroblasts. The activated myofibroblasts have a plethora of genes 

that are activated along with αSMA and one such gene is COL1A1. COL1A1 is the principle gene 

responsible for the transcription of collagen-1, which is one of the major fibrillar collagens. 

Collagen-1 is typically known to be a response towards a wound and it facilitates wound healing 

and repair. Under consistent activation of these fibroblasts, the synthesis and secretion of collagen-

1 is not restricted and leads to increased accumulation of collagen-1 in the extra cellular matrix 

(ECM). The deposition of collagen-1 in the ECM is a key factor in the initial trigger of tissue 

hardening and the onset of fibrosis. 

In pathological fibrotic conditions, the activation signal for the differentiation of fibroblasts 

is consistent due to the continuous pro-inflammatory signaling present in the tissue parenchyma. 

Moreover, the secreted collagen from previously activated myofibroblasts can act as an activation 

trigger for quiescent fibroblasts thus activating them to synthesize and secrete more collagen into 

the extracellular matrix. This pathological positive feedback loop of collagen synthesis, its 

secretion and the further activation of quiescent fibroblasts is a major hallmark of fibrosis. The 

secreted collagen-1 exhibits fully crosslinked form which is resistant to the action of matrix 
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mettaloproteinases (MMPs) thereby do not resolve with the attenuation of the fibrotic insult. The 

MMPs are usually secreted by the myofibroblasts during the initial wound healing phase to 

actively degrade the secreted collagen to prevent its pathological accumulation in the ECM. Upon 

continued stimulus, however, these fibroblasts secrete several lysine deaminase and lysine oxidase 

family of lysine crosslinking enzymes which promote the pathological accumulation of collagen 

in these fibrotic organs leading to their subsequent failure (Hernandez-Gea et al., 2011). 

1.3.3 Modifications of secreted collagen 

Collagen is a complex secreted protein consisting of three separate alpha helical strands which 

assemble into trimers and are then modified in the endoplasmic reticulum via several post 

translational modifications and then are secreted out of the cell. These modifications include the 

hydroxylation of two residues lysine and proline. Proline is the second most abundant amino acid 

in collagen after glycine and lysine is also found in high quantities in the collagen alpha strands. 

The modification of these residues is therefore relatively simple and happens frequently. The 

modification of these residues confers increased stability between the alpha strands of the collagen 

trimer. 

 The modifications that occur in the endoplasmic reticulum is the hydroxylation of proline 

and lysine wherein, the hydroxylation of proline is the most abundant protein post-translational 

modification in humans. This modification is catalyzed prolyl-4-hydroxylase (P4H) and its action 

yields the production of (2S, 4R)-4-hydroxyproline (Hyp). The hydroxylated residue is usually 

present in the Xaa-Yaa-Gly repeat right after the proline residue in the Yaa position. 

Hydroxyproline stabilizes the triple helix structure of collagen by a stereoelectronic effect and 

increases the thermal stability of collagen by lowering its Tm by 15C. The catalysis of Hyp is 

crucial for the folding and formation of the secondary triple helix and is dependent on the presence 
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of alpha-ketoglutarate (αKG) and ascorbic acid. P4H is a non-heme iron(II) αKG dependent 

dioxygenase family enzyme wherein αKG is decarboxylated and oxidized to form succinate. 

Ascorbic acid is a co-factor in the production of Hyp. During P4H activity, it can catalyze the 

decarboxylation of αKG without effecting the hydroxylation of proline which leads to the 

decoupling of the reaction. Ascorbic acid rescues this decoupling by reducing the inactive iron 

(III) to active iron (II) thereby aiding in the effective hydroxylation of proline. Deficiency in 

ascorbic acid leads to unstable collagen fibers causing scurvy. Therefore, this single post 

translational modification of collagen regulates the pathological synthesis and secretion of 

collagen (Sauk et al., 2005). 

 The modifications of collagen in the ER leads to the stability of the triple helix and is then 

secreted into the extracellular matrix. In the ECM, activated fibroblasts secrete an enzyme called 

lysyl oxidase (LOX) which belongs to the amine oxidase family and is hugely implicated in the 

crosslinking of extracellular matrix proteins including collagen and elastin. LOX and its family of 

lysyl oxidase like proteins (LOXL) are directly upregulated in activated myofibroblasts in the case 

of fibrosis and is responsible for the irreversible crosslinking of secreted collagens and thereby 

enabling their resistance towards MMPs. LOX is a copper dependent amine oxidase which uses 

carbonyl co-factor to covalently crosslink residues by oxidative deamination of several specific 

lysines and hydroxylysines. This leads to the formation of allysine and hydroxyallysine in the 

telopeptide domains of collagen. These crosslinks can further interact to form trivalent crosslinks 

making them extensively crosslinked in the ECM further strengthening their tensile properties. 

The crosslinked collagen can now act as trigger for activation of quiescent fibroblasts leading to 

further secretion of collagen and LOX and its LOXL family proteins to create a fatal feedback 

loop in fibrotic diseases. Therefore, targeting the activity of secreted lysyl oxidase (LOX) is a 
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promising approach towards the treatment of fibrotic diseases. β-aminopropionitrile (BAPN) is a 

lysyl oxidase inhibitor which irreversibly binds to the LOX active site thus preventing the 

formation of allysine and hydroxyallysine residues for crosslinking. BAPN was investigated for 

its function of decreasing several fibrotic conditions and in several forms of metastatic cancer 

where crosslinked collagen in the metastatic site serves as a favorable environment for colonization 

of migrated cancer cells (Smith-Mungo et al., 1998). Although LOX/LOXL inhibitors were 

effective in the animal models of fibrosis and metastasis, they failed to produce results in patients 

treated in multiple clinical trials. There is still a wide requirement for the pharmacological 

management of these diseases as current therapies prove ineffective, the search for new therapies 

with new mechanisms are being made one of which will be addressed in the form of PKM2 

activators. 

1.4 FIBROSIS 

1.4.1 Wound Healing 

Acute wound healing is characterized by four distinct overlapping phases. Hemostasis, 

inflammation, proliferation and remodeling. Acute wound healing beings immediately after the 

infliction of the wound. The first step of hemostasis occurs when the blood platelets, now exposed, 

binds with collagen present in the tissue matrix and are activated. Activated platelets secrete 

clotting factors to aid in the clotting of the blood to prevent more blood being spilled into the 

tissue. Along with the clotting factors, activated fibroblasts secrete an array of growth factors 

which include platelet derived growth factor (PDGF) and transforming growth factor – beta (TGF-

). Following hemostasis, inflammation phase occurs with the infiltration of neutrophils into the 

wound site. The neutrophils begin the process of phagocytosis and trigger the influx of 

macrophages. The infiltrated macrophages trigger a pro-inflammatory response and further 
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potentiate the release of TGF-β and PDGF. Macrophages carry out phagocytosis and clear the 

debris in the wound site. The next stage is the proliferative phase wherein the fibroblasts are 

activated due to the secretion of TGF-β and secrete new extracellular matrix. The secreted matrix 

is subsequently cross-linked which leads to the remodeling phase of wound healing.  

 Collagen is the most abundant protein in the animal kingdom. Collagen provides tensile 

strength, structure and integrity to tissues. During injury, the tissue integrity is compromised 

thereby requiring the replacement of collagen to repair the injury and regain tissue strength and 

integrity. Physiological wound healing is a dynamic process required for the restoration of tissue 

anatomy and function. This is achieved by the formation and remodeling of collagen-based scars 

in the tissue. The normal wound process involves the activation and secretion of collagen by 

fibroblasts and then they are either de-differentiated into quiescent fibroblasts or undergo apoptosis 

after tissue matrix remodeling. In the event of pathological wound healing, wherein the healing 

process of ECM deposition and tissue remodeling is not controlled, there is continued wound 

healing and continued infiltration of pro-inflammatory neutrophils and macrophages further 

enhancing inflammation followed by continued secretion and deposition of collagen by fibroblasts. 

These events collectively impair physiological wound healing and lead into a condition called 

fibrosis (Hernandez-Gea et al., 2011). 

1.4.2 Fibrosis in Pathology 

The pathological variant of tissue repair poses a stark difference from the inflammatory and 

secretory response observed in the physiological tissue repair. Typically, pathological wound 

healing is an extension of the healing process, leading to excessive and prolonged healing phase. 

In this phase, there in increased connective tissue deposition and this results in altered tissue 

structures and leads to loss of tissue function. Excessive wound healing manifests in several forms, 
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these include fibrosis, strictures, adhesions and contractions. During fibrosis, the fibroblasts are 

the main perpetuators of matrix deposition and tissue damage. During the proliferation phase of 

wound healing, TGF-  secreted by the platelets, macrophages and T-lymphocytes initiate the 

activation of the fibroblasts to secrete ECM and is widely considered to be a master regulator of 

fibrosis. Increased TGF-  signaling regulates fibroblast function is three distinct ways to facilitate 

wound healing, and in this case, excessive wound healing. First, it triggers the transcription of 

collagen and other ECM proteins through its SMAD-coSMAD pathway. This enables the 

fibroblasts to repair the wound site with the deposition of lost and damaged ECM. Parallelly, it 

also upregulates the secretion of matrix degradation enzymes called tissue inhibitors of matrix 

proteinases (TIMPs). These TIMPs inhibit the action of any secreted MMPs thereby reducing the 

degradation of the newly synthesized ECM. These effects in conjunction with each other facilitate 

the activation and subsequent wound healing properties of fibroblasts (Hata et al., 2016).  

 During the activation of these fibroblasts, there are several metabolic changes which occur 

within the fibroblasts. Upon activation, myofibroblasts are suddenly metabolically hyperactive 

thereby requiring an increased energy need to fuel the increased protein synthesis to secrete ECM 

and to survive the harsh conditions of the wound microenvironment. Herein, the fibroblasts are 

seen to produce more lactate which indicates the flux of glycolysis into lactate production pathway 

via the upregulation of lactate dehydrogenase A (LDHA) and pyruvate kinase M2 (PKM2). With 

the increased metabolic demand, there is an increased need for ATP to be generated, and with the 

glycolytic shunt towards lactate production, there is a dearth in the intermediates entering the citric 

acid cycle. Therefore, the activated fibroblasts upregulate their glutamine transporters. 

Upregulated glutamine is then converted in glutamate via glutamine synthetase (GLS). Glutamate 

can now be freely oxidized into alpha-ketoglutarate by glutamate dehydrogenase (GDH). KG 
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can now enter the citric acid cycle and fuel the production of ATP. Therefore, the activated 

fibroblasts acquire glutamine dependency to fuel their altered metabolic state. During the high 

metabolic state, there is an increased requirement for oxygen, but the local wound 

microenvironment is a low-oxygen state which hinders the metabolic requirement for these 

fibroblasts. The low oxygen environment triggers the stabilization of HIF family proteins, leading 

to the upregulation of vascular endothelia growth factors (VEGF) in the surrounding endothelial 

cells. Increased VEGF in triggers neovascularization. This restores the flow of oxygen back into 

the wound site thereby aiding the metabolic demands of the fibroblasts for the secretion of 

collagen. Therefore, in fibrotic conditions, there is a marked upregulation of secreted lactate and 

HIF family proteins for an extended period. Secreted collagen can now be readily crosslinked with 

the secreted lysyl oxidase (LOX) family proteins. Crosslinked ECM components are not 

susceptible to degradation by MMPs and can further activate fibroblasts to secrete more ECM 

thereby promoting excessive wound healing leading to fibrosis. Pathological fibrosis is thereby a 

collection of signals and environmental triggers which culminate in the continued activation of 

quiescent fibroblasts leading to increased ECM deposition and leading to tissue damage 

(Herchenhan et al., 2015). 

In the advent of fibrosis, there is a large influx of pro-inflammatory immune cells which are 

recruited into the wound site. There are several pro-inflammatory chemokines which facilitate 

the influx of these immune cells. The chemokines implicated in the perpetuation of fibrosis are 

broadly from the CC- and the CXC- family. The major mediators that facilitate the influx of 

mononuclear phagocytes which are the major pro-fibrogenic immune cells are CCL2 (monocyte 

chemoattractant protein-1) and CCL3 (macrophage inflammatory protein 1 ). These 

chemokines attract the macrophage population which upregulate the secretion of several pro-
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inflammatory interleukin family proteins such as IL-1 , IL4, IL-13 etc. IL-4 and IL-13 secreted 

by these cells can in turn upregulate the expression of CC- chemokine activity which leads to a 

positive feedback mechanism which exists to maintain this consistent pro-inflammatory 

condition in the wound site leading to consistent activation of fibroblasts. Apart from the 

chemokines, the chemokine receptors belonging to the CCR or the CXCR family also are 

implicated in the recruitment of pro-inflammatory macrophages into the wound site facilitating 

inflammation. Therefore, inflammation is widely considered to be a attractive target for the 

attenuation of fibrosis. 

1.4.3 Hepatic Fibrosis 

Liver fibrosis is a prime mediator of morbidity and mortality worldwide and can be facilitated 

due to several factors including but not limited to viral hepatitis, obesity associated fatty liver 

disease. The critical point in the fibrosis of the liver is the activation of hepatic stellate cells. 

Hepatic stellate cell injury is central for the fibrogenic response and for its secretion of ECM. 

Hepatic fibrosis is chronic wound healing in the hepatic parenchyma by the deposition of ECM by 

the activated hepatic stellate cells. Hepatic fibrosis is a reversible event. In the case of acute liver 

injury, the changes to the liver parenchyma is transient and the liver architecture is promptly 

restored to its normal composition. In the case of chronic liver injury, chronic inflammation 

persists and leads to the deposition of ECM in the liver parenchyma and forms scar tissue. The 

process of fibrosis upon further damage leads to liver cirrhosis which leads to poor outcome and 

increased morbidity and mortality. Progression of liver fibrosis into cirrhosis is generally very 

slow taking anywhere between 20 to 40 hours in patients with chronic liver injury. The hepatic 

parenchyma consists of a variety of cells which each perform specific functions. These cells types 

include hepatocytes which are liver epithelial cells and form most of the liver mass. Other cell 
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types include endothelial cells and resident non-parenchymal cells. These cells include hepatic 

stellate cells (HSCs) and Kupffer cells (KCs). HSCs are the resident fibroblasts in the liver whereas 

the KCs are the resident macrophages of the liver.  

 The hepatic vascular structures are arranged in a sinusoid-based structures. The endothelial 

cells form a lining of cells separated by fenestrations. The endothelial lining is separated from the 

hepatocyte epithelial bed by a sub-endothelial space known as the space of Disse. The hepatic 

stellate cells reside in the space of Disse. Hepatic stellate cells, in their quiescent state store vitamin 

A and upon activation loses its vitamin A stores and switches to a contractile, proliferative, 

secretory, metabolic and pro-fibrogenic myofibroblast like phenotype. Here, the environment is 

supportive for the maintenance and function of the parenchymal cells and is porous for the 

exchange of metabolites between the hepatocytes and the bloodstream. During liver injury, the 

hepatic stellate cells are activated and begin to secrete ECM in the space of Disse. Upon ECM 

accumulation, fenestrations that occur in the lining of the endothelial cells are now occluded which 

impairs the regular communication between the hepatocytes and the vascular bed. The occlusion 

of the sinusoids is called the capillarization of sinusoids. Sinusoid occlusion is a characteristic 

outlook of the progression of fibrosis. A major cause of liver fibrosis is chronic hepatitis B and 

hepatitis C which cause bridging fibrosis characterized by the presence of fibrotic septa. Fibrotic 

septa are formed by the interface hepatitis and portal-central vein bridging necrosis. Another major 

cause of fibrosis in the liver is related to the consumption of alcohol. Alcohol induced fibrosis is 

characterized by the deposition of ECM in the space of Disse around the sinusoids and hepatocytes. 

The other form of fibrosis is biliary fibrosis where there is an increased proliferation of bile 

ductules and periductular myofibroblasts. In biliary fibrosis, there is formation of fibrotic scars in 

the portal-portal septa which surrounds the liver nodules. Centrolobular fibrosis is mediated not 



27 

 

 

by the direct activation of fibroblasts but by the alteration of venous flow and is characterized by 

the central-central fibrotic septa. 

 ECM distribution in the normal liver is a dynamic process wherein the secretion and 

deposition of ECM and the degradation of the new ECM is carefully regulated by balancing the 

gap between generation and degradation. Liver fibrosis occurs when the deposition fraction 

exceeds the degradation factor and leads to increased accumulation of ECM leading to alteration 

of liver parenchyma and its function. The ECM is deposited and leads to the thickening of the 

fibrotic septa and is then chemically crosslinked. ECM in the liver is usually tightly organized that 

provides structural and functional integrity of the liver. The general distribution of ECM is 

relatively low at around 3% in a normal liver section and the usual composition is mainly collagen 

IV and VI. Collagen IV and VI are mesh-type collagens which form the support structures in the 

liver. During fibrotic injury, the deposition of collagen is mostly the fibrillar type collagen I and 

III. The altered type of ECM now deposited in the space of Disse is responsible for the alteration 

of the matrix microenvironment and creates a functional and physical impairment of the 

bidirectional communication between the vascular bed and the hepatocyte mass.  

 The presence of accumulated ECM in the liver during the fibrogenic response is 

responsible for the hardening of the liver parenchyma and induces the activation of fibroblasts. 

Apart from the physical implications of ECM, several growth factors bind to ECM and are 

preserved in their latent forms. Bound growth factors then facilitate the growth and maintenance 

of the local microenvironment and their cells. Decorin and biglycan can bind to TGF-

, fibronectin and laminin bind to tumor necrosis factor (TNF- ), collagen binds to a variety 

of growth factors including platelet derived growth factor (PDGF), hepatocyte growth factor 

(HGF) and interleukin-12 (IL-12). ECM and the surrounded cells are bi-directional therefore ECM 
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can regulate the activation of HSCs, endothelial cells and the availability of growth factors lead to 

the accumulation of ECM and leads to a pro-fibrogenic positive feedback loop. Interaction of 

HSCs with the secreted ECM is determined by the receptor profile of the HSCs. The membrane 

receptors which interact with ECM are integrin family, a disintegrin and metalloproteinase domain 

(ADAM) molecules and several discoidin domain receptors. Integrins are critical for the activation 

of HSCs and are usually upregulated in activated HSCs hence promoting their binding to the 

surrounding ECM. ADAMSTS-1 and ADAMSTS-13 are expressed by the endothelial cells and 

activated HSCs respectively. Discoidin domain receptor 2 (DDR2) potentiates HSC activation. 

Secretion of collagen I induces DDR2 phosphorylation leading to increased MMP2 production.  

 TGF-β is the major cytokine responsible for the activation of HSCs in the liver. TGF-  is 

secreted by various cell types and in different isoforms TGF- β 1, TGF- β 2 and TGF- β 3. TGF- 

β 1 is mainly secreted by macrophages and monocytes and TGF- β 1 is the principal isoform which 

is implicated in the progression of liver fibrosis. TGF- β 1 is stored as an inactivate protein bound 

to another latency associated protein. Upon activation, TGF- β 1 binds to its receptor TGF β R2 

and dimerizes with TGF β R1 and binds to SMAD2 and SMAD3 and this complex is now 

phosphorylated and binds to its co-SMAD, SMAD4. This complex translocates into the nucleus 

resulting in the transcription of procollagen 1 and procollagen 3. Therefore, TGF- β is a direct 

responsible cytokine in the initiation and the progression of collagen in the advent of liver fibrosis.  

 Given the pathology of liver fibrosis, several studies have been carried out to test the 

reversibility of fibrotic insult. Fibrosis of the liver can be reversed by several approaches. Direct 

removal of the causative agent has shown to be critical in the resolution of fibrosis in several 

animal models. In other cases of a persistent underlying cause for the progression of fibrosis, the 

removal of the underlying cause, like resolution of hepatitis B or C viral infection, lead to the 
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resolution of disease induced fibrosis. In alcohol induced fibrosis, removal of alcohol from the diet 

lead to the quick resolution of fibrosis. The mechanisms behind resolution of fibrosis are linked to 

some for of degradation of the ECM. ECM is a dynamic balance between its generation and 

degradation. ECM degradation is carried out by matrix metalloproteinases. MMPs are regulated 

in the liver at various levels. They are tightly transcriptionally controlled and secreted as inactive 

pro-enzymes. To restrict their enzymatic activity, tissue inhibitors of matrix metalloproteinases 

(TIMPs) are secreted and bind to all the MMP isoforms and thus control their degradation activity. 

TIMP family proteins play a major role in the alleviation of liver fibrosis. TIMP-1 plays a role in 

the apoptosis of HSCs and since HSCs are the major source of MMP-2, MMP-3, MMP-9 and 

MMP-13, their removal impairs the progression of liver fibrosis. HSC depletion is critical to the 

resolution of fibrosis and it is carried out by several mechanisms which include the inactivation of 

NF-kB and thereby reducing its survival signaling. Immune cells such as NK cells can also induce 

HSC apoptosis by expression of TRAIL ligand which can directly bind to HSCs and induce 

apoptosis. Several components of ECM can also lead to apoptosis if their binding to their 

respective ECM receptors on HSCs is abrogated such as integrin 3 2 which increases the ratio 

of Bax/Bcl2 and induces caspase 3 activation in HSCs. Therefore, hepatic fibrosis is a dynamic 

and complex process which is regulated in several ways by tightly controlled pathways and can 

lead to hepatic cirrhosis which is the leading digestive disease which causes death. And the 

resolution of fibrosis is a challenge and new therapies and targets are required to ameliorate fibrosis 

and reduce morbidity and mortality (Hernandez-Gea et al., 2011). 

1.4.4 Pulmonary Fibrosis 

In many pulmonary diseases, the end stage results in the formation of fibrotic scars in the 

lung called pulmonary fibrosis. Pulmonary fibrosis is characterized by the excess accumulation of 
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extracellular matrix which leads to the compromise of pulmonary structure and function. This 

eventually leads to difficulty breathing and finally death. The most common type of pulmonary 

fibrosis is idiopathic pulmonary fibrosis (IPF). IPF is a widespread disease with a very low 5-year 

survival rate of 20% which leads to the requirement of immediate therapeutic options for treatment. 

Lungs affected with IPF characteristically show alternating fibrotic regions, normal lung 

parenchyma, followed by alternating inflamed regions and fibrotic regions and honeycombing. 

The advent of lung fibrosis is usually through response to acute injury in the multi-focal 

epithelium. Repeated injury to the micro epithelium results in the apoptosis of alveolar epithelial 

cells. This impaired alveolar epithelium results in aberrant interactions between the epithelial cells 

and the fibroblasts of the lung and therefore lead toward impaired healing processes. The healing 

cascade in the lung is usually tightly controlled and regulated by many cell signaling events and 

homeostasis of the lung epithelial ECM components. The impaired healing processes lead to 

uncontrolled healing signals leading to accumulation of excessive extracellular matrix in the lung 

parenchyma leading to pulmonary fibrosis.  

Several potential causes have been isolated for the initiation and propagation of IPF. Some 

of them include immunological disorders, oxidative stress mediated apoptosis, endoplasmic 

reticulum stress, coagulation cascade proteins, and even the possible role of stem cells are studied. 

Even though many possible avenues have been studied to identify the etiology of pulmonary 

fibrosis, the direct role of specific agents to initiate fibrosis remains unclear. In general, initiation 

of fibrosis is observed when there is repeated injury which would lead to the apoptosis of the 

alveolar epithelial cells. A genetic pre-disposition is generally suspected due to the associated SP-

A and SP-AC mutations in the alveolar epithelium. These mutations lead to a dysfunctional 

epithelium leading to disrupted alveolar epithelium homeostasis leading to a fibrotic trigger. 
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Several environmental triggers have also been isolated which are implicated in the repeated injury 

to the alveolar epithelium. Inhaled injurious agents trigger a pro-inflammatory response in the 

lungs. The immune response to the inhaled agents triggers a similar response as a repeated injury 

and can trigger the fibrotic cascade. Similar to the liver, virus based infections lead to repeated 

insult and injury to the epithelium leading to fibrosis. In the case of lungs, the major viral agent is 

the Epstein-Barr virus (EBV), several other viral infections have since been identified namely 

herpes simplex virus 7 and 8, parvovirus B19, torque teno virus and several cytomegaloviruses. 

The most widely implicated virus, the EBV, triggers an immune response which enables the influx 

of pro-inflammatory neutrophils, monocytes and macrophages which are all a major source of 

TGF-β. TGF-β is known to interact with EBV and potentiate viral lytic phase activation and 

resistance to inhibition of growth.  

Recurrent injury to the pulmonary epithelium leads to the damage of the alveolar capillary 

basement membrane. This enables an influx of fibroblasts which are consequently activated by the 

immune cell secreted TGF-β into myofibroblasts. These myofibroblasts secrete excessive ECM 

leading to the destruction of lung parenchyma and loss of lung function. Lung fibroblasts 

proliferate due to the production of fibroblast growth factor-2 which activates the MAPK pathway 

leading to increased fibroblast population and TGF-β can activate them to begin the fibrotic wound 

healing cascade. As seen in the liver, the recruitment of the initial pro-inflammatory mediators is 

mediated by the CC- and CXC- family of chemokines. Inn the lung, CCL2 and CCL3 are the most 

implicated which act via their respective receptors, mainly CCR2.  

Like the fibrotic processes in the liver, the fibrogenic process in the lungs is the imbalance 

between ECM secretion and ECM degradation. ECM in the lungs is degraded by MMPs secreted 

by myofibroblasts. These myofibroblasts also secrete TIMPs which can reversibly inhibit the 
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activity of MMPs and lead to decreased ECM degradation. The deposited ECM can now be 

chemically crosslinked by the LOX family proteins which are secreted by the myofibroblasts. 

These covalently crosslinked ECM, mainly collagen I, is resistant to the action of MMPs and leads 

to the collapse of the alveolar structures and decline in the lung function. The general cascade of 

events in the lungs is like the liver wherein there is an initial and repetitive insult and injury. In the 

lungs, epithelial damage leads to endothelial damage of the alveolar capillary basement membrane 

thereby reducing the structural integrity. The absolution of the basement memory leads to vascular 

leaks. Vascular leaks trigger the coagulation cascade in the platelets notably the secretion of 

PDGF. The release of PDGF triggers the proliferation of the resident lung fibroblasts. The presence 

of PDGF also leads to the influx of macrophages which trigger secretion of TGF-β and 

myofibroblast activation. The fibrogenic response leads to the deposition of ECM and the presence 

of repeated injury leads to the consistent activation of the myofibroblasts which leads to 

exaggerated ECM accumulation, lack of ECM degradation, progressive ECM remodeling and 

honeycomb changes. These cascade of events leads to the loss of lung function and eventually, 

death.  

The current treatment options for the treatment of IPF still revolves around resolution of 

the persistent inflammation present in the lung epithelium. To tackle this phenomenon, anti-

inflammatory agents are still the standard treatment option for IPF. Since the underlying cause in 

IPF is usually unknown and the resolution of ECM secretion is not checked, the need for novel 

therapeutic options is still a major area for drug development (Wuyts et al., 2013).  
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2 METHODS AND MATERIALS 

2.1 CELL CULTURE 

2.1.1 Growth and maintenance 

LX2 cells were obtained from Millipore (Cat#SCC064) and NLF cells were obtained from 

Lonza (Cat#) and were maintained in DMEM (Corning Cat#10-013) supplemented with 2% FBS 

and 1% penicillin-streptomycin solution (Corning Cat# 30-002CL). Cells were maintained in a 

37C incubator in 5%CO2 for all treatments listed. 

2.1.2 Growth factor treatment 

To activate the fibroblasts, TGF-β(R&D systems Cat# dissolved in PBS was added at 

10ng/mL and incubated for 48 hours in DMEM supplemented with 2% FBS and 1mM glutamine 

(Corning Cat#25-005CL).  

2.1.3 PKM2 activator treatment 

PKM2 activator DASA-10 was obtained from Millipore (Cat# 550602) and was dissolved 

in DMSO to make a stock concentration of 10mM. DMSO or DASA-10 was added to the activated 

fibroblasts at a final concentration of 10µM for 24 hours or 48 hours wherever specified. 

2.1.4 RNA interference 

SiRNA for PTBP1 was purchased from Santa Cruz (Cat# SC-38280) and was diluted with 

water to make a stock concentration of 100µM. RNA iMAX was purchased from Thermo(Cat # 

13778030) and Opti-MEM was purchased from Thermo (Cat# 11058021). SiRNA was diluted in 

250µL of Opti-MEM to achieve a final amount of 10pmol. 5µg of RNA iMAX was diluted in 

250µL of Opti-MEM and they were combined and incubated for 20 minutes. The mixture was then 
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added to the cells and incubated for 4 hours. Cells were then supplemented with DMEM for 24 

hours and analyzed for RNA interference with a western blot. 

2.2 Western blot 

2.2.1 Whole cell lysate preparation 

10x RIPA lysis buffer was purchased from Millipore (Cat# 20-188). 1X RIPA buffer was 

prepared with 1X protease and 1X phosphatase inhibitors. Cell pellets were lysed in the lysis buffer 

for 30 minutes at 4C and centrifuged at 14000 rpm for 10 minutes. The supernatant was stored in 

-80C. Protein concentration was measured using Bradford assay (BioRad Cat#5000201).  

2.2.2 SDS PAGE and immunoblot 

30µg of lysate was subjected to gel electrophoresis on a 10% SDS gel until the target 

protein molecular weights were resolved and transferred to nitrocellulose membrane at 120mAmps 

for 2 hours. Membranes were blocked with 5% milk for 1 hour and probed with one of the 

following antibodies overnight at 4C. Antibodies used were either Anti-rabbit or anti-mouse. 

PKM2 (Cell Signaling, Cat# 4053S, 1:1000), PHGDH (Cell Signaling Cat# 66350S, 1:1000), -

SMA (Cell Signaling Cat# A5228, 1:1000), -actin (Yurogen Cat# R15006MC4H, 1:10,000). 

HRP conjugated anti-rabbit (Thermo cat# 31460, 1:10,000) or anti-mouse (Thermo Cat# 31430, 

1:10,000) were used based on the primary antibodies. Membranes were developed with ECL 

substrate purchased from Thermo (Cat# 32106). 

2.3 Reverse transcriptase-polymerase chain reaction 

2.3.1 RNA Isolation 

RNA was isolated from cells and tissues using Tri reagent (Cat# 15596026) with the 

provided manufacturer’s protocol. In brief, cells were lysed in Tri reagent and extracted with 
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chloroform and centrifuged at 14000 rpm for 15 minutes. Isopropanol was added to the top aqueous 

layer and centrifuged at 14000 rpm for 15 minutes. The precipitated RNA pellet was then washed 

with 75% ethanol. The RNA pellet was then dissolved in water and stored at -80C.  

2.3.2 Reverse Transcription 

RNA was measured with a NanoDrop and 2µg of RNA was used for cDNA conversion 

using MAXIMA cDNA first strand synthesis kit purchased from Thermo (Cat# K1641) using the 

manufacturer’s protocol. In brief, RNA was measured and was added to the enzyme mix and 

cycled in the following parameters: 25C for 10 minutes, 50C for 15 minutes, 85C for 5 minutes. 

The resultant mixture was diluted to 200µL and 5mL was used for qPCR analyses. 

2.3.3 qPCR 

qPCR was carried out using LUNA qPCR SYBR GREEN mastermix was purchased from 

NEB (M3003L) in a Thermo 7500 Fast qPCR machine. The primers were purchased from Thermo 

and are listed in Table 1. These primers were diluted to a stock concentration of 100µM and were 

re-diluted to a working concentration of 10µM. 5µL of the prepared cDNA, 0.5µL of each forward 

and reverse primers, and 5µL of the provided mastermix were run through the qPCR thermocycler 

for 40 cycles. The resultant threshold cycles for the genes were analyzed using the ΔΔCT method. 

2.4 Immunohistochemistry 

Formalin fixed paraffin embedded were sectioned at 5µm thickness and mounted onto 

charged slides. Immunochemistry kit was purchased from (BioCare Cat# M2U522) was performed 

on these slides using manufacturer’s protocol. Briefly,slides were baked in a 60C oven for 2 hours. 

They were washed with TBST followed by protein and peroxide block. The slides were incubated 

with primary antibodies at various concentrations depending on manufacturer’s protocol. The 
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slides were then washed and probed with HRP-conjugated polymer. DAB and its substrate were 

used to stain the polymer.  

2.5 Immunofluorescence 

Tissues were rinsed in PBS and processed through serial dilutions of sucrose (10%, 15% and 

30%) before embedding in OCT (Tissue-Tek) and then immediately frozen in liquid nitrogen. 10-

μm thick sections were washed with PBS, fixed in acetone and incubated with primary antibodies 

overnight. Alexa Fluor 488 and 555 secondary antibodies were used to visualize IF staining. Nuclei 

were counterstained with DAPI. Images were taken using a Keyence microscope camera and 

analyzed using Adobe Photoshop CS6. The following antibody dilutions were used: αSMA, 1:200 

(#A5228, Sigma Aldrich); PKM2, 1:500 (#4053, Cell Signaling Technology), Cleaved Caspase 3, 

1:500 (#9661, Abcam); CD68, 1:500 (#125212, Abcam). 

2.6 High pressure liquid chromatography 

2.6.1 Sample preparation 

1x106 cells were used for all HPLC analyses. Cells were washed with 0.9% NaCl and flash 

fixed in precooled 50% methanol. The cells were then scraped and transferred to an Eppendorf 

tube. Chloroform was added to the samples and were lysed for 30 minutes at 4C. The lysates were 

centrifuged at 14000 rpm for 10 minutes and the aqueous phase was used for amino acid analyses. 

2.6.2 Reversed Phase liquid chromatography 

Amino acid standards were purchased from Sigma (Cat# AAS18). Amino acids were then 

derivatized with phenylisothiocyanate (PITC) purchased from Sigma (Cat# 26922). Derivatized 

samples were analyzed using a reversed phase HPLC Agilent system (1260 Infinity II). Agilent 

C18 150mm column (Agilent Poroshell 120) was used to resolve the amino acids and were analyzed 

by a UV-DAD detector at 254nm.  
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2.7 Liquid chromatography mass spectrometry 

Acetonitrile (LCMS grade), water (LCMS grade) and formic acid (LCMS grade) were 

purchased from Fisher Scientific. LC-MS/MS analysis was carried out with a Sciex API3200 esi-

triple quandrupole mass spectrometer coupled with an Agilent 1200 HPLC. A Phenomenex 

Germini NX-C18 column (3 µm, 100x3mm) was used with flow rate of 200µL/min. Mobile 

phase was 1% ACN containing 0.1% HCOOH (mobile phase B) and 99% water containing 0.1% 

HCOOH (mobile phase A). The analysis was isocratic for 10 min. 5µL of each standard and 

sample was injected into the system. The MS ion source used was esi in a positive selective 

reaction mode (SRM) with the precursor/product ion pairs listed in the following table. The MS 

parameters used are as follows: Ion source (IS) voltage, 5400 v, ion source temperature 450C, 

collision energy 5v. Analyst 1.5.1 was used for data analysis. 

2.8 Size exclusion chromatography 

Cells were lysed and total protein was extracted with RIPA. 2mg of cellular protein was 

separated using a HiPrep 16/60 Sephacryl S-200 HR columns in 50mM sodium phosphate and 

150mM codium chloride, pH 7.2. Fractions were collected and analyzed at UV 280nm. 

2.9 Induction of liver fibrosis 

For the induction of liver fibrosis, the thioacetamide (Fisher Cat# AC424530250) (TAA)-

ethanol model of liver fibrosis was used. In short, BALB/cJ mice aged 6 weeks were provided 

with 10% ethanol in drinking water at libitum and TAA was administered at 100mg/Kg i.p. bi-

weekly for 5 weeks. The dose was increased to 250mg/Kg for another 7 weeks. Mice were treated 

with TEPP-46 (insert cat) at 50 mg/Kg daily for 21 days. Mice were euthanized in a CO2 chamber 

and tissues were harvested for further analysis.  
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2.10 Induction of lung fibrosis 

For the induction of lung fibrosis, the bleomycin (Selleckchem Cat# S1214) model of lung 

fibrosis was used. In short, C57/BL mice aged 6 weeks were administered with 4mg/Kg bleomycin 

i.p. bi-weekly for 4 weeks. Mice were treated with TEPP-46 at 50mg/Kg daily for 21 days. Mice 

were euthanized in a CO2 chamber and tissues were harvested for further analysis.  
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Table 1 List of primers 

Gene Sequence (5'-3') 

Human   

hPHGDHF GGAGGAGATCTGGCCTCTCT 

hPHDGHR GTCATTCAGCAAGCCTGTCG 

hPSPHF GGACTCCCTTTTAAGCAGATCTCA 

hPSPHR TTCCCAGGGAGGTGAGCTG 

hPSAT1F GCGGCCATGGAGAAGCTTAG 

hPSAT1R ATGCCTCCCACAGACACGTA 

hSHMT1F GTGACCACCACCACTCACAA 

hSHMT1R ACAGCAACCCCTTTCCTGTAG 

hSHMT2F GCTGCCCTAGACCAGAGTTG 

hSHMT2R GCAGAGGCCGAGCCG 

hCOL1A1F GGTCAGATGGGCCCCCG 

hCOL1A1R GCACCATCATTTCCACGAGC 

hPKM2F ATTATTTGAGGAACTCCGCCGCCT  

hPKM2R ATTCCGGGTCACAGCAATGATGG 

hActinF CTCGCCTTTGCCGATCC 

hActinR TCTCCATGTCGTCCCAGTTG 

Mouse   

mCCL2F TTTTGTCACCAAGCTCAAGAGA 

mCCL2R ATTAAGGCATCACAGTCCGAGT 

mIL1bF CCAAAAGATGAAGGGCTGCT 
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mIL1bR ACAGAGGATGGGCTCTTCT 

mIL6F GAGGATACCACTCCCAACAGACC 

mIL6R AAGTGCATCATCGTTGTTCATACA 

mIL10F ATAACTGCACCCACTTCCCA 

mIL10R GGGCATCACTTCTACCAGGT 

m18sF CGCTTCCTTACCTGGTTGAT 

m18sR GAGCGACCAAAGGAACCATA 

mActinF AGTGTGACGTTGACATCCGT 

mActinR GCAGCTCAGTAACAGTCCGC 
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3 PYRUVATE KINASE IN FIBROSIS 

3.1 Abstract 

Fibrosis is a pathological condition that is associated with the accumulation of excess 

collagen in the extracellular space by activated myofibroblasts. Activated myofibroblasts 

upregulate Pyruvate Kinase M2 which reduces the production of pyruvate and leads to 

accumulation of glycolytic intermediates. Glycolytic intermediates feed into several anabolic 

processes including glycine synthesis. Glycine is required to produce collagen strands to secrete 

collagen because it is an essential part of collagen’s XaaYaaGly motif. The demand of glycine is 

satisfied by both transport into the cell and de novo synthesis. We utilized a PKM2 activator to 

upregulate glycolysis and deplete its intermediates therefore reducing the flux to glycine synthesis. 

PKM2 activator treatment reduced the production of glycine and collagen in these fibroblasts and 

reduced the progression of fibrosis in liver and lung. 

3.2 Introduction 

Fibrosis is a condition wherein excess collagen is accumulated in the extracellular matrix by 

specialized set of cells. The cells which are responsible for the secretion of collagen are called 

myofibroblasts. Quiescent fibroblasts do not have the ability to secrete collagen. For them to 

differentiate into myofibroblasts, they must be activated. Quiescent fibroblasts are activated by 

TGF- secreted by infiltrating macrophages in response to liver injury. In the liver, these 

quiescent fibroblasts are called hepatic stellate cells (HSCs). Upon exposure to TGF-, HSCs get 

activated and are differentiated into myofibroblasts. The activation of HSCs lead to secretion and 

accumulation of collagen in the liver leading to liver fibrosis. The activation of fibroblasts leads 

to the upregulation of pyruvate kinase M2 by alternate splicing. PKM2 is an isoform of PKM gene 

which is responsible for the final step of glycolysis. PKM1 is a consistently active isoform and 
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provides constant movement of pyruvate into the citric acid cycle. PKM2 on the other hand can 

be regulated into its dimer and tetramer states by various posttranslational modifications 

including phosphorylation, succinylation etc. Dimer PKM2 is its inactive state and has a low 

glycolytic index. This leads to the accumulation of glycolytic intermediates and can channel 3-

phospho glycerate (3PG) into de novo serine and glycine synthesis. Glycine is an integral part of 

the collagen fibril. Collagen is primarily made of a repeating triple amino acid motif usually in the 

XaaYaaGly sequence. Therefore, activated fibroblasts can upregulate de novo glycine synthesis 

to fuel its need for collagen production. Activation of PKM2 using synthetic activators, DASA-10 

and TEPP-46, impairs glycine synthesis by shunting the intermediates into the citric acid cycle. 

The reduced reserves of glycine impair collagen synthesis by these fibroblasts. The usage of 

metabolic activators to inhibit collagen synthesis is a novel approach to tackle fibrotic diseases. 

3.3 Results 

3.3.1 PKM2 is upregulated in fibrotic tissues 

In the event of fibrosis, tissues have been known to activate their resident quiescent fibroblast 

populations into a more active myofibroblast phenotype. The myofibroblast marker is a variant of 

smooth muscle actin called alpha smooth muscle actin (αSMA). We procured human liver and 

lung fibrotic tissue arrays from USBIOMAX and immunostained them with PKM2 to signify the 

areas where the activation of these fibroblasts is prevalent. We stained similar areas with Sirius 

Red for the presence of collagen. We observed that the localization of the immunostain and the 

Sirius red stain was contained to the stromal region of these tissues (Figure 3-1A). To test this in 

an in vitro system, we treated hepatic stellate cells (LX2) and normal lung fibroblasts (NLF) with 

10ng/mL of TGF-β to activate these fibroblasts. Cells were activated for 48 hours and were lysed 

for RNA analyses. RT-PCR was performed on the samples and several genes related to 
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myofibroblast phenotype were measured. PKM2, αSMA and COL1A1 were measured in LX2 

cells (Figure 3-1B) and in NLF cells (Figure 3-1C). After treatment with TGF-β  for 48 hours, 

αSMA, PKM2 and COL1A1 genes were significantly upregulated leading to a myofibroblast like 

phenotype. 30µg of protein was loaded and immunoblotted for αSMA, PKM2 in the inactivated 

and activated LX2 and NLF cells to test the upregulation of myofibroblast like phenotype (Figure 

3-1D). The protein profile of the activated fibroblasts is a direct representative of their mRNA 

profile in that PKM2 is upregulated by around 1.5-fold in activated LX2 along with αSMA whose 

fold change is around 1.5. In activated NLF cells, the fold change of PKM2 is also around 1.5-fold 

but αSMA had a higher fold change (Figure 3-1 E&F). 
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Figure 3-1 PKM2 is upregulated in fibrotic tissues and in activated fibroblasts. 

 (A)Tissue microarrays for healthy and fibrotic lungs and livers were probed with PKM2 and 

collagen 1 and were found to be localized to the stromal region in human fibrotic liver and lung. 

(B) RT-PCR analyses of inactivated and activated hepatic stellate cells (LX2) for PKM2, αSMA 

and COL1A1. (C) RT-PCR analyses of inactivated and activated normal lung fibroblasts (NLF) 

for PKM2, αSMA and COL1A1. (D) Inactive and active LX2 and NLF cells were lysed and 30µg 
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of lysates were immunoblotted for αSMA and PKM2. (E,F) Quantification of the fold increase of 

αSMA and PKM2 in LX2 and NLF cells respectively. 

3.3.2 TGF-β promotes Warburg effect 

We observed that the expression of PKM2 and αSMA was consistent in response to TGF-

β treatment. PKM2 exhibits low glycolytic activity in comparison to PKM1. The low glycolytic 

index leads to the accumulation of the intermediates of glycolysis. Glycolytic intermediates are 

usually shunted into several anabolic processes which include the pentose phosphate pathway 

(PPP), de novo serine and synthesis etc. To analyze the flow of these intermediates, we tested for 

the levels of several glycolytic intermediates in activated LX2 and NLF cells. In LX2 cells 

treatment with TGF-β increased the accumulation of glucose-6-phosphate (G6P) considerably 

from an average of 80µM to 95µM (Figure 3-2A). We also assessed the accumulation of 2-

phosphoglycerate (2PG), another glycolytic intermediate, who’s upstream 3-phosphoglycerate 

leads to the synthesis of serine. We observed that 2PG was also significantly accumulated in these 

cells (Figure 3-2B). We then proceeded to test whether the upregulation of PKM2 by TGF-β lead 

to the reduction of pyruvate kinase activity in the activated LX2 cells. Evidently, the addition of 

TGF-β, lead to a stark reduction in PK activity (Figure 3-2C). This reduction of PK activity directly 

correlates with the accumulation of G6P and 2PG in these cells. We next asked whether the effect 

of lowered PK activity and accumulation of the intermediates leads to de novo serine and 

subsequent glycine synthesis. We employed an LC/MS approach to determine the quantity of 

serine (Figure 3-2D) and a fluorometric determination of glycine quantity (Figure 3-2E). The 

levels of both serine and glycine have considerably increased in these cells post activation. We 

wanted to test whether a similar phenomenon could be observed in activated NLF cells, as they 

showed an upregulation of PKM2 along with αSMA. In keeping with the levels of the 
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intermediates in LX2 cells, NLF cells also showed increased G6P accumulation (Figure 3-2F), 

increased 2PG accumulation (Figure 3-2G) and decreased PK activity (Figure 3-2H). We then 

tested whether de novo serine and glycine synthesis were also affected in NLF cells and evidently, 

both serine and glycine levels were considerably increased upon activation of NLF cells. Activated 

myofibroblasts are the main source of collagen in fibrotic tissues. Therefore, to test the levels of 

collagen produced in these cells upon activation, we tested the levels of hydroxyproline, an amino 

acid exclusive to collagen, in these cells We observed that in both LX2 (Figure 3-2I) and NLF 

(Figure 3-2F), the levels of hydroxyproline significantly increased. 
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Figure 3-2 TGF-β promotes Warburg effect in hepatic stellate cells (LX2) and normal lung 

fibroblasts (NLF) 

5x105 LX2 cells were used in the measurement of glycolytic intermediates, (A) G6P and (B) 2PG 

using a G6P (BioVision Cat#K657) and 2PG (BioVision Cat#K778) detection kits. (C) The PK 

activity was measured in these cells using a PK activity assasy kit (BioVision Cat#K709). (D) 

Serine levels were measured with LC/MS. (E) Glycine levels measured with a glycine assay kit 

(Abcam Cat#AB211100). 5x105 NLF cells were used in the measurement of glycolytic 

intermediates, (F) G6P and (G) 2PG. (H) PK activity was measured as before. (I) Serine levels 

were measured as mentioned before. (J) Glycine levels were measured as mentioned before. The 

assay kits used in the detection of G6P, 2PG, PK activity and glycine levels were the same for LX2 

and NLF. Serine was measured in both LX2 and NLF cells using LC/MS as described in the 

methods. Hydroxyproline was tested in (K) LX2 and (L) NLF cells using a hydroxyproline 

detection kit (Sigma Cat#MAK008). All cells were either treated with PBS (clear bars) or 10ng/mL 

of TGF-β for 48 hours (filled bars). 

3.3.3 TEPP-46 reverses liver fibrosis 

The capacity of PKM2 activators to activate glycolysis by 200% was observed in activated 

liver stellate cells. With the increased activity of PKM2, the glycolytic intermediates were depleted 

rapidly thereby removing the intermediates necessary for de novo serine and further glycine 

synthesis. The halting of de novo serine and glycine synthesis lead to decreased collagen synthesis 

in vitro. During a fibrotic injury the hepatic stellate cells are activated and leads to secretion of 

collagen into the hepatic extracellular space. This accumulation of pathological collagen leads to 

liver fibrosis and eventually to liver cirrhosis. We wanted to test whether this phenomenon can be 

observed in vivo in a model of alcohol induced liver fibrosis. To induce liver injury, the 
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thioacetamide (TAA)-ethanol model was used. 10% ethanol in drinking water was provided to 

Balb/cJ mice and were administered with TAA for a period of 12 weeks followed by 7 weeks of 

treatment with TEPP-46 (Figure 3-3A). After the end of treatment, animals were sacrificed, and 

livers were photographed to identify gross structural differences if any. The gross images of both 

vehicle and TEPP-46 treated groups show significant differences in their surface morphology 

(Figure 3-3B). On the surface of the livers in the vehicle group, collagen accumulation can be 

observed in the form of white spots, whereas in the TEPP-46 treated livers show morphology like 

a normal liver. We then analyzed the aspartate aminotransferase (AST) and alanine 

aminotransferase (ALT) in the serum of these mice. The levels of AST (Figure 3-3C) and ALT 

(Figure 3-3D) were significantly lowered in the treated group which indicates improved liver 

function and decreased liver damage. We then tracked the weights of the animals during the 

treatment phase and in the TEPP-46 treated group, gained weight drastically within a week of 

treatment whereas the vehicle group continued deterioration (Figure 3-3E). We then proceeded to 

examine the collagen accumulation in the liver parenchyma. We stained the livers from both 

vehicle and TEPP-46 groups for collagen using Sirius Red stain. The stained area of collagen was 

quantified, and the mice treated with TEPP-46 have reduced collagen accumulation in the liver 

extracellular area (Figure 3-3F). Since most of the collagen is secreted by myofibroblasts, we 

stained the livers with αSMA antibody to assess the spread of myofibroblasts within the tissue. 

The TEPP-46 treated group show lowered levels of αSMA positive cells which denotes that the 

treatment has depleted a few myofibroblasts in the liver (Figure 3-3G). We then assessed the levels 

of PKM2 using immunofluorescence and there was no considerable difference between the vehicle 

and the TEPP-46 groups (Figure 3-3H). As the mice showed gross increase in body weight coupled 

with lowered AST/ALT levels and reduced collagen and αSMA in the treated group, we wanted 
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to verify whether the treatment had any effects on the free amino acid profiles of the liver. We 

analyzed the liver lysates with LC/MS for all amino acids and observed almost no difference in 

their levels barring a few amino acids (Figure 3-3I). We then turned our attention towards serine 

and glycine levels in these livers and indeed the levels of serine (Figure 3-3J) and glycine (Figure 

3-3K) were decreased in the treated group thereby providing evidence that the lack of de novo 

serine and subsequent glycine synthesis lead to the lower collagen production and accumulation 

in the treated livers. 
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Figure 3-3 TEPP-46 reduces collagen deposition in fibrotic livers. 

(A) Mice were administered with thioacetamide (TAA) at 100mg/Kg for 5 weeks followed by 7 

weeks at 250 mg/Kg and TEPP-46 at 50mg/Kg. (B) Livers were collected at the end of 12 weeks 

and photographed for assessment of surface anatomy. (C) Blood was collected from mice and 

serum was extracted and aspartate aminotransferase (AST) was measured in the serum using an 

AST kit. (D) Alanine aminotransferase (ALT) was also measured using an ALT kit. (E) Mice were 

weighed daily post treatment and recorded to monitor their body weight increases on a weekly 

basis. (F) Livers were fixed in formalin for 24 hours and embedded in paraffin. They were 

sectioned at 5µm and were stained for collagen using Sirius red staining kit and were quantified 

using ImageJ (G) Livers were embedded in OCT and snap frozen in liquid nitrogen and 

cryosectioned at 5µm. Sectioned were stained for αSMA and observed under a fluorescent 

microscope and quantified using ImageJ. (H) Cryosectioned livers were stained for PKM2 and 

observed under a fluorescent microscope and quantified using ImageJ. (I) Livers were powdered 

under liquid nitrogen and fixed in 50% methanol and deproteinized with chloroform. Free amino 

acids were analyzed using an Orbitrap LC/MS. (J) Serine levels were analyzed using livers 

previously prepared and were loaded onto the Orbitral LC/MS system. (K) Glycine levels were 

analyzed using a kit. Livers were lysed using the provided lysis buffer and the glycine content was 

measured fluorometrically using a fluorescent microplate reader at Ex/Em 535/587. 

3.3.4 TEPP-46 reduces fibrosis associated symptoms in the liver 

TEPP-46 treated mice showed reduced collagen deposition and fibrosis development in a 

TAA-ethanol model of liver fibrosis. We observed that the mice gained weight and appeared 

generally healthier than their vehicle treated counterparts. Therefore, we wanted to explore into 

the fibrosis associated pathology in the liver. During a fibrotic response, there is an increase in the 
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inflammatory response which triggers during the early phase of fibrosis. During this time, 

infiltrating macrophages secrete pro-inflammatory mediators which bring about the activation of 

the myofibroblasts which further potentiate the fibrotic damage with the secretion of collagen. 

Resolution of the fibrotic insult in the liver usually results in the amelioration of the inflammatory 

response. The reduced inflammatory response leads to the reduced activation of the fibroblasts 

resulting in an inflammation-fibrosis loop. To this end, we hypothesized that the treatment with 

TEPP-46 lead to the decrease in the inflammatory profile in the liver. We first assessed the 

percentage of cells which were both αSMA stained with AlexaFluor 555 (Red) and PKM2 positive 

stained with AlexaFluor 488 (Green) which indicated that the activated myofibroblasts indeed 

upregulated PKM2 upon activation (Figure 3-4A). PKM2 was observed, although at a lower 

percentage, in cells which were not αSMA positive. This indicated that the infiltrating 

macrophages also upregulated PKM2 during the initial pro-inflammatory response. For the initial 

pro-inflammatory response, the infiltration of macrophages is usually weighted towards M1 

phenotype. To assess the infiltration of M1 macrophages we immunostained the cryosectioned 

livers for CD68, a pro-inflammatory macrophage marker. The levels of CD68 were assessed using 

immunofluorescence using AlexaFluor 555 (Red) (Figure 3-4B). Levels of CD68 were 

dramatically decreased upon treatment with TEPP-46 indicating that TEPP-46 reduces the initial 

macrophage infiltration into the fibrotic liver (Figure 3-4C). The reduction of collagen in the livers 

observed in the Sirius red stain prompted us to measure the levels of hydroxyproline in the liver 

lysates. Hydroxyproline is a direct measure of the level of collagen as there is no free 

hydroxyproline in the cells. The measured hydroxyproline levels were significantly reduced in the 

TEPP-46 treated mice thereby validating the reduced Sirius red stain intensity observed in the 

TEPP-46 treated mice (Figure 3-4D). The reduction of the infiltrating macrophages prompted us 
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to test the levels of pro-inflammatory cytokines IL-1 β, IL-6 and CCL2 in the liver. We also tested 

the levels of anti-inflammatory cytokines IL-10 to observe if any changes occurred. We extracted 

mRNA from the livers and cDNA was synthesized. qPCR was performed on the cDNA samples 

to detect levels of pro-inflammatory cytokines. IL-1 β and IL-6, both pro-inflammatory cytokines, 

were reduced in the TEPP-46 treated mice consistent with the decrease in the CD68 levels. 

Surprisingly, the levels of IL-10 increased in the TEPP-46 treated mice which indicates a shift in 

the inflammatory profile after treatment with TEPP-46. αSMA levels were reduced in the treated 

mice which was consistent with the reduction in αSMA in the immunofluorescent stain owing to 

the ROS mediated apoptosis observed in Figure 1.8. (Figure 3-4E). 
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Figure 3-4 TEPP-46 reduces the pro-inflammatory profile in fibrotic livers 

(A) Cryosectioned slides were co-stained for αSMA (AlexaFluor 555) and PKM2 (AlexaFluor 

488) for the co-localization demonstrating activated myofibroblasts. (B) Cryosectioned slides were 

subjected to immunofluorescence for CD68 using AlexaFluor 555 for macrophages. (C) 

Quantification of CD68 positive area in fibrotic livers. (D) Total liver lysates were analyzed for 

hydroxyproline to assess for collagen levels. (E) RNA from livers was used to synthesize cDNA 

for the assessment of pro-inflammatory gene expression profile. 
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3.3.5 TEPP-46 reduces lung fibrosis 

The effect of PKM2 activator DASA-10 in the acceleration of glycolysis in activated normal 

lung fibroblasts was observed to be very effective. Therefore, we wondered whether this effect 

would be translated into an in vivo system. To this end, we employed a bleomycin-based lung 

fibrosis model to evaluate the effect of PKM2 activator TEPP-46 in the amelioration of lung 

fibrosis. Six-week-old C57BL/6 mice were administered with I.P. bleomycin at 4mg/Kg for 4 

weeks. Treatment with TEPP-46 was started at week 4 and was administered for 7 weeks. Mice 

were euthanized at week 12 and the lungs were collected for further analyses (Figure 3-5A). Mice 

were euthanized and lungs were assessed for their surface anatomy. TEPP-46 treated mice showed 

lower surface lesions associated with progression of lung fibrosis (Figure 3-5B). Collected lungs 

were fixed in formalin for 24 hours and were embedded in paraffin for sectioning. Lungs were 

sectioned at 5µm and mounted on charged slides for histological analyses. The sectioned tissues 

were then de-paraffinized and stained for collagen with Masson’s trichrome stain. The stain 

displayed a significantly reduced collagen percentage in the lungs treated with TEPP-46 (Figure 

3-5C). The treated lungs show significantly lowered accumulation of collagen fibers in the alveolar 

sacs and the terminal bronchioles which is a sign of severe lung fibrosis as evidenced by the vehicle 

treated mice. The slides were analyzed using ImageJ. Since αSMA is one of the markers of 

myofibroblast activation, we wanted to assess the levels of αSMA in the lungs of the treated mice. 

Previously cut slides were subject to immunohistochemistry and were probed with an αSMA 

antibody and were analyzed for stained myofibroblasts (Figure 3-5D). Stained myofibroblasts 

were observed to be abundant in vehicle treated mice when compared to TEPP-46 treated mice. 

These data suggest that treatment with TEPP-46 somehow reduces the myofibroblast population 

in the lungs. This phenomenon is like the αSMA staining observed in the liver. The lungs were 

then stained for the expression of PKM2 as the expression of PKM2 was associated with the 
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activation of myofibroblasts in the case of normal lung fibroblasts in vitro. Slides were 

immunostained with a PKM2 antibody. Surprisingly, the levels of PKM2 were not altered in the 

treated mice which indicates that treatement with TEPP-46 only activates PKM2 and does not alter 

its expression pattern in the diseased state (Figure 3-5E). To test whether the treatment with TEPP-

46 altered the free amino acid profile in lungs, we fixed freshly isolated lungs in 50% methanol 

and de-proteinized with chloroform. The aqueous layer was then subjected to chromatography 

using an Orbitrap LC/MS system. The amino acids in the treated group were broadly unaltered 

apart from proline, valine, isoleucine and glutamine (Figure 3-5F). The altered levels of these 

seemingly random amino acids were not further investigated. However, we analyzed the levels of 

serine present in the lung lysates as we did for the liver lysates. Free serine was significantly 

reduced in the treated lungs when compared to the vehicle lungs (Figure 3-5G). These findings 

were consistent with the decreased levels of serine in the treated livers. We then proceeded to 

assess the levels of glycine using a similar method used in the livers. The glycine levels in the 

treated lungs were significantly reduced when compared to the vehicle lungs (Figure 3-5H). These 

results confirm our findings that the reduced serine and glycine levels in fibrotic organs leads to 

the reduced collagen deposition in the organs. 
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Figure 3-5 TEPP-46 reduces collagen deposition in fibrotic lungs. 

(A) Lung fibrosis was induced with bleomycin at 4mg/Kg for 4 weeks. Mice were treated with 

TEPP-46 for 7 weeks at 50mg/Kg. (B) Lungs were collected photographed for surface anatomy. 

Vehicle treated mice show surface patches of collagen deposition whereas the TEPP-46 treated 

lungs showed lower surface aberrations. (C) Formalin fixed paraffin embedded (FFPE) tissues 

were sectioned and stained for collagen using a Masson’s trichrome kit. Cytoplasm is stained in 

red and collagen is stained in blue. Collagen was quantified using ImageJ. (D) FFPE tissues were 

subject to immunohistochemistry using a primary antibody towards αSMA and stained with DAB 

and analyzed using ImageJ. (E) Immunohistochemistry was performed on FFPE tissues with an 

anti-PKM2 antibody and stained with DAB and analyzed using ImageJ. (F) Lungs were fixed with 

50% methanol and free amino acids were extracted with chloroform. Free amino acids were 

analyzed using an Orbitrap LC/MS system and their mean intensities were measured. (G) Serine 

was measured using the same Orbitrap LC/MS system and the mean intensity were recorded in 

both the vehicle and TEPP-46 treated animals. (H) Glycine levels were measured fluorometrically 

using a glycine kit with the prepared lung lysates. Lysates were measured at Ex/Em 535/587. 

3.3.6 TEPP-46 reduces fibrosis associated symptoms in lungs 

The effect of TEPP-46 in the reduction of serine and glycine levels in total lungs and the 

subsequent reduction of collagen production by activated myofibroblasts was observed to be 

significant in the bleomycin model of lung fibrosis. We observed the inflammatory profile was 

ameliorated in the fibrotic livers when treated with TEPP-46, hence we wanted to test whether a 

similar phenomenon occurred in the lungs too. To determine the extent of fibrosis in the lungs, 

their wet weight was recorded. The deposition of collagen in the lungs drastically increased their 

weight as evidenced in the vehicle treated group. The treatment with TEPP-46 decreased collagen 
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synthesis and deposition, therefore the weights of the lungs were reduced when compared to the 

vehicle group (Figure 3-6A). The deposition of collagen was then indirectly measured with the 

hydroxyproline content present in them. Lungs were lysed with 12N HCl for 24 hours and then 

measured for hydroxyproline content as hydroxyproline is a specific modification of proline in 

collagen and there is no free hydroxyproline in the cell. The hydroxyproline content was 

significantly reduced in the TEPP-46 treated lungs (Figure 3-6B). We then assessed the expression 

patterns of pro-inflammatory mediators in TEPP-46 treated lungs. We assessed the levels of IL-

1 , IL-6. IL-10 and CCL-2. IL-1  and IL-6 are pro-inflammatory mediators and IL-10 is an anti-

inflammatory mediator. CCL-2 is a chemokine known to potentiate macrophage infiltration. 

αSMA was also measured in the lungs to serve as a control as we have observed the loss of αSMA 

in both liver and the lungs in the immunohistochemistry stains. IL-1 β and IL-6 have reduced 

considerably while IL-10 was increased suggesting the inversion of the pro-inflammatory 

condition in lungs. The expression of CCL2 was also reduced in these lungs which could be the 

reason of the decreased macrophage infiltration thus leading to decreased pro-inflammatory 

mediators (Figure 3-6C). The reduction of inflammation in the lungs and the reduction of collagen 

production and secretion upon treatment with TEPP-46 shows strong resemblance to the treatment 

profile in the livers. Therefore, the treatment with a PKM2 activator results in the amelioration of 

fibrosis and its associated symptoms independent of organ which could be used as a potential 

treatment approach towards fibrosis. 
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Figure 3-6 TEPP-46 reduces the fibrosis associated symptoms in lungs 

(A) Vehicle or TEPP-46 treated mice were euthanized, and wet weights of the lungs were recorded. 

(B) Vehicle or TEPP-46 treated lungs were lysed in HCl for 24 hours and hydroxyproline content 

was measured using a kit (Sigma Cat#MAK008). (C) RNA was isolated from treated lungs and 

1µg was used for cDNA conversion (Thermo Cat#K1641). RT-PCR was performed for IL1 , IL6, 

IL-10, CCL2, and αSMA using a SYBR-GREEN system (NEB Cat#M3003L). 

3.3.7 Alternate splicing of PKM2 is regulated by PTBP1 in activated fibroblasts. 

Pyruvate kinase exists in two isoforms namely PKM1 and PKM2. The differences in these 

isoforms is dependent on the inclusion or the exclusion of exon 10. PKM1 isoform is expressed if 

exon 9 is included and exon 10 is excluded. PKM2 isoform is expressed if exon 9 is excluded and 

exon 10 is included. Previous studies in pancreatic cancer cells showed that the alternative splicing 

of PKM2 is regulated by the expression of heterogeneous nuclear ribonucleoprotein (HNRNP) A1 

also known as polypyrimidine tract binding protein 1 (PTBP1). Upregulation of HNRNP A1 leads 
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to the inclusion of exon 10 in the PKM pre-mRNA and to the production of mature PKM2 mRNA. 

We observed the upregulation of PKM2 upon TGF-β treatment in both LX2 and NLF cells, which 

lead us to investigate whether the alternate splicing mechanism of PKM2 was induced in these 

fibroblasts upon TGF-β mediated activation. To this end, we treated quiescent LX2 and NLF cells 

with TGF-β to induce the expression of PKM2. We then isolated RNA from these cells and 

synthesized cDNA to assess the alternate splice profile in activated fibroblasts. We probed cDNA 

samples with primers specific for exons 9 and 10 within the PKM gene. We used exon 5-6 as a 

PKM control gene. Upon TGF-β treatment the expression of exon 9 was significantly repressed in 

both LX2 and NLF cells and simultaneously, exon 10 was significantly upregulated indicating the 

de-regulation of PKM1 in favor of PKM2. There was no change in the expression of exon 5-6 

indicating the change in expression is dependent only in the exon 9-10 interchange (Figure 3-7A). 

The involvement of PTBP1 in the inclusion of exon 10 was then tested by knocking down PTBP1 

with siRNA. LX2 and NLF cells were treated with siPTBP1 for 48 hours and RNA was isolated. 

1µg of RNA was converted into cDNA for PCR analysis. Knockdown with siPTBP1 resulted in 

the repression of exon 10 inclusion resulting in the loss of PKM2 expression. It also increased the 

inclusion of exon 9 and upregulates the expression of PKM1 (Figure 3-7B). Knockdown of PTBP1 

did not however change the inclusion or the exclusion of exon 5 and exon 6 which are common in 

both PKM1 and PKM2. Therefore, PTBP1 regulates only the inclusion of the splice isoforms of 

PKM1 and PKM2 but does not change the total expression of the protein. To test whether the 

inclusion of exon 10 by PTBP1 correlated with the expression of PKM2 protein, we performed a 

western blot on these cells treated with siPTBP1. We observed the reduction of PKM2 expression 

in the treated cells. Conversely the treatment with siPTBP1, increased the expression of PKM1 in 

these cells, which is in line with the RNA levels (Figure 3-7C). We then questioned whether this 
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switch of metabolic profile from PKM2 to PKM1 upon treatment with siPTBP1 also changed the 

profile of de novo serine and glycine synthesis. We, therefore extracted amino acids from LX2 

cells treated with siPTBP1 and subjected them to UV-HPLC to test for the levels of serine and 

glycine. The levels of serine (Figure 3-7D) and glycine (Figure 3-7E) were significantly reduced 

in the siPTBP1 treated cells. The involvement of PTBP1 in the inclusion of exon 10 leads to the 

expression of PKM2 which increases the intermediate buildup which is now relieved with the 

exclusion of exon 10 and inclusion of exon 9 leading to the expression of PKM1 thereby reducing 

the buildup of intermediates. 
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Figure 3-7 PTBP1 regulates the alternate splicing of PKM2 in activated fibroblasts 

(A) TGF-β treated LX2 and NLF cells were subject to RNA isolation and cDNA conversion. PCR 

was performed for exon 9 and exon 10 and for exon 5 and exon 6 and actin as controls. (B) LX2 

and NLF cells were treated with siPTBP1 for 48 hours and then were subject to RNA isolation and 

cDNA conversion. PCR was performed for exon 9 and exon 10 and for exon 5 and exon 6 and 

actin as controls. (C) siPTBP1 treated LX2 and NLF cells were immunoblotted for PKM1 and 

PKM2 (D) LX2 cells were treated with siPTBP1 and amino acids were extracted with methanol-

chloroform and were analyzed for serine using a UV-HPLC. (E) LX2 treated with siPTBP1 and 

amino acids were extracted as mentioned above and analyzed for glycine using a UV-HPLC. 

3.3.8 DASA-10 induces tetramerization of PKM2 in activated fibroblasts 

PKM2 is expressed in fibroblasts upon activation with TGF-β and induces Warburg effect 

in these cells. Warburg effect is characterized by the accumulation of glycolytic intermediates by 
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reduced pyruvate kinase activity. For pyruvate kinase activity to be lowered, PKM2 is usually in 

its dimeric state owing to the downstream phosphorylation signaling of TGF-β and the subsequent 

binding of phosphor-proteins to PKM2. Treatment with DASA-10 mediates the tetramerization of 

PKM2 by binding to its A-A domains thus potentiating the binding of PEP thereby increasing 

PKM2 activity. Increased PKM2 activity rapidly depletes the glycolytic intermediates and rescues 

the cell from its Warburg state thereby restoring normal glycolysis pathway followed by oxidative 

phosphorylation. Dimer PKM2 is around 150KDa whereas tetramer PKM2 is around 250KDa. To 

test whether a similar interaction would occur in activated fibroblasts, we treated LX2 cells with 

10ng/mL TGF-β for 48 hours and then with 10mM DASA-10 for 24 hours. Cells were lysed in 

RIPA and proteins were extracted. 2mg of total protein lysate was then subject to FPLC separation 

using a HiPrep 16/60 Sephacryl S-200 HR column. Separated proteins were eluted in 40 eluates. 

These eluates were then immunoblotted for PKM2. Activated LX2 cells which were treated with 

DMSO indicated the presence of PKM2 in eluates #16 to #21 which indicates the dimer form of 

PKM2. Activated LX2 cells treated with DASA-10 on the other hand indicated the presence of 

PKM2 in eluates #6-#11 which indicates the tetramer form of PKM2 (Figure 3-8A). Further 

analysis on the activation of LX2 and NLF cells were performed via immunoblotting for PHGDH 

(cat no) and collagen-1 (cat no). Upon treatment with TGF-β increased the expression of both 

PHGDH and collagen-1 (Figure 3-8B). The increase in PHGDH was around 1.5-fold in LX2 cells 

(Figure 3-8 C left panel) and around 2-fold in NLF cells (Figure 3-8C right panel). The fold change 

of collagen in LX2 cells was around 3-fold (Figure 3-8D left panel) and around 3.5-fold in NLF 

cells (Figure 3-8D right panel). We then asked whether the treatment of these activated LX2 and 

NLF cells with DASA-10 affected the levels of PHGDH. We carried out immunoblots on whole 

cell lysates for PHGDH and the addition of DASA-10 did not seem to alter the expression levels 
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of PHGDH in the activated fibroblasts (Figure 3-8E). These results suggest that the reduction of 

serine observed is due to the lack of the glycolytic intermediate substrate and not due to the reduced 

enzyme expression. 

 

Figure 3-8 DASA-10 promotes tetramerization of activated LX2 cells 

(A) LX2 cells were treated with 10ng/mL TGF-β for 48 hours and then treated with either DMSO 

(top panel) or DASA-10 (bottom panel) and 2mg of total protein was separated using FPLC and 

immunoblotted for PKM2. (B) LX2 (left panel) and NLF (right panel) cells were treated with 

10ng/mL TGF-β for 48 hours and immunoblotted for PHGDH and collagen-1 to verify their 

activation and collagen secretion profile. (C) Quantification of PHGDH fold increase in band 

intensity in LX2 (left panel) and NLF (right panel). (D) Quantification of collagen-1 fold increase 

in band intensity in LX2 (left panel) and NLF (right panel). (E) Activated LX2 and NLF cells were 
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treated with or without DASA-10 to observer any changes in the protein expression profile of 

PHGDH. 

3.3.9 Matrix stiffness regulates glycine synthesis 

In the liver, the resident fibroblasts are the hepatic stellate cells. They are quiescent and 

reside in the space of Disse between the hepatocytes and the sinusoids. The space of Disse in the 

normal liver is about 5KPa (kilopascals) in pressure. The pressure exerted by the space of Disse 

however is quite low and is not enough to induce the activation of the hepatic stellate cells, 

therefore they remain quiescent. Upon fibrotic stimulus, the release of TGF-β from the infiltrating 

macrophages triggers a massive activation event in the space of Disse. Upon activation, these 

fibroblasts secrete collagen-1 which increases the matrix pressure exerted in the space of Disse. 

The quiescent hepatic stellate cells can now respond to the increasing matrix stiffness and can get 

further activated by mechano-transduction. The fibrotic microenvironment increases the matrix 

stiffness to around 100KPa which results in hardening of the space of Disse subsequently leading 

to the hardening of the liver. To test whether the mechano-transduction mediated activation can 

result in the shift of metabolism towards Warburg effect, we seeded quiescent LX2 cells onto 

varied pressure regulated plates for 48 hours and then analyzed for levels of glycine. The levels of 

glycine steadily increased with the increase in simulated matrix stiffness and showed a maximum 

production of glycine at 100KPa. This was further exaggerated with the addition of TGF-β, thereby 

further promoting activation and collagen synthesis (Figure 3-9A). We then asked whether the 

upregulation of glycine under increasing matrix stiffness corresponded with the upregulation of 

collagen synthesis in these LX2 cells. To that end, we subjected these cells under various pressures 

to hydroxyproline assay to quantify the production of collagen (Figure 3-9B). The collagen 

production was indeed upregulated with increasing matrix stiffness thereby providing evidence for 
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mechano-transduction mediated Warburg effect in activated hepatic stellate cells leading to 

increased collagen production. 

 

Figure 3-9 Matrix stiffness regulates glycine synthesis 

(A) Quiescent LX2 cells were seeded onto differential pressure plates ranging from 5KPa to 

100KPa for 48 hours. Cells were then lysed, and amino acids were extracted with methanol-

chloroform and glycine levels were analyzed with UV-HPLC. (B) Hydroxyproline levels in LX2 

cells seeded on differential pressure plates were measured using a hydroxyproline kit. 

3.3.10 DASA-10 induces apoptosis at high concentrations 

DASA-10 has been shown to induce apoptosis in lung cancer cells as it rescues cells from 

Warburg effect. The rescue from Warburg effect depletes the buildup of glycolytic intermediates 

which are essential for the rapid cell division in cancer cells and the detoxification of ROS by 

NADPH production. The continued depletion of these vital metabolites in these cancer cells 

induces apoptosis. We observed the ability of DASA-10 to induce apoptosis under the presence of 

ROS in activated LX2 cells. We then wanted to test whether DASA-10 alone can induce apoptosis 

without the presence of ROS stimuli. LX2 and NLF cells were activated with 10ng/mL TGF-β for 

48 hours and treated with various concentrations of DASA-10 for 24 hours. Cell viability was 
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assessed with the MTT assay (Figure 3-10A, 3-10B). In accordance with the previously reported 

apoptosis in cancer cells, activated LX2 and NLF cells showed decreased cell viability with 

increasing concentrations of DASA-10. These results indicate an extended role of glycolytic 

intermediates in the survival and viability of both activated LX2 and NLF cells which lie beyond 

the de novo serine and glycine synthesis. 

 

Figure 3-10 DASA-10 induces apoptosis in higher concentrations 

(A) LX2 cells were treated with 10ng/mL TGF-β for 48 hours and plated in 96 well plates. They 

were treated with different concentrations of DASA-10 for 24 hours. MTT assay was performed 

as per manufacturer’s specifications. (B) NLF cells were treated with 10ng/mL TGF-β for 48 hours 

and plated in 96 well plates. They were treated with different concentrations of DASA-10 for 24 

hours. MTT assay was performed as per manufacturer’s specifications. 

3.3.11 DASA-10 alters the enzymes of the serine pathway 

The de novo synthesis of serine requires the accumulation of the glycolytic intermediate, 3-

phosphoglycerate (3-PG). 3-PG is the initial substrate that leads into a series of reactions towards 

the synthesis of serine. In physiological glycolysis, 3-PG is readily converted into 2-PG by 
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phosphoglycero-mutase. During the advent of Warburg effect, the upregulation of PKM2 leads to 

reduced glycolytic output and increased accumulation of the intermediates. Along with the 

upregulation of PKM2, the activation of fibroblasts leads to the upregulation of 3-

phosphoglycerate dehydrogenase (PHGDH) which facilitates the initial step of the oxidation of 3-

phosphoglycerate into 3-phosphopyruvate. This reaction is irreversible and commits 3-PG towards 

serine synthesis. 3-phosphopyruvate is then converted into 3-phosphoserine by phosphoserine 

aminotransferase (PSAT1). 3-Phosphoserine is then converted into serine by removal of the 

phosphate group by phosphoserine phosphatase (PSPH). Serine can then be readily interconverted 

into glycine by serine hydroxymethyl transferase (SHMT1/2). We observed the upregulation of 

PHGDH in the activated fibroblasts, and we then asked whether the activation affected the status 

of the downstream enzymes in the serine synthesis pathway. We checked the expression profiles 

of all the above-mentioned intermediate enzymes using qPCR from both DMSO and DASA-10 

treated activated LX2 cells (figure 3-11A). We also checked the expression profiles of COL1A1 

and PKM2 in the LX2 and NLF cells treated with DMSO or DASA. The DMSO treated cells 

showed a significant increase in the expression of these enzymes as evidenced in the DMSO treated 

cells. However, the addition of DASA-10 resulted in no apparent change in the expression profile 

of both COL1A1 and PKM2. This indicates that the resulting reduction in the collagen production 

is not transcriptionally controlled but metabolically regulated. This, however, ceases to be the case 

in the expression profiles of the enzymes of serine synthesis. DASA-10 appears to have reduced 

the levels of PHGDH, PSAT1, SHMT1, SHMT2 but not PSPH. These results collectively indicate 

that the regulation of serine by DASA-10 is controlled by another mechanism independent of 

glycolytic activation by biding to PKM2. We, however, have not explored the reasoning behind 

the reduction of these enzymes upon treatment with DASA-10. 
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Figure 3-11 DASA-10 regulates the levels of serine synthesis enzymes 

(A) qPCR was performed on activated LX2 cells treated with either DMSO or DASA-10 and 

enzymes of the serine synthesis pathway were quantified along with COL1A1 and PKM2. 

4 PYRUVATE KINASE IN LOX REGULATION 

4.1 Abstract 

Hypoxia activates Hif-1α which induces expression of a variety of genes, including lysyl 

oxidase (LOX). LOX is a secreted copper dependent amine oxidase, oxidizing lysine residues in 

its substrate proteins. Oxidization of lysine in collagen leads to crosslinking of this important 

extracellular matrix protein, consequentially resulting in collagen bundles which leads to the 

progression of organ/tissue fibrosis. PKM2 mediates Hif-1α activity in cells under hypoxic 

conditions. Here, we report that the PKM2- Hif-1α axis induces LOX expression in fibroblasts and 

cancer cells. PKM2-Hif-1α complex regulates LOX transcription by directly binding to LOX 

promoter. Our experiments show reduction in both LOX mRNA in fibroblasts and cancer cells and 

secretion by the cells upon PKM2 knockdown and treatment with PKM2 activators. Consequently, 
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PKM2 activators reduce crosslinked collagen in tumors, fibrotic livers and lungs, which 

ameliorates tumor metastasis and hepatic and lung fibrosis. Our study suggests that PKM2-Hif-

1  axis is required for LOX expression and secretion in multiple pathological conditions. Our 

results indicate that pyruvate kinase inactive dimer mediates Hif-1α in regulating LOX. Evidently, 

our study uncovers an important common targetable pathway for treatment of pathological fibrosis. 

4.2 Introduction 

Hypoxia is a physiological phenomenon where there is lack of the availability of oxygen. 

When there is a dearth of oxygen in the tissue, it triggers a cascade of events leading to the 

upregulation a plethora of genes some of which help in the restoration of oxygen supply to the 

hypoxic region. In normoxic environments, hypoxia inducible factor-1α (HIF-1α) is hydroxylated 

by prolyl hydroxylase (PHD) by using O2 as a substrate. Lysine hydroxylated HIF-1α can now 

bind to the von Hippel-Lindau tumor suppressor protein (VHL). The association between HIF-1α 

and VHL leads to the poly-ubiquitination of HIF-1α leading to its proteosomal degradation. Under 

hypoxic conditions, the lack of O2 removes the ability of PHD to hydroxylate the lysine residues 

on HIF-1α. Without the hydroxylated lysines, VHL cannot bind to HIF-1α and its consequently 

protected from ubiquitin mediated degradation. Stabilized HIF-1α can freely enter the nucleus to 

promote gene transcription.  

 Pyruvate kinase is a glycolytic enzyme involved in the final step of glycolysis. 

Pyruvate kinase is expressed in multiple isoforms, M1, M2, R and L. PKM1 and PKM2 are splice 

isoforms regulated by PTBP1 by the inclusion of exon 9 yielding PKM1 or inclusion of exon 10 

yielding exon 10. PKR is the isoform present in erythrocytes. PKL is the isoform present in 

hepatocytes. PKM1 is ubiquitously expressed in all tissues whereas PKM2 is expressed in 

embryonic and proliferative tissues. PKM2 has been implicated in multiple cancers wherein 
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expression of PKM2 is correlated with lower overall survival and lower progression free survival. 

Several studies indicate that the expression of PKM2 promotes cancer cell survival and metastasis. 

PKM2 exists in two states, dimer form or tetramer form. The dimer form of PKM2 has a low 

glycolytic activity and leads to increased glycolytic accumulation and improves anabolic processes 

whereas tetrameric PKM2 has high glycolytic activity and leads to depletion of glycolytic 

intermediates. The non-metabolic role of PKM2 has also been widely studied wherein dimer 

PKM2 can act as a protein kinase. Dimer PKM2 is shown to associate with HIF-1α in macrophages 

to localize to the nucleus to upregulate IL-1β. In activated fibroblasts, PKM2 is upregulated and 

exists in dimer form and induces Warburg effect to promote survivability and collagen synthesis. 

We thereby tested the effects of dimer PKM2 and its association with HIF-1α in activated 

fibroblasts and its relevance in progression of fibrotic diseases. We also tested the effect of 

tetramerization of PKM2 in the association with HIF-1α and its effectiveness in the amelioration 

of fibrosis. 

4.3 Results 

4.3.1 Hypoxia upregulates LOX in activated fibroblasts 

Hypoxia is a hallmark characteristic of many tumors. The core of the tumor is usually necrotic 

due to the massive cell death that usually occurs due to the core inflammation provided by the 

infiltrating neutrophils, macrophages and T-cells. The tumor core is usually not extensively 

vascularized leading to a lowered O2 tension. Lowered oxygen is sensed by the tumor cells and 

the microenvironment and in response to low oxygen, these cells induce the stabilization of Hif-

1α. Hif-1α is translocated into the nucleus and binds to a stretch of DNA called the hypoxia 

response element (HRE). Binding of Hif-1α to the HRE aids in the transcription of HRE genes. 

Hypoxia can regulate a myriad of genes and the most significant of those is VEGF which induces 

neo-vascularization in the tumor. This enables the tumor to facilitate increased oxygen and nutrient 
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delivery. Lysyl oxidase family proteins namely lysyl oxidase (LOX) and lysyl oxidase like 2 

protein (LOXL2) also respond to the upregulated hypoxia and transcription of these genes are 

facilitated. Similarly, the microenvironment in a fibrotic tissue is hypoxic owing to the 

accumulation of ECM in the space of Disse in the liver and the alveolar sacs in the lungs. In both 

these organs, upon fibrotic insult, these spaces tend to fill-up with fibrillar type I and type III 

collagens which leads to the inability to freely diffuse metabolites especially molecular O2. This 

leads to lowered O2 tension in these tissues and stabilization of HIF-1α and subsequent activation 

of HRE elements and upregulation of HRE genes. To test whether hypoxia can induce the 

expression of LOX and LOXL2, we cultured LX2  cells in 1% saturated O2 for 6, 12 and 24 hours. 

These cells were then lysed and immunoblotted for LOX (Fig 4.1A). LOX was indeed upregulated 

upon induction with 1% O2 condition for 6 hours and steadily increased with longer incubation 

(Figure 4.1B). We then tested whether the upregulation of hypoxia directly induced LOX and 

LOXL2 mRNA expression in these cells. We incubated LX2 cells for in 1% O2 24 hours and 

analyzed LOX (Figure 4.1C) and LOXL2 (Figure 4.1D) expression via qPCR. Both LOX and 

LOXL2 were significantly upregulated in the cells exposed to hypoxia when compared to the cells 

under normoxia. Therefore, hypoxia directly upregulated the expression of both LOX and LOXL2 

in cancer cells. 
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Figure 4-1 Hypoxia directly upregulates LOX and LOXL2 in LX2 cells 

(A) 1x106 LX2 cells were incubated in a hypoxia chamber and flushed with 1% O2 for 24 hours 

and 30µg was immunoblotted for the presence of LOX. (B) LOX band intensities were measured 

using ImageJ and compared to normoxia conditions. (C) mRNA was isolated from 1x106 LX2 

cells and converted into cDNA. qPCR was performed to analyze LOX expression under hypoxia. 

(D) Previously converted cDNA was used for qPCR for LOXL2 expression under hypoxia. 

 

4.3.2 DASA-10 Reduces LOX expression in fibroblasts 

The role of PKM2 was tested in the expression of hypoxia response element genes. Under 

hypoxic conditions, PKM2 is known to associate with Hif-1α and translocate into the nucleus. We 

hypothesized that the reason for PKM2 to bind to Hif-1α was the dimer conformation of PKM2 as 

the tetramer conformation of PKM2 is bound to the glycolytic complex. To this end, we tested the 

effects of PKM2 activator, DASA-10 on Hif-1α’s ability to induce the expression of LOX and 
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LOXL2 in cells grown in hypoxia. We treated LX2 cells and NLF cells with 10µM DASA-10 and 

then incubated them in a hypoxia chamber flushed with 1% O2 for 24 hours. We subjected the cells 

to immunoblots for LOX. Treatment with DASA-10 significantly reduced the levels of LOX 

protein in these cells (Figure 4.2A). Relative band intensities were quantified with ImageJ to 

quantify the fold change decrease of LOX production in DASA-10 treated cells (Figure 4.2B). We 

then wondered whether the treatment with DASA-10 resulted in the reduced transcriptional 

regulation provided by Hif-1α. To test this hypothesis, we treated LX2 and NLF cells with 10µM 

DASA-10 and were incubated in a hypoxia chamber as before and mRNA was isolated. 2µg of 

RNA was then converted to cDNA and qPCR was performed to test the expression levels of LOX 

and LOXL2. The expression profile of both LOX and LOXL2 in LX2 cells (Figure 4.2C) and NLF 

cells (Figure 4.2D) was reduced significantly post treatment with DASA-10 indicating that DASA-

10 mediated tetramerization of PKM2 reduced the ability of Hif-1α to upregulate both LOX and 

LOXL2. This indicates that PKM2’s binding to Hif-1α acts as a transcription enhancer and this 

effect is reduced upon tetramerization with DASA-10. 
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Figure 4-2 DASA-10 reduces LOX and LOXL2 expression 

(A) 1x106 LX2 and NLF cells were treated with either DMSO or 10µM DASA-10 and cultured 

under hypoxia for 24 hours. (B) Relative band intensities were calculated for both LOX and 

LOXL2 using ImageJ. (C) mRNA was isolated and converted into cDNA and qPCR was 

performed for the expression of LOX and LOXL2 in LX2 cells. (D) mRNA was isolated and 

converted into cDNA and qPCR was performed for the expression of LOX and LOXL2 in NLF 

cells. 

4.3.3 DASA-10 reduces nuclear localization of PKM2 

For PKM2 to regulate Hif-1α’s transcriptional capability, it could potentially physically 

associate with Hif-1α under hypoxia and translocate into the nucleus as a complex. Treatment of 

these cells with DASA-10 abrogates this association due to the tetramerization of PKM2 and 
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confining it into the glycolytic complex. To test this, we cultured LX2 cells in hypoxia and treated 

them with either DMSO or 10µM DASA-10 for 24 hours. We then performed 

immunofluorescence for both PKM2 and Hif-1α to observe whether there was any detectable co-

localization in the nucleus or in the cytoplasm. Evidently, hypoxia induced the association of 

PKM2 with Hif-1α was visible in the DMSO treated cells in the nucleus. Hif-1α, stained green, 

PKM2, stained red and the nuclear counterstain, DAPI, stained blue, were all co-localized in the 

nucleus leading to the overlapped white spots indicating the presence of all three proteins. In the 

DASA-10 treated cells, the intensity of the co-localization was reduced as evidenced by the 

reduced presence of the overlapping white spots. These results indicate that under hypoxic 

conditions, PKM2 associates with Hif-1α and translocates into the nucleus and this association is 

disrupted by the treatment with DASA-10 (Figure 4-3). 
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Figure 4-3 DASA-10 reduces nuclear localization of PKM2 and Hif-1α 

(A) LX2 cells were seeded onto glass slides and were treated with either DMSO or 10µM DASA-

10 and cultured under hypoxia for 24 hours. PKM2 was probed with Alexa-Fluor 555 conjugated 

antibody and Hif-1α was probed with Alexa-Fluor 488 conjugated antibody and counterstained 

with DAPI and co-localization was assessed in the nucleus. (B) Co-localization was analyzed using 

the Pearson method and quantified using ImageJ. 

4.3.4 TEPP-46 reduces LOX in models of fibrosis 

In models of liver and lung fibrosis, several LOX family proteins are secreted by the 

activated resident fibroblasts which help in the crosslinking of ECM proteins mainly collagens and 

elastins. In the fibrotic microenvironment, there is lowered O2 tension leading to the stabilization 

of Hif-1α and that leads to the expression of LOX and its family proteins. In both liver and lung 

models of fibrosis, fibrotic stimulus stimulates the resident fibroblasts to secrete ECM and 

subsequently secrete LOX and its family proteins. Therefore, we tested the effects of a PKM2 

activator, TEPP-46 in the production of LOX in liver and lung fibrosis models. Liver fibrosis was 

induced with the TAA-ethanol model for 12 weeks and then were treated with 50mg/Kg TEPP-46 

for 35 days. Lung fibrosis was induced with the bleomycin model for 4 weeks. Mice were treated 
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with 50mg/Kg TEPP-46 for 35 days. Respective organs were harvested and fixed in 4% 

paraformaldehyde and embedded in paraffin. 5µm sections were mounted onto slides and IHC was 

performed for LOX in both liver and lung tissues. Treatment with TEPP-46 resulted in significant 

reduction in LOX expression level in the lungs (Figure 4.4A top panel) and in the liver (Figure 

4.4A bottom panel). LOX levels were especially reduced in the alveolar spaces in the lungs and in 

the liver parenchyma indicating that TEPP-46 effectively blocked the transcription of LOX by 

interrupting the binding between PKM2 and Hif-1α in these fibrotic tissues. LOX stained area was 

quantified using ImageJ in both lung and liver tissues (Figure 4.4B). We then questioned whether 

the reduction in the expression of LOX in these tissues resulted in the decrease in the activity of 

LOX in the tissue and in the serum. To this end we tested LOX activity in whole lung lysate and 

from serum obtained from treated mice (Figure 4.4C). Evidently, the treatment with TEPP-46 

resulted in decreased LOX activity in both the lung lysates and the serum. We also tested the LOX 

activity in total liver lysates and in the serum from the treated animals. Like the LOX activity in 

the lungs, LOX activity was reduced significantly in both the liver lysates and in the serum of these 

animals. These results suggest that the treatment with TEPP-46 reduces the expression of total 

LOX in the fibrotic organs and further reduces its activity in the tissue as well as the serum leading 

to lowered collagen crosslinking and reduced tissue damage and restores tissue function. 
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Figure 4-4 TEPP-46 reduces LOX expression in vivo  

(A) FFPE lungs (top panel) and liver (bottom panel) were sectioned at 5µm and probed for LOX 

via immunohistochemistry. (B) LOX positive area was quantified using ImageJ in both lungs (top 

panel) and liver (bottom panel). (C) LOX activity assay was measured using a LOX activity kit 

(cat no) in bot lung lysates (left columns) and serum (right columns) in bleomycin model of lung 

fibrosis. (D) LOX activity assay was measured using a LOX activity kit in bot lung lysates (left 

columns) and serum (right columns) in bleomycin model of lung fibrosis. 

5 Conclusions and Discussion 

5.1 Altered metabolism in activated fibroblasts  

Quiescent fibroblasts residing in the tissue during homeostasis are not metabolically active and 

do not have increased demand for fuel to perform their functions. In this state, the cell uses glucose 
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to generate ATP via citric acid cycle. Glucose is utilized in an energy efficient manner in quiescent 

fibroblasts wherein the glycolytic intermediates are shuttled down the glycolytic pathway towards 

pyruvate production. The produced pyruvate is then converted into Acetyl CoA which is then 

shunted into the citric acid cycle and further down into the electron transport chain for the synthesis 

of ATP. The normal production of ATP is sufficient for the quiescent fibroblasts for their 

functions. Conversely, activated fibroblasts differ in their energy requirements. Activated 

fibroblasts have an increased rate of transcription and subsequently increased rate of translation. 

Accompanying the increased transcription and translation, activated fibroblasts have increased 

secretion profile wherein they secrete the major ECM proteins including collagen, elastin, laminin 

and fibronectin. All of these processes require massive energy production. To keep up with the 

differentiated state of the fibroblasts, the cell undergoes a myriad of changes which aid in the 

increased energy demands of the cell. Activated fibroblasts upregulate pyruvate kinase M2 which 

initiates a metabolic switch. In this event, PKM2 does not however, efficiently convert 

phosphoenolpyruvate (PEP) into pyruvate. This is due to the dimeric state of PKM2 which makes 

it less efficient in the production of pyruvate. The lowered glycolytic index leads to the 

accumulation of the glycolytic intermediates. The glycolytic intermediates have a multitude of 

functions in the cell. Starting with glucose-6-phosphate which can be shunted into the pentose 

phosphate pathway which leads to the production of ribose-5-phosphate which is then used for the 

incorporation of DNA during replication. Another important glycolytic intermediate is 3-

phosphoglycerate which is used in the de novo serine synthesis. The inability of dimeric PKM2 to 

synthesize pyruvate reduces the production of Acetyl-CoA therefore reduces the citric acid cycle 

output and reduces efficient ATP synthesis. The switch towards this inefficient energy synthesis 

is termed ‘Warburg effect’. This phenomenon is usually observed in cancer cells which use this 
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inefficient energy production system but still remain viable due to the presence of the glycolytic 

intermediate fueled anabolic processes. We observed that the metabolic switch in activated 

fibroblasts is like that of in cancer cells wherein the activated fibroblasts fuel their need for protein 

synthesis and secretion by switching to anabolic processes. 

5.2 Dimer PKM2 drives de novo collagen synthesis 

PKM2 can exist in two states based on the cellular signals present in the cell. The dimeric form 

of PKM2 has low glycolytic efficiency whereas its tetrameric form has high glycolytic activity. 

The two multimeric states of PKM2 can be interchanged by the binding of several molecules 

ranging from endogenous glycolytic intermediate like fructose-1,6-bis-phosphate (F-1,6-BP) to 

synthetically designed DASA/TEPP family of PKM2 activators. The dimeric form of PKM2 

present in the myofibroblasts enables the accumulation of glycolytic intermediates. 2-

phosphoglycerate (2PG) is one such glycolytic intermediate which can be shunted into the de novo 

serine synthesis pathway by the enzyme phosphoglycerate dehydrogenase (PHGDH). Synthesized 

serine is readily converted into glycine by the action of serine hydroxmethyl transferase 

(SHMT1/2). Glycine is an important amino acid in the assembly of collagen fibrils wherein every 

third residue is glycine in an XaaYaaGly formation. The accumulated glycolytic intermediates 

provide substrate for the action of PHGDH and subsequently for the synthesis of serine and 

glycine. This flux of metabolites into collagen synthesis is possible only due to the lowered 

glycolytic index of dimeric PKM2. Thereby, in an activated myofibroblasts, the significance of 

PKM2 expression and its conversion into its dimeric form is essential for the cells to be able to 

readily synthesize collagen.  

5.3 PKM2 activators reduce anabolic processes 

The dimeric PKM2 is an essential requirement for meeting the energy needs of a metabolically 

active cell. In a proliferating cell, the incoming growth factor signal triggers a cascade of 



84 

 

 

intracellular protein phosphorylation for downstream signaling. PKM2 can bind to tyrosine 

phosphorylated proteins and be converted into its dimeric state. This stops the flux of pyruvate 

into the citric acid cycle thereby upregulating glycolytic intermediates. The intermediates of 

glycolysis can be used for the biosynthesis of several crucial molecules required by the cell for 

proliferation and survival. The pentose phosphate pathway (PPP) is an essential anabolic pathway 

mediated by glucose-6-phosphate dehydrogenase which readily oxidizes glucose-6-phosphate and 

shunts it towards the synthesis of ribose-5-phosphate which is an essential nucleotide for DNA 

synthesis. The ribose-5-phosphate synthesized from PPP is rapidly used by a cell for its 

proliferative needs. The de novo synthesis of serine from 2PG is upregulated in several cancer cells 

as well as activated fibroblasts. Serine is an important resource in the cell as it donates a carbon 

atom towards the one-carbon metabolism in the cell. The one-carbon metabolism is responsible 

for the methylation of several proteins including histones and the methylation of DNA and RNA. 

Methylated histones and DNA aid in the unraveling of the chromosome to aid in the transcription 

of genes. The presence of endogenous or an exogenous PKM2 activator molecules bind to dimeric 

PKM2 and potentiate the formation of tetrameric PKM2. The DASA/TEPP family of synthetic 

activators can bind to PKM2 away from the F-1,6-BP binding site and can retain PKM2 in its 

tetrameric state even under growth factor signaling. The presence of these strong activators leads 

to the persistent activation of PKM2 thereby rapidly depleting the anabolic processes mentioned. 

Therefore, the activity of PKM2 directly affects the fate of R5P and the one-carbon metabolism in 

the cell thereby disrupting its optimal proliferative and metabolic activities. 

5.4 Tetrameric PKM2 aids in ROS induced apoptosis 

The ability of a cell to resist the reactive oxygen species produced during phases of oxidative 

stress is dependent upon several electron donor species present in the cell which can readily 
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convert the ROS into water and can interconvert into their oxidized form. The major molecule to 

combat the presence of ROS in a cell is its reduced glutathione (GSH) stores. GSH can be freely 

oxidized to oxidized glutathione (GSSG). The dynamic balance within the cell to efficiently utilize 

GSH to reduce ROS is dependent on the rapid conversion of GSSG back into GSH to further 

potentiate the reduction of ROS. The conversion of GSSG to GSH is dependent on NADPH. 

NADPH provides the reducing power for the cell by maintaining the GSH/GSSH ratio. The major 

source of NADPH is indeed the PPP wherein the reduction NADP+ is potentiated by glucose-6-

phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. The dimeric form of PKM2 

upregulates the PPP and maintains the production of NADPH and thus the reducing power of the 

cell. Tetramerization of PKM2 decreases the flux of G6P into the PPP thereby reducing the 

NADPH generated in the cell. Therefore, in cells treated with DASA/TEPP family activators, there 

a decreased level of NADPH and this leads to a lower reducing power in the cell. These cells now 

lack protection against ROS and therefore undergo apoptosis. The activity of PKM2 is responsible 

for the protection of the cell against ROS mediated apoptosis. 

5.5 PKM2 and the fibrotic process 

In the fibroblast, the process of collagen synthesis and secretion is initiated by TGF-β. The 

activation of fibroblasts upregulates a plethora of genes which aid in the proliferation of the 

fibroblast and in the secretion of ECM. PKM2, PHGDH, COL1A1, αSMA are some of the few 

genes dependent on TGF-β. PKM2 leads to the increased glycolytic flux into the several anabolic 

processes including the de novo serine synthesis owing to the upregulation of PHGDH. 

Synthesized serine and subsequently glycine, aid in the assembly of collagen fibrils. Secretion of 

assembled collagen is one of the hallmark characteristics of the development of fibrosis. Fibrosis 

of the liver, lung and other organs, leads to the structural and functional decline eventually to organ 
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failure. The interplay between the expression of PKM2 and the secretion of collagen leads to the 

steady disease state. The progression of disease is directly correlated with the expression of PKM2 

and its lowered activity. The metabolic flux of the glycolytic intermediates into the serine/glycine 

synthesis maintains the constant supply necessary for the pathological secretion of collagen. 

Therapeutic intervention with PKM2 activators leads to the reduction in the levels of glycine and 

lowers the production of collagen. This dampens the progression of fibrosis in the organ and 

reduces the morbidity and mortality due to fibrotic insult.  

5.6 PKM2 regulates hypoxia response elements 

Hypoxic environments reduce available molecular oxygen. Lowered O2 tension in the 

cell leads to the stabilization of HIF-1α by reducing the activity of prolyl hydroxylase (PHD) and 

the binding of von Hippel-Lindau tumor suppressor protein (VHL) thereby reducing the 

ubiquitination of HIF-1α. Stabilized HIF-1α is now accessible for free nuclear localization and 

downstream gene transcription. The upregulation of hypoxia is usually observed in poorly 

vascularized tumors which have low levels of molecular oxygen available for the tumor load. It 

has been recently observed that in cancer cells, HIF-1α translocation into the nucleus is aided by 

the binding of PKM2 to it. In cancer cells, PKM2 and HIF-1α are both available in abundance 

and therefore the PKM2-HIF-1α complex efficiently translocates into the nucleus and 

upregulates hypoxia response elements (HREs). Interrupting this association lead to reduced 

HIF-1α nuclear localization and lowered expression of HRE genes. In activated fibroblasts, 

PKM2 is upregulated for the induction of Warburg effect and for the survival of the cell. 

Activated fibroblasts secrete collagen which can interfere with the free blood flow through the 

organ thereby reducing the O2 tension in the fibrotic area. This phenomenon stabilizes HIF-1α 

and promotes its nuclear localization. We observed the PKM2-HIF-1α association in activated 
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fibroblasts for the first time. This association increased the expression of HRE genes like in 

cancer cells. Activated fibroblasts secrete lysyl oxidase (LOX) to enable collagen crosslinking in 

the extracellular space. The treatment of these activated fibroblasts with PKM2 activators 

abrogated the association with HIF-1α by inducing tetramerization of PKM2 and reduced the 

expression and secretion of LOX by the fibroblasts. Therefore, PKM2 activators are a potential 

therapeutic avenue for tackling collagen crosslinking in fibrotic diseases. 

5.7 Final Conclusions 

We have tested the effects of PKM2 in the activation of fibroblasts and their impact on 

fibroblast metabolism. We have, for the first time, showed that the activation of PKM2 induces 

the tetramerization of PKM2 and absolves the Warburg effect induced in activated fibroblasts. By 

reducing Warburg effect, we have reduced the accumulation of glycolytic intermediates that serve 

as building blocks for the de novo synthesis of serine and glycine. Glycine is necessary for the 

assembly of collagen fibrils and treatment with PKM2 activators leads to glycine auxotrophy in 

these cells leading to dysregulated collagen fibrils and thereby reduced ECM secretion and 

deposition in the extracellular space of fibrotic organs. We tested our hypothesis in two different 

organ models of fibrosis, hepatic and pulmonary fibrosis. In both these models, the treatment with 

PKM2 activators reduced collagen synthesis and deposition. Treatment also reduced the morbidity 

and mortality in mice and improved their overall health and activity. We observed the reduced 

glycine levels in these organs post treatment and the reduced collagen load also lead to reduced 

inflammatory profile in these organs.  

 We further tested the effect of dimeric PKM2 and its association with HIF-1α in 

fibrotic organs. Hypoxia is known to be upregulated in these organs leading to the production of 

several HRE genes including LOX. LOX irreversibly crosslinks collagen and reduces collagen 
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degradation. Treatment with PKM2 activators reduced the association of PKM2 and HIF-1α and 

reduced its nuclear localization. This reduced the production of LOX and its family proteins and 

reduced crosslinking of collagen in the extracellular space thereby leading to its degradation by 

MMPs. We therefore concluded that the treatment with PKM2 activators leads to the alteration of 

the metabolic state of the activated fibroblasts and coupled with the reduced expression of HRE 

genes leads to the overall reduction in the fibrotic burden and increases overall survivability. 

Therefore, PKM2 activators are a novel category of therapeutic options for the treatment of fibrotic 

diseases. 

5.8 Impact and Significance 

The rise of fibrosis mediated liver and lung diseases in the USA has increased dramatically in 

the last few years. It has been noted that around 88,000 people die annually to alcohol related liver 

diseases. And around 40,000 people are diagnosed with idiopathic pulmonary fibrosis in the USA 

every year. The morbidity and mortality rates of these diagnosed individuals is high due to the lack 

of better treatment options to tackle fibrosis and its associated maladies. Here we show that using 

a metabolic approach, that the progress of fibrosis can be slowed by inducing the basal metabolic 

shift in activated myofibroblasts which are the main perpetrators of disease. This novel approach 

enables us to counter the fibrotic process and diminish disease progression. We believe that the 

activation of PKM2 using exogenous activators is a therapeutic option with high treatment 

potential to reduce the burden of fibrosis in these patients and decrease the morbidity and mortality 

and therefore increase longevity in patients suffering from fibrosis mediated liver and lung 

diseases. 

 

  



89 

 

 

 

REFERENCES 

1. Berg, J. M., Tymoczko, J. L., Gatto, G. J., & Stryer, L. (2015). Biochemistry (Eighth 

edition. ed.). New York: W.H. Freeman & Company, a Macmillan Education Imprint. 

2. Berg, R. A., & Prockop, D. J. (1973). The thermal transition of a non-hydroxylated 

form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix 

of collagen. Biochem Biophys Res Commun, 52(1), 115-120. doi:10.1016/0006-

291x(73)90961-3 

3. Canelon, S. P., & Wallace, J. M. (2016). beta-Aminopropionitrile-Induced Reduction 

in Enzymatic Crosslinking Causes In Vitro Changes in Collagen Morphology and 

Molecular Composition. PLoS One, 11(11), e0166392. 

doi:10.1371/journal.pone.0166392 

4. Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. 

E., Wei, R., . . . Cantley, L. C. (2008). The M2 splice isoform of pyruvate kinase is 

important for cancer metabolism and tumour growth. Nature, 452(7184), 230-233. 

doi:10.1038/nature06734 

5. Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M., & Cantley, L. C. 

(2008). Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 452(7184), 

181-186. doi:10.1038/nature06667 

6. Diegelmann, R. F., & Evans, M. C. (2004). Wound healing: an overview of acute, 

fibrotic and delayed healing. Front Biosci, 9, 283-289. doi:10.2741/1184 



90 

 

 

7. Gao, X., Wang, H., Yang, J. J., Liu, X., & Liu, Z. R. (2012). Pyruvate kinase M2 

regulates gene transcription by acting as a protein kinase. Mol Cell, 45(5), 598-609. 

doi:10.1016/j.molcel.2012.01.001 

8. Gorres, K. L., & Raines, R. T. (2010). Prolyl 4-hydroxylase. Crit Rev Biochem Mol 

Biol, 45(2), 106-124. doi:10.3109/10409231003627991 

9. Gu, L., Zhu, Y. J., Yang, X., Guo, Z. J., Xu, W. B., & Tian, X. L. (2007). Effect of 

TGF-beta/Smad signaling pathway on lung myofibroblast differentiation. Acta 

Pharmacol Sin, 28(3), 382-391. doi:10.1111/j.1745-7254.2007.00468.x 

10. Hata, A., & Chen, Y. G. (2016). TGF-beta Signaling from Receptors to Smads. Cold 

Spring Harb Perspect Biol, 8(9). doi:10.1101/cshperspect.a022061 

11. Herchenhan, A., Uhlenbrock, F., Eliasson, P., Weis, M., Eyre, D., Kadler, K. E., . . . 

Kjaer, M. (2015). Lysyl Oxidase Activity Is Required for Ordered Collagen 

Fibrillogenesis by Tendon Cells. J Biol Chem, 290(26), 16440-16450. 

doi:10.1074/jbc.M115.641670 

12. Hernandez-Gea, V., & Friedman, S. L. (2011). Pathogenesis of liver fibrosis. Annu 

Rev Pathol, 6, 425-456. doi:10.1146/annurev-pathol-011110-130246 

13. Hosios, A. M., Fiske, B. P., Gui, D. Y., & Vander Heiden, M. G. (2015). Lack of 

Evidence for PKM2 Protein Kinase Activity. Mol Cell, 59(5), 850-857. 

doi:10.1016/j.molcel.2015.07.013 

14. Hsu, M. C., & Hung, W. C. (2018). Pyruvate kinase M2 fuels multiple aspects of 

cancer cells: from cellular metabolism, transcriptional regulation to extracellular 

signaling. Mol Cancer, 17(1), 35. doi:10.1186/s12943-018-0791-3 



91 

 

 

15. Hsu, M. C., Hung, W. C., Yamaguchi, H., Lim, S. O., Liao, H. W., Tsai, C. H., & 

Hung, M. C. (2016). Extracellular PKM2 induces cancer proliferation by activating 

the EGFR signaling pathway. Am J Cancer Res, 6(3), 628-638. Retrieved from 

https://www.ncbi.nlm.nih.gov/pubmed/27152240 

16. Huang, L., Yu, Z., Zhang, Z., Ma, W., Song, S., & Huang, G. (2016). Interaction with 

Pyruvate Kinase M2 Destabilizes Tristetraprolin by Proteasome Degradation and 

Regulates Cell Proliferation in Breast Cancer. Sci Rep, 6, 22449. 

doi:10.1038/srep22449 

17. Israelsen, W. J., & Vander Heiden, M. G. (2015). Pyruvate kinase: Function, 

regulation and role in cancer. Semin Cell Dev Biol, 43, 43-51. 

doi:10.1016/j.semcdb.2015.08.004 

18. Jiang, Y., Wang, Y., Wang, T., Hawke, D. H., Zheng, Y., Li, X., . . . Lu, Z. (2014). 

PKM2 phosphorylates MLC2 and regulates cytokinesis of tumour cells. Nat 

Commun, 5, 5566. doi:10.1038/ncomms6566 

19. Li, L., Zhang, Y., Qiao, J., Yang, J. J., & Liu, Z. R. (2014). Pyruvate kinase M2 in 

blood circulation facilitates tumor growth by promoting angiogenesis. J Biol Chem, 

289(37), 25812-25821. doi:10.1074/jbc.M114.576934 

20. Mukherjee, J., Ohba, S., See, W. L., Phillips, J. J., Molinaro, A. M., & Pieper, R. O. 

(2016). PKM2 uses control of HuR localization to regulate p27 and cell cycle 

progression in human glioblastoma cells. Int J Cancer, 139(1), 99-111. 

doi:10.1002/ijc.30041 

21. Ricard-Blum, S. (2011). The collagen family. Cold Spring Harb Perspect Biol, 3(1), 

a004978. doi:10.1101/cshperspect.a004978 



92 

 

 

22. Ryan, D. G., Murphy, M. P., Frezza, C., Prag, H. A., Chouchani, E. T., O'Neill, L. A., 

& Mills, E. L. (2019). Coupling Krebs cycle metabolites to signalling in immunity 

and cancer. Nat Metab, 1, 16-33. doi:10.1038/s42255-018-0014-7 

23. Sauk, J. J., Nikitakis, N., & Siavash, H. (2005). Hsp47 a novel collagen binding 

serpin chaperone, autoantigen and therapeutic target. Front Biosci, 10, 107-118. 

doi:10.2741/1513 

24. Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annu Rev 

Biochem, 78, 929-958. doi:10.1146/annurev.biochem.77.032207.120833 

25. Smith-Mungo, L. I., & Kagan, H. M. (1998). Lysyl oxidase: properties, regulation 

and multiple functions in biology. Matrix Biol, 16(7), 387-398. doi:10.1016/s0945-

053x(98)90012-9 

26. Vander Heiden, M. G., et al. (2009). "Understanding the Warburg effect: the 

metabolic requirements of cell proliferation." Science 324(5930): 1029-1033. 

27. Vander Heiden, M. G., Christofk, H. R., Schuman, E., Subtelny, A. O., Sharfi, H., 

Harlow, E. E., . . . Cantley, L. C. (2010). Identification of small molecule inhibitors of 

pyruvate kinase M2. Biochem Pharmacol, 79(8), 1118-1124. 

doi:10.1016/j.bcp.2009.12.003 

28. Wuyts, W. A., Agostini, C., Antoniou, K. M., Bouros, D., Chambers, R. C., Cottin, 

V., . . . Verleden, G. M. (2013). The pathogenesis of pulmonary fibrosis: a moving 

target. Eur Respir J, 41(5), 1207-1218. doi:10.1183/09031936.00073012 

29. Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. J Pathol, 214(2), 

199-210. doi:10.1002/path.2277 



93 

 

 

30. Yang, W., Xia, Y., Ji, H., Zheng, Y., Liang, J., Huang, W., . . . Lu, Z. (2011). Nuclear 

PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature, 

480(7375), 118-122. doi:10.1038/nature10598 

31. Zhang, Y., Li, L., Liu, Y., & Liu, Z. R. (2016). PKM2 released by neutrophils at 

wound site facilitates early wound healing by promoting angiogenesis. Wound Repair 

Regen, 24(2), 328-336. doi:10.1111/wrr.12411 

 


	Dimer Pyruvate Kinase M2 Regulates de novo Collagen Synthesis and Crosslinking in Pathological Fibrosis
	Recommended Citation

	MANUSCRIPT TITLE

