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ABSTRACT 

The increased prevalence of antibiotic resistance threatens to render all of our current 

antibiotics ineffective in the fight against microbial infections. Biofilms, or microbial communities 

attached to biotic or abiotic surfaces, have enhanced antibiotic resistance and are associated with 

chronic infections including periodontitis, endocarditis and osteomyelitis. The “biofilm lifestyle” 

confers survival advantages against both physical and chemical threats, making biofilm eradication 

a major challenge. A need exists for anti-biofilm treatments that are “anti-pathogenic”, meaning 

they act against microbial virulence in a non-biocidal way, leading to reduced drug resistance. A 

potential source of anti-biofilm, anti-pathogenic agents is plants used in traditional medicine for 



treating biofilm-associated conditions. My dissertation describes the anti-pathogenic, anti-biofilm 

activity of Rhamnus prinoides (gesho) extracts and specific chemicals derived from them.  

Rhamnus prinoides, an evergreen shrub native to east Africa, is used in the fermented 

beverages te’j and tella and to treat a variety of illnesses including atopic dermatitis. Gesho has 

antibacterial and antiplasmodial activity but little is known about its effect against microbial 

biofilms. Preliminary work determined that gesho leaf ethanol extracts inhibited Gram positive 

bacterial biofilm formation up to 99 percent without inhibiting microbial growth, suggesting an 

anti-pathogenic mechanism of activity. Fractionation, chemical analysis and activity screens 

identified ethyl 4-ethoxybenzoic acid (EEB) as a novel gesho-derived compound with anti-

pathogenic anti-biofilm activity. Structure-activity analysis of EEB-related compounds identified 

4-ethoxybenzoic acid (4EB) as a more potent anti-pathogenic compound against S. aureus 

biofilms. 4EB inhibited 70 percent S. aureus biofilm formation with minimal impact on planktonic 

cell viability. 4EB decreased the fraction of hydrophobic S. aureus cells in culture, potentially 

reducing surface colonization. Additionally, treatments of existing biofilms with a combination of 

4EB and vancomycin synergistically decreased the viability of biofilm dwelling cells up to 85 

percent when compared to vancomycin alone. Work with gesho stem extracts measured more than 

90 percent reduction of dual-species biofilms comprised of the oral pathogens Streptococcus 

mutans and Candida albicans. Reduced biofilm formation correlated with inhibition of 

extracellular polysaccharide production. Overall, gesho extracts and gesho-derived compounds 

have potential for use in topical and oral hygiene products, for wound treatments and other anti-

biofilm applications. 

 

INDEX WORDS: Biofilms, Anti-pathogenic, Staphylococcus aureus, Antimicrobial, Rhamnus 

prinoides, Phenolic compounds 
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1 INTRODUCTION  

1.1 Microbial biofilms 

Biofilms are recalcitrant, complex, microbial communities that form on solid surfaces and 

can result in both acute and chronic illnesses. The biofilm lifestyle confers survival advantages 

against both physical and chemical threats that would easily eliminate their free-floating, 

planktonic counterparts; thus in nature, most microbes exist in biofilm communities. Biofilms form 

on a variety of surfaces including on water filters, inside industrial pipes, inside bioreactors and 

on animal tissues. In many cases, biofilms pose no threat to humans and often have beneficial 

applications however, when associated with human pathogens, they can be the root of chronic 

illnesses and facilitate the spread of antibiotic resistance. 

1.1.1 The biofilm life cycle 

The biofilm life cycle has four main stages: attachment, proliferation, maturation and 

detachment. Attachment occurs when free-floating, planktonic microorganisms in a liquid media 

interact with and anchor onto a solid substrate. Attachment can be reversible or irreversible with 

the later initiating the biofilm formation process. Both cellular characteristics (such as charge, 

hydrophobicity and appendage prevalence) and substrate features (including hydrophobicity, 

charge, composition, porosity and texture) play a role in attracting and anchoring organisms to a 

surface (1). Once attached, organisms will begin to proliferate, forming a thin film of cells on the 

substrate. As cellular proliferation continues and the biofilm matures, the direction of spread often 

switches from lateral to aerial, resulting in the formation of column or mushroom-like structures 

that protrude into the liquid media. These structures are made possible by the presence of a dense, 

cell-derived matrix of metabolites known as the extracellular polymeric substance (EPS) (2). The 

EPS is primarily composed of polysaccharides, proteins and extracellular DNA that work together 
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to provide structure as well as protection to the biofilm. As mass increases, biofilms becomes so 

dense that oxygen and vital nutrients are no longer able to effectively reach the older cells residing 

deep within the matrix (3, 4). The lack of available resources, coupled with the accumulation of 

both intra- and intercellular signaling molecules, leads the next stage in the biofilm life cycle, 

detachment (5). During detachment, parts of the biofilm become dislodged and travel to satellite 

locations where new biofilms can be established; this process is known as dispersal (5, 6). Biofilm 

dispersal exacerbates the infection and worsens both treatment efficacy and patient prognosis. 

1.1.2 Biofilms and antibiotic resistance 

Microbial biofilms exhibit a variety of characteristics that make them difficult to eradicate 

once formed. Low metabolic rates, persister cells, horizontal gene transfer and the extracellular 

matrix are all major factors that decrease the efficacy of both chemical and physical biofilm 

removal (7). 

1.1.2.1 The matrix 

The biofilm extracellular polymeric substance (EPS) is a complex matrix composed of 

polysaccharides, proteins and nucleic acids that work together to provide structure and protection 

to the biofilm and its inhabitants. The matrix is dense and sticky making penetration by antibiotics 

or immune cells challenging (2). Extracellular nucleic acids (primarily eDNA) are released into 

the matrix via cell lysis, active secretion or release from membrane vesicles. eDNA has been found 

to play a role in biofilm structure and antibiotic resistance through binding of cationic antibiotics 

(8–11).  

Matrix proteins, another primary contributor to the biofilm structure, has been found to be 

important for the initial attachment of cells to surfaces and in cell accumulation (12, 13). Matrix 

proteins can be either secreted or anchored to the cell well (CWA) (12, 14). CWA proteins have 
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been found to engage in both homo- and heterodimerization with surrounding microbial and host 

derived proteins, anchoring the microbial cells within the biofilm to each other and to host tissues 

(12, 14, 15). Interestingly, some biofilm associated proteins have been found to stimulate the 

production of other matrix components including extracellular DNA and polysaccharides, further 

enhancing biofilm formation (16).  

Matrix polysaccharides make up a significant proportion of the biofilm matrix and perform 

similar functions as eDNA and matrix proteins. Matrix polysaccharide composition varies widely 

between microbial species and is greatly impacted by environmental conditions; despite this 

variability, most have been found to aid in cell aggregation, biofilm structural integrity and 

antibiotic resistance (17, 18). As in the case of biofilm proteins, biofilm carbohydrates have been 

found to be essential for proper assembly and maturation of biofilms with deficient mutants 

resulting in unusual biofilm morphologies or lacking the ability for form biofilms all together (19). 

Additionally, matrix polysaccharides have been found to actively bind antimicrobial peptides (20) 

and prevent immune cell phagocytosis (18). The three major biofilm macromolecules (proteins, 

polysaccharides and nucleotide) together with less significant constituents (including lipids, 

bacteriophages and quorum sensing molecules) interact to form recalcitrant biofilms that can go 

on to establish resistant and chronic infections. 

1.1.2.2 Decreased metabolism and persister cells 

Cellular metabolism plays an important role in antibiotic efficacy with stationary-phase or 

metabolically attenuated cells exhibiting enhanced resistance to treatment when compared to their 

metabolically active counterparts (21–23). At any given time, biofilms contain cells at various 

stages in their life cycle. Cells at the biofilm perimeter are generally metabolically active while the 

majority of cells that reside at the base or in the interior of the biofilm column are in stationary 
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phase due to limited availability of resources such as nutrients and oxygen (3, 24, 25). The lack of 

metabolic activity exhibited by these senior biofilm-dwelling cells helps to protect them from 

biocidal and bacteriostatic antibiotics (22, 24). One method that has been found to reverse this 

form of resistance is to supplement antibiotic treatments with vital metabolites (22, 26). The 

metabolites stimulate microbial metabolism, restoring sensitivity to previously tolerant or resistant 

cells.  

Unfortunately, resting or stationary phase cells are not the only population of biofilm-

residing cells that exhibit inherent resistance to antibiotic treatment. Biofilms contain a 

subpopulation of antibiotic-tolerant, dormant cells known as persister cells that aid in biofilm 

longevity and infection persistence. Persister cells are genotypically identical but phenotypically 

distinct variants of microbial wildtype strains (27). They result from environmental stressors that 

trigger the expression of genes such as toxin-antitoxin modules that halt metabolism, translation 

and replication (28, 29). Persister cells can be found at every stage of growth as long as stressors 

such as nutrient and oxygen deprivation are present (30, 31). Despite the ubiquitous impact of the 

stressor, only a small subset of the total biofilm population (less than 1 percent) will go on to 

become persister cells (4, 27, 30, 31). The dormant nature of persister cells makes them highly 

tolerant to antibiotic treatments, requiring excessively high treatment concentrations to begin 

eliciting a biocidal response (27, 30, 32). This contributes to biofilm survival and chronic disease 

as standard antibiotic treatment dosages fail to eradicate these dormant cells allowing them go on 

to proliferate and reestablish infection once environmental conditions are favorable (30). This can 

lead to recurring infections and chronic illness (33, 34). 
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1.1.2.3 Heterogeneity and horizontal gene transfer 

Horizontal gene transfer in biofilms can facilitate inter- and intraspecies spread of 

antibiotic resistance genes. In nature, biofilms are heterogeneous and contain cells from a variety 

of strains and species (35). The extracellular matrix surrounding biofilm cells positions disparate 

cells in close proximity to one another, facilitating swift, intercellular exchange of cellular 

components including DNA (36). Two forms of horizontal gene transfer occur in biofilms: 

transformation and conjugation (37, 38).  Transformation is indirect and occurs when an organism 

appropriates extracellular DNA from the environment that is later incorporated into its own 

genome; conjugation, on the other hand, is the direct transfer of DNA between organisms through 

a pillus. The transfer of genetic information is especially important when it involves antibiotic 

resistance. Inter- and intraspecies transfer of antibiotic resistance genes has been observed in 

biofilms but is often limited to the actively metabolizing cells that reside on the biofilm perimeter 

(37, 38). This is thought to be due to the fact that both DNA uptake and pilli formation are energy 

expensive processes that can only be conducted by cells that are undergoing metabolism (39). 

Additionally, the ubiquitous spread of resistance genes throughout biofilms has been hypothesized 

to be hindered by the restrictive and structured nature of the biofilm matrix. Genetic information 

can only be exchanged between neighboring cells in close proximity, cells that are too distant are 

unable to interact halting further exchange. This limitation results in pockets or clusters of resistant 

communities within the matrix rather ubiquitous prevalence (39).  Despite the localized occurrence 

of horizontal gene transfer in biofilms, it still plays an important role in the spread of antibiotic 

resistance and patient outcomes especially considering that multidrug resistant (MDR) microbial 

species have, in some cases, been found to produce more biofilm than their susceptible 

counterparts (40, 41).  
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1.1.3 Biofilm infections and chronic illnesses 

Biofilm infections can result in debilitating, chronic illnesses as infections are recalcitrant 

to treatment and degrade host tissues overtime (42). Biofilms are commonly introduced into the 

body via contaminated abiotic materials such as joint replacements and catchers however, they can 

also form organically on biotic tissues as in the case of cystic fibrosis. Once introduced into the 

body, biofilm cells will bind to and invade host tissues to establish new biofilms inside the host. 

These infections begin as acute but can quickly become chronic due to the resistance mechanisms 

discussed previously (see section 1.1.2). Periodontitis, endocarditis, chronic rhinosinusitis and 

osteomyelitis are all serious illnesses that are attributed to chronic biofilm infections (43–46). 

Additionally, biofilms have been found in the wounds from chronically ill patients; these biofilms 

were not present in wounds from patients with acute infections (42). Wound colonization prevents 

healing and aids in the spread of infection to previously healthy tissues (47). Chronic biofilm 

infections such as this often require surgery or amputation to combat disease progression and when 

proper treatment is delayed, patients risk developing septicemia or death. 

1.1.4 Societal impact of biofilm infections 

Biofilm infections not only have negative health outcomes but also have serious societal 

and economic ramifications.  In 2010, in the United States, it was estimated that over 14 million 

patients presented with biofilm infections each year resulting in approximately 350,000 deaths 

annually (43). The economic ramifications of treating and caring for these patients are considerable 

for both the patient and the country as a whole. Since the 1990’s, the cost of treating biofilm related 

infections have steadily increased leaving patients with inflated medical bills totaling tens to 

hundreds of thousands of dollars (46). These exorbitant health care costs are further increased 

when infections exhibit active antibiotic resistance (antibiotic resistance genes are being 
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expressed) as additional hospitalization and care are required (46, 48–50). The average American 

citizen does not have sufficient income or financial reserves to immediately pay off such massive 

debts, leaving many struggling to pay their medical bills. In some cases, people are forced to 

sacrifice basic necessities such as food, housing and transportation in order to make healthcare 

payments (51). To make matters worse, severe infections often require the afflicted individual to 

stay home or check into a hospital in order to get well, this means increased absenteeism which 

may result in decreased income or termination of employment (46). The economic burden 

associated with biofilm infections does not solely fall on the patient but also impacts the nation as 

a whole as a significant population of the country are enrolled in Medicare or Medicaid. The United 

States has been estimated to spend over 94 billion USD on the treatment of biofilm infections each 

year with an additional estimate of 2-20 billion USD spent on the treatment of antibiotic resistant 

infections (43, 52, 53). 

The costs of antibiotic resistance and biofilm infections are not strictly monetary, impacts 

on quality of life and mental health are also prevalent. When studying a cohort of individuals who 

developed post-surgery antibiotic resistant infections, Perencevich et al., 2003 reported a 

significant decrease in overall mental and physical health in patients after surgery when compared 

to before surgery (50). A decrease in mental health was not observed in control patients and the 

reported impacts on physical health were less severe. This observation may have been due to a 

combination of financial woes, physical impairments and extensive care requirements (both in and 

outside the hospital) that come with the treatment of antibiotic resistant infections. Infections can 

also directly decrease a patient’s quality of through inhibition of mobility or ability to perform 

basic day-to-day tasks. One example can be seen in patients with severe periodontitis, an oral 

biofilm infection that may result in irreversible tooth and bone loss. For the afflicted, the lack of 
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teeth and presence of oral pain make it difficult for many to eat, speak or properly conduct oral 

hygiene practices (ie. brushing and flossing) which negatively impacts their overall physical and 

psychological health (54–56). The debilitating epidemiological, financial and social implications 

of biofilms have inspired many researchers to investigate natural products as sources of anti-

biofilm therapeutics. 

1.2 Natural products in traditional medicine and anti-pathogenic phytotherapeutics 

Humans have relied on homeopathic remedies to self-medicate for thousands of years. Prior 

to the development of modern medicine, people primarily used plant and animal products to 

alleviate symptoms and cure diseases. These treatments were commonly in the form of tonics, 

tinctures and creams whose recipes were passed down from generation to generation. Some of 

these treatments have since proven to be detrimental to human health while others are still widely 

used today (57, 58). Research into ethnopharmacologically relevant plant extracts and plant 

derived compounds have identified both anti-bacterial and anti-biofilm activities (59, 60). The 

anti-biofilm activity of many phytotheraputics have been attributed to either biocidal or biostatic 

mechanisms; in time, this can prove problematic as selective pressure may lead to the development 

of resistance. In an effort to identify novel and effective anti-biofilm agents that do not potentiate 

antibiotic resistance, investigations into anti-pathogenic phytotherapeutics have increased (61–63).  

Anti-pathogenic therapeutics are compounds that inhibit microbial virulence or pathogenesis 

while minimizing selective pressure thus delaying antibiotic resistance development (64, 65). 

Many plant extracts, essential oils and phytochemicals have been found to exhibit anti-pathogenic 

anti-biofilm activity including: Rosa rugose (beach rose), Tripterygium wilfordii (thunder god 

vine), Piper nigrum (black pepper) and Commiphora myrrha (myrrh) (59, 61, 66). Targets of anti-

pathogenic therapeutics include biofilm formation (61, 66, 67), quorum sensing signaling (59, 68), 
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hemolysis activity (61, 63) and motility (59, 66, 67). Despite the existence of many promising anti-

pathogenic therapeutics, none are currently readily available to consumers. 

1.2.1 Anti-pathogenic activity of benzoic compounds  

Benzoic compounds are ubiquitous in plant tissues and are a major category of interest in 

anti-pathogenic antimicrobial research. Benzoic acid and its derivatives consist of a core benzene 

ring and a carboxylate substituent; many plant derived benzoic compounds such as 

epigallocatechin gallate, hamamelitannin, salicylic acid and ginkgolic acid possess additional 

substituents that aid in their antimicrobial activity. Benzoic compounds have been found to exhibit 

anti-pathogenic antimicrobial activity against a variety of microorganisms including 

Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus mutans and Escherichia coli 

through targeting extracellular polysaccharide production, exoprotease activity, fimbriae 

production, quorum sensing and motility (69, 70). The use of these compounds as antibiotic 

adjuvants has gained traction in an effort to restore sensitivity to resistant strains of 

microorganisms (71–73).        

1.3 Rhanmus prinoides (gesho): more than just beer 

Rhamnus prinoides, gesho, is a buckthorn plant that grows throughout East Africa. This plant 

has been used in the production of some of the oldest fermented beverages known to man but has 

also been used traditionally for the treatment of a variety of illnesses. Research into the therapeutic 

applications of gesho extracts have identified both antimicrobial and anti-plasmodial activities. 

Antimicrobial compounds such as quercetin, emodin and chrysophanol have been identified in 

gesho and may be responsible for its inhibitory effects (74). Despite the many studies that have 

been done using R. prinoides, many more investigations into gesho and gesho-derived compounds 

remain to be conducted.       
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1.3.1 What is gesho? 

Rhamnus prinoides, a large evergreen shrub native to East Africa, is used in the production 

of two popular, traditional alcoholic beverages called tella and te’j (75). In beverage production, 

gesho is used as a bittering agent similar to hops in Western beer (76). The processes used for 

brewing tella and te’j consist of multiple stages and vary from person to person but several steps 

are conserved (77). The process begins with the smoking of clay pots for seasoning and 

sterilization (76–78). Gesho leaves or stems are then added to water in the pot and allowed to 

ferment for several days (76–78). When producing te’j, raw honey or sugar is added to the mixture 

while grains such as barley and malt are added when brewing tella (76, 77). Both drinks are 

allowed to ferment for 15-20 days or until the alcohol content reaches between 2-8% (76, 78). 

Despite the commercial production of te’j, the traditional origins of both tella and te’j have resulted 

in a variety of recipes as the instructions have been altered and passed down the generations (77). 

1.3.2 Applications in traditional medicine 

In addition to uses as a bittering agent in beverage production, gesho has also been used 

traditionally to treat a variety of illnesses. Aqueous tinctures containing gesho have been used for 

the treatment of arthritis, back pain, brucellosis, flu, common cold, indigestion, loss of appetite, 

pneumonia, fatigue, sexually transmitted diseases, stomach ache and ear nose and throat infections 

(79, 80). R. prinoides leaves have also been ground and mixed with butter to be used as an ointment 

for the treatment of eczema (81). In an attempt to validate or refute some of the acclaimed 

medicinal uses of gesho, researchers began investigating the plant for antibacterial and 

antiplasmodial activities. Researchers in Japan found that R. prinoides methanol extracts were 

effective at killing plasmodia both in vitro and in vivo, with decreased parasitemia and prolonged 

survival in mice treated with gesho extract compared to untreated control mice (82, 83). Gesho has 
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also been found to have biocidal activity against both Gram positive and Gram negative species of 

bacteria in planktonic culture (75, 84, 85). Despite the research that has been done on the 

antimicrobial and antiplasmodial activities of gesho, nothing is known about its effects on bacterial 

biofilms, this dissertation looks to help fill this gap in knowledge. 

 

1.4 Hypothesis and objectives  

The overall hypothesis of this work is Rhamnus prinoides (gesho) extracts and derived 

compounds exhibit anti-biofilm activity against Gram positive bacteria and yeast. To test this 

hypothesis, the following objectives were proposed: 

1.4.1 Aim 1: Screen gesho extracts for anti-biofilm activity and identify active 

compounds 

Four extracts were prepared from the leaves and stems of gesho and screened for anti-

biofilm activity. 96-well microtiter plate, crystal violet assay were used to assess the effects of the 

extracts on biofilm formation. Resting cell viability counts were performed in order to determine 

if biofilm prevention was due to a biocidal, bacteriostatic or anti-pathogenic mechanism. Of the 

extracts tested, the leaf ethanol extract was selected for chemical analysis to identify individual 

compounds with anti-biofilm activity. 

1.4.2 Aim 2: Evaluate the effects of gesho ethanol extracts on dual-species biofilms 

Gesho ethanol extracts were screened for anti-biofilm activity against Streptococcus 

mutans and Candida albicans mono- and dual-species biofilms. 96-well microtiter plate, crystal 

violet assays were used to assess the effects on biofilm formation while resazurin assays were used 

to assess anti-microbial activity on biofilm dwelling cells. Growth curve experiments were 

conducted to characterize the anti-biofilm activity of the stem ethanol extract as biocidal, 



12 

bacteriostatic or anti-pathogenic. Finally, the effect of the stem ethanol extract on extracellular 

polysaccharide production was assessed to identify a potential mechanism for biofilm inhibition. 

1.4.3 Aim 3: Identify benzoic compounds with anti-pathogenic anti-biofilm activity 

and characterize their phenotypic effects 

Benzoic compounds with structural similarity to the gesho-derived ethyl 4-ethoxybonzic 

acid were screen for anti-pathogenic anti-biofilm activity on Staphylococcus aureus. Three target 

compounds were identified and their effects on planktonic growth and antibiotic sensitization were 

evaluated. Phenotypic assays were used to characterize the effects of treatment on cell 

hydrophobicity, hemolysis activity, membrane permeability and EPS production.  
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2 RHAMNUS PRINOIDES (GESHO): A SOURCE OF DIVERSE ANTI-MICROBIAL 

ACTIVITY  

2.1 Introduction 

Microbial biofilms, or surface-attached communities of microorganisms, are a source of 

chronic infection. In contemporary medicine, concern over biofilms is frequently elicited by 

numerous conditions, including device-related infections and chronic wounds (42, 47, 86). A wide 

range of pathogenic bacteria are reported to establish biofilm infections (87, 88). These include 

Staphylococcus aureus and Streptococcus mutans, two opportunistic pathogens whose biofilms 

are responsible for diseases including endocarditis and tooth decay, respectively (45, 89). In 

traditional settings, biofilm-associated infections would most commonly be encountered in 

wounds, on the skin and in the mouth. The severity of biofilm infections in combination with the 

increased prevalence of antibiotic resistance, has led to an ethnopharmacological approach to 

finding novel anti-biofilm agents (40, 90).  

Rhamnus prinoides (gesho) is a large evergreen shrub native to East Africa that is used as 

a bittering agent in the traditional East African fermented beverages tella and tej (77, 91). In 

addition to its culinary use, gesho has been used historically as a treatment for a variety of illnesses. 

Aqueous tinctures containing gesho have been used for the treatment of arthritis, back pain, 

brucellosis, flu, common cold, indigestion, loss of appetite, pneumonia, fatigue, sexually 

transmitted diseases, stomach ache and ear, nose and throat infections (79, 80). Notably, a mixture 

of ground R. prinoides leaves and butter has been used as an ointment for the treatment of atopic 

dermatitis (81), a skin condition occasionally associated with Staphylococcus aureus infections 

(92). Gesho contains a complex mixture of potentially therapeutic biocidal chemicals active 

against planktonic pathogens, notably geshoidin, quercetin, emodin, and various anthracene 



14 

derivatives  (74, 85, 93). Based on this background information, we hypothesized that gesho could 

be a source of anti-biofilm compounds effective against S. aureus and other Gram positive 

bacteria. Additionally, we sought anti-biofilm compounds with low biocidal activity; i.e. that had 

anti-pathogenic properties (64, 65). 

2.2 Materials and Methods 

2.2.1 Bacterial strains and culture conditions 

Four species of microorganisms were employed in this work: Staphylococcus aureus 

ATCC 6538, Bacillus subtilis ATCC 23059, Pseudomonas aeruginosa PA01 and Streptococcus 

mutans. Streptococcus mutans was a gift from Margaret Gould-Bartlett, Georgia State University. 

Pseudomonas aeruginosa PA01 was obtained from the laboratory of Jay Keasling, University of 

California, Berkeley. S. aureus was grown in Luria-Bertani (LB) broth (Becton Dickinson, USA). 

B. subtilis was cultivated in LB broth supplemented with 150 mM ammonium sulfate, 100 mM 

potassium phosphate, 34 mM sodium citrate, 1 mM MgSO4 and 0.1% glucose (94). S. mutans was 

grown in Brain-Heart Infusion (BHI) medium (Becton, Dickinson, USA) supplemented with 0.5% 

sucrose. P. aeruginosa was cultivated in Pseudomonas basal mineral (PBM) medium containing 

80 mM glucose (60). 

2.2.2 Chemicals and reagents 

The following reagents were purchased from Fisher Scientific (USA): crystal violet, 

potassium phosphate, magnesium sulfate, ammonium sulfate, hexanes, methanol, and sodium 

carbonate. Reagents purchased from Sigma Aldrich (USA) include: sucrose, butanol, Folin-

Ciocalteu reagent, ninhydrin reagent, sodium bicarbonate, cupric sulfate. Sodium citrate, glucose 

and ethyl acetate were purchased from EM Science (USA), OmniPur (Germany) and Pharmco-

Aaper (USA), respectively. 95% ethanol was purchased from Decon Labs (USA). 
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2.2.3 Extract preparation 

Rhamnus prinoides stems and leaves were purchased from a local Ethiopian market 

(Buford, Georgia, USA). The authenticity of the stems and leaves was verified by two local experts 

on Ethiopian foods. 24 g of ground leaves or fractured stems were added to 150 ml of sterile water 

or 95% ethanol in a 250 ml flask (95, 96). Flasks were shaken in the absence of light at 200 rpm 

at room temperature for four days. The extraction liquid was then collected and particulate matter 

removed via centrifugation at 12,500 rpm at 4 °C for 5 min; clarified supernatants were recovered 

for further processing. Aqueous extracts were frozen at -80 °C and lyophilized (Virtis, USA) to 

remove all water. Ethanol extracts were air-dried under vacuum prior to lyophilization. Extracts 

were stored at -80 °C. The percent yield (w/w) of the leaf ethanol, leaf water, stem ethanol and 

stem water extracts were: 8, 13, 2 and 7%, respectively.  

2.2.4 Log-phase cell antibacterial assay  

Bacteria were inoculated in 20 ml of growth media at an initial optical density (OD600) of 

0.01 and incubated for 4 ± 1 h at 37 °C with shaking at 200 rpm until log phase (OD600 ≈ 0.35) was 

reached. 1 ml of log-phase cells was transferred to 1.5 ml microfuge tubes and the growth medium 

was removed via centrifugation. Pelleted cells were washed twice with phosphate buffered saline 

(PBS) before resuspending the pellets in 1 ml of extract dissolved in PBS. Extract concentrations 

ranged from 2.5 – 10 mg/ml and were selected following a preliminary activity screen using S. 

aureus and then used for each of the other tested species. Treatments were incubated at 37 °C for 

1 h and then serially diluted in PBS and radially plated on growth agar. Plate counts were used to 

assess biocidal activity. 
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2.2.5 Stationary-phase cell viability assay  

To assess the viability of stationary phase planktonic cells, a growth agar-based assay was 

conducted. Spent media containing stationary phase planktonic cells were collected from 

microtiter plates or borosilicate glass culture tubes after the conclusion of each biofilm formation 

assay. The collected cells were serially diluted (1:10) in PBS and dilutions were radially plated in 

10 µl volumes on growth medium. Agar plates were incubated at 37 °C overnight to allow for 

colony formation and plate counts were used to assess viability. 

2.2.6 Staphylococcus aureus, Streptococcus mutans and Pseudomonas aeruginosa 

biofilm formation assay 

Staphylococcus aureus, Streptococcus mutans and Pseudomonas aeruginosa biofilms were 

grown in LB broth, BHI medium containing sucrose and PBM-glucose, respectively. Biofilm 

formation was assessed using a polystyrene 96 well microtiter plate crystal violet assay (97). 

Overnight broth cultures were diluted to an initial OD600 of 0.01 in fresh media and combined with 

gesho extract to obtain a final concentration of 7 mg/ml. Treatments were then serially diluted to 

final extract concentrations of 5, 3, 1, 0.5 and 0.25 mg/ml. These concentrations were selected 

after preliminary screens of the four extracts using S. aureus and were then used for each of the 

additional species that were examined. No vehicles were added to solubilize the treatments. 

Negative controls consisted of cells diluted to an initial OD600 of 0.01 in growth media without 

plant extract. 100 µl of treated and untreated samples were added to each well of a microtiter plate 

and incubated at 37 °C for 24 h (98, 99). After 24 h, planktonic cells and spent growth media were 

removed from each well and the plate was washed 3 times in sterile water. Biofilms were then 

stained with 150 µl of 0.1% crystal violet for 15 min at 200 rpm. Excess dye was removed via 

washing in sterile water and the plate was allowed to air dry. Crystal violet was solubilized in 150 
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µl of 95% ethanol and absorbance measurements at 595 nm were taken using an MD 

SPECTRAmax plate reader (Molecular Devices Corporation, USA). 

2.2.7 Bacillus subtilis biofilm formation assay  

Bacillus subtilis biofilms were grown in LB broth supplemented with 150 mM ammonium 

sulfate, 100 mM potassium phosphate, 34 mM sodium citrate, 1 mM MgSO4 and 0.1% glucose 

(94). Overnight broth cultures were diluted to an initial OD600 of 0.01 in fresh supplemented LB 

media and combined with gesho extract to obtain a final concentration of 7 mg/ml. Treatments 

were then serially diluted to final concentrations of 5, 3, 1, 0.5 and 0.25 mg/ml. No vehicles were 

added to solubilize the treatments. Negative controls consisted of cells diluted to an initial OD600 

of 0.01 in growth media without plant extract. 1 ml of treated and untreated samples were added 

to sterile 10 ml borosilicate glass culture tubes and statically incubated at 30 °C for 48 h to allow 

for pellicle formation. After 2 days, planktonic cells and spent growth media were removed from 

below the pellicle that formed at the air to liquid interface. Pellicles were vortexed and pipetted 

for resuspension in 1 ml PBS then serially diluted (1:10) in PBS and radially plated on LB agar 

plates. Agar plates were incubated at 37 °C overnight to allow for colony formation and plate 

counts were used to quantify the number of biofilm cells. Bacillus subtilis biofilms were cultivated 

in glass test tubes due to a lack of robust biofilm formation in polystyrene microtiter plates. 

2.2.8 Pure compounds on Staphylococcus aureus and Pseudomonas aeruginosa 

biofilm formation assay 

Staphylococcus aureus and Pseudomonas aeruginosa biofilms were grown in LB broth 

and PBM-glucose, respectively. Biofilm formation was assessed using a polystyrene 96 well 

microtiter plate crystal violet assay (97). Overnight broth cultures were diluted to an initial OD600 

of 0.01 in fresh media and combined with pure compounds to obtain a final concentration of 6.2% 
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(v/v). Treatments were then serially diluted to final concentrations of 3.1, 1.7, 0.8 and 0.4% (v/v). 

DMSO was added to solubilize the treatments. Negative controls consisted of cells diluted to an 

initial OD600 of 0.01 in growth media without treatment. 100 µl of treated and untreated samples 

were added to each well of a microtiter plate and incubated at 37 °C for 24 h. After 24 h, planktonic 

cells and spent growth media were removed from each well and the plate was washed 3 times in 

sterile water. Biofilms were then stained with 150 µl of 0.1% crystal violet for 15 min at 200 rpm. 

Excess dye was removed via washing in sterile water and the plate was allowed to air dry. Crystal 

violet was solubilized in 150 µl of 95% ethanol and absorbance measurements at 595 nm were 

taken using an MD SPECTRAmax plate reader (Molecular Devices Corporation, USA). 

2.2.9 Liquid to liquid extraction  

The fractionation strategy employed in this work followed the approach described by 

Quave et al., 2012 (100). Liquid to liquid extraction was conducted to separate the various 

components of the gesho leaf ethanol extract. A 1:1 ratio of water and hexanes was added to a 

separatory funnel. 500 mg of gesho leaf ethanol extract were solubilized in 10 ml of 95% ethanol 

was added to the separatory funnel. Solvents were thoroughly mixed via inversion and then 

allowed to separate before fraction collection in 250 ml Erlenmeyer flasks. Aqueous fractions were 

reintroduced to the separatory funnel and an additional 10 ml hexanes were added. Solvents were 

mixed via inversion and allowed to separate for fraction collection. A final hexane separation was 

conducted using an additional 10 ml of hexane. Subsequent extractions were performed with 

water-saturated butanol and ethyl acetate following the aforementioned method. Subsequently all 

fractions were dried under air to remove solvents, re-suspended in water and lyophilized.  
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2.2.10 Low Pressure Liquid Chromatography (LPLC) 

LPLC was performed using Bondapack C18/ Corasil as the stationary phase. 10 mg and 7 

mg of the butanol and ethyl acetate residual compounds, respectively, were dissolved in 1 ml of 

ethanol and applied to the column. Gradient separations were performed by changing mobile phase 

at 10% intervals from 100% methanol to 100% water. Eluted fractions were collected in 

polystyrene culture tubes at 5 ml intervals and stored at 4 °C.  

2.2.11 Chemical tests 

Chemical tests were used to help identify the chemical components present in R. prinoides 

ethanol extracts. Ninhydrin (101), Folin-Ciocalteu (102), Baeyer (103), Jones Oxidation (104), 

carboxylic acid (105) and Biuret tests (106) were conducted according to standard protocols with 

the following modifications:  Ninhydrin test: instead of spraying chromatography paper with the 

ninhydrin reagent, 10 µl drops of ninhydrin reagent were applied directly to spots of dried sample. 

Folin-Ciocalteu test: volumes were modified to allow this assay to be performed in a microtiter 

plate rather than a cuvette; 18 µl of sample, 36 µl of Folin-Ciocalteu reagent and 145 µl of 20% 

sodium carbonate were used. Baeyer test: 1 drop of each sample was dissolved in 500 µl of acetone. 

Jones Oxidation: 5 drops of acetone and chromate solution were used to dissolve 4 drops of each 

sample. Carboxylic acid test: 1 ml of 100 mg/ml sodium bicarbonate solution was added to 3 drops 

of each sample.  Biuret test: a 25 mg/ml cupric sulfate solution was used for analysis. 

2.2.12 Gas chromatography-mass spectrometry (GC-MS) 

Gas chromatography-mass spectrometry (GC-MS) analysis was performed using an 

Agilent Technology 7890A gas chromatograph equipped with an Agilent Technology 5977A mass 

spectrometer. A sample volume of 5 µL was manually injected into an Agilent (30 m, 0.530 mm) 

HP-5MS column. The oven temperature was held at 60 °C for 5 min, then was raised to 100 °C at 
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25 °C/min. The temperature was stabilized at 100 °C for 1 min then raised to 200 °C at 25 °C/min 

and held at 200 °C for 1 min. Temperature was raised to 250 °C at a rate of 5 °C/min then held at 

the final baking temperature of 250 °C for 7 min. Agilent MassHunter software was used for mass 

spectrometry data acquisition and analysis.  

2.2.13 Fourier Transform Infrared Spectroscopy (FTIR) 

A Varian UMA 600 FTIR microscope equipped with He-Ne laser and MCT detector was 

used for analysis. 3 µL of select LPLC fractions were vacuum desiccated onto zinc solenoid 

windows. Data were collected in the 3750–925 cm-1 region at a 4 cm-1 spectral resolution.  

2.2.14 Statistical Analysis 

Statistical analysis was performed using IBM SPSS Statistics 22.0 software. Non-parametric 

(Kuskal-Wallis Test and Median Test) or parametric (ANOVA followed by Tukey HSD test or t-

test) analyses of variance were conducted based on the characteristics of the data. Comparisons 

were conducted between the extract treated samples and the untreated control. Differences with a 

p-value < 0.05 were considered statistically significant and are designated with an asterisk (*).     

2.3 Results and Discussion 

2.3.1 Gesho ethanol extracts have biocidal activity against log phase planktonic cells 

Ethanol and aqueous extracts of gesho were tested for their ability to kill log-phase, 

planktonic cells of Staphylococcus aureus, Streptococcus mutans and Bacillus subtilis. Ethanol 

extract treatments resulted in a 2 to 10 log reduction in colony forming units (CFU) per ml, whereas 

aqueous extract treatments resulted in a 1 to 3 log reduction in CFU per ml (Figure 1). Both stem 

and leaf ethanol extracts exhibited significant biocidal activity against all three species tested. The 

aqueous extracts exhibited greater variability; in particular, aqueous stem extract was active 

against S. aureus and B. subtilis but not S. mutans. The strong biocidal activity of the ethanol 



21 

extracts and lower activity of the aqueous extracts were consistent with the findings of Molla et 

al., 2016 who reported MICs for gesho extracts from 2 to 8 mg/mL; but greater than Amabye, 2015 

at 0.2 to 0.4 mg/mL and less than Berhanu, 2014 who reported active concentrations ranging from 

97.5 to 780 mg/mL (75, 84, 85).  

2.3.2 Gesho ethanol extracts influence the growth of stationary phase cells 

Gesho ethanol extracts exhibited biocidal or bacteriostatic activity against stationary phase 

cells. The number of viable cells present in the inocula, indicated by a dotted red line, were 

quantified to allow for comparisons of growth relative to starting conditions (Figure 2). Treatments 

of B. subtilis or S. mutans with stem ethanol extract resulted in a decrease in biomass when 

compared to the untreated inoculum, signifying biocidal activity. Stem ethanol treatment of S. 

aureus and leaf ethanol treatments of S. mutans and B. subtilis exhibited a bacteriostatic effect, 

showing little change in cell number compared to the inocula. Leaf ethanol extract impaired S. 

aureus growth in comparison to growth of the untreated control, possibly due to slight bactericidal 

activity or toxicity of the treatment. The variability of these findings suggests that the gesho ethanol 

extracts contain a mixture of chemicals that impact Gram positive bacteria in a species specific 

manner. Overall, these findings indicated that the stem ethanol extract was a good source of 

biocidal, anti-biofilm compounds, whereas the leaf ethanol extract was a good source of non-

biocidal antibacterial (i.e. anti-pathogenic) compounds. Due to the superior inhibition of biofilm 

formation caused by the ethanol extracts, we elected not to assess the activity of the aqueous 

extracts on stationary phase cells (Figure 3). 

2.3.3 Gesho ethanol extracts prevent Gram positive bacterial biofilm formation    

Gesho ethanol extracts strongly inhibited Gram positive bacterial biofilm formation. Both 

ethanol stem and leaf extracts significantly inhibited S. aureus, S. mutans and B. subtilis biofilm 
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formation up to 99% relative to untreated control biofilms (Figure 3). The extent of inhibition was 

species dependent with S. aureus showing less susceptibility to treatment than B. subtilis and S. 

mutans. Aqueous extracts inhibited S. aureus and S. mutans biofilms but increased B. subtilis 

biofilm formation. B. subtilis biofilm formation may have been stimulated by the presence of 

polysaccharides (107) or peptides with pheromone-like activity (108) in the extract; these 

hypotheses have not yet been tested. As noted above, the effects of aqueous extracts were more 

variable in activity, resulting in inhibition of S. aureus and S. mutans but not B. subtilis biofilms. 

Stem extracts generally resulted in greater biofilm inhibition than their leaf counterparts, 

suggesting a difference in chemical composition between the two tissues. All extracts were 

ineffective at disrupting existing biofilms or inhibiting Gram negative bacterial biofilm formation 

(Figure 4). 

2.3.4 Gesho-derived small molecules inhibit Gram positive biofilm formation  

Further work on the leaf ethanol extract was pursued because the data in Figures 2 and 3 

indicated that compounds contained within prevented biofilm formation with minimal bactericidal 

activity. Liquid to liquid fractionation was used to separate the extract on the basis of polarity, 

followed by chemical tests, Fourier Transform infrared spectroscopy (FTIR) and gas 

chromatography-mass spectrometry (GC-MS) (Figure 5).  

Low pressure liquid chromatography of the butanol and ethyl acetate liquid to liquid 

fractions indicated that the most effective compounds were present in the more polar liquid phases 

(Figure 6). Colorimetric chemical tests indicated the presence of polyphenolic and alcoholic 

compounds (Table 1). FTIR supported these findings, showing a strong hydroxyl peak and several 

alkyl or alkene peaks (Figure 7). 
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GC-MS analysis found numerous peaks within the butanol fraction (Figure 8); compound 

identities were determined using the NIST11 chemical library. Compounds resulting in a certainty 

score greater than 85% were selected for further analysis. Activity screens identified two 

compounds with anti-biofilm activity: ethyl 4-ethoxybenzoate (CAS# 23676-09-7) and 4-hydroxy-

4-methyl pentanone (CAS# 123-42-2) (Figure 8). Ethyl 4-ethoxybenzoate (EEB) and 4-hydroxy-

4-methyl pentanone (HMP) are naturally occurring compounds that have been previously been 

extracted from plants (109–112). 4-hydroxy-4-methyl pentanone, also known as diacetone alcohol 

(DAA), is commonly used as an industrial solvent; however, HMP was not used as a solvent in 

this study, suggesting that it occurs naturally in gesho. Benzoic acid and 2-pentanone, compounds 

that are structurally similar to EEB and HMP respectively, were evaluated for anti-biofilm activity 

at 0.8% and 3%. Neither benzoic acid nor 2-pentanone had a statistically significant effect on 

biofilm formation. These data support the concept that the observed anti-biofilm activity of EEB 

and HMP was caused by their chemical structures rather than by non-specific effects.  

A major peak in the butanol fraction was identified as dimethyl sulfoxide (DMSO). DMSO 

is commonly used in laboratories as a solvent, but, in this study, it was a component of the GC-

MS output (Figure 8). We considered several hypotheses to explain its presence. First, we analyzed 

all of the solvents used in this work to determine whether it was a contaminant. GC-MS analyses 

indicated that it was not found in the solvents (data not shown). Second, we considered whether it 

could be a natural product; however, we could not find any published reports that support this idea. 

Lastly, we hypothesized that DMSO could be a rearrangement product that formed as an artifact 

during GC-MS analysis (113). Regardless, we hypothesized that the presence of DMSO increased 

the anti-biofilm activity of EEB by increasing its solubility; this idea was supported by laboratory 
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experiments (Figure 9A). DMSO was combined with HMP to assess if DMSO would result in 

enhanced anti-biofilm activity as occurred with EEB, but DMSO did not enhance HMP activity.   

EEB and HMP treatments exhibited significant anti-biofilm activity but did not show 

antibacterial activity against log or stationary phase cells; these are hallmark characteristics of 

“anti-pathogenic” compounds (Figure 9 C-F). Anti-pathogenic therapeutics are compounds that 

target microbial pathogenicity while minimizing bactericidal activity (65). Anti-pathogenic and 

antivirulence compounds have gained attention in recent years because they apply less selective 

pressure against pathogens than bactericidal agents; these compounds may also delay the 

development of antibiotic resistance or restore sensitivity to antibiotic resistant, pathogenic strains 

(64, 65, 114). The anti-biofilm activity of HMP may derive from its structural similarity to 

autoinducer-2 (AI-2), a quorum sensing signaling molecule that affects diverse bacterial 

phenotypes including biofilm formation (115, 116). HMP may act as a competitive inhibitor of 

AI-2 signaling. Notably, HMP inhibited biofilm formation by P. aeruginosa PA01, although this 

activity was not observed with the crude gesho extracts (Figure 10). The mode of action behind 

the anti-biofilm activity of EEB is unknown, but its structural similarity to parabens suggest that 

it may influence biofilm formation through a common mechanism (117, 118).  

There are several novel features in the presented work. This is the first research project to 

focus on gesho for its anti-biofilm activity. This work complements existing findings on the 

antibacterial (75, 85) and anti-parasitic (82, 83, 119) properties of gesho. Second, the extracts used 

in this research were unique compared to those used in prior works; they were prepared using 

ethanol rather than methanol in an effort to extract chemical compounds that were likely to be 

present in traditional brews and tinctures (76, 78). Third, this project tested both leaf and stem 

extracts independently for antibacterial and anti-biofilm activity, which proved informative as their 
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characteristics and efficacies were different. Overall, our findings support the traditional use of 

gesho for health benefits and also indicate that gesho-derived compounds could potentially have 

applications as therapeutics and as hygiene products. 

2.4 Conclusion 

Biofilm formation is a complex process, involving cells that switch from a planktonic to a 

sessile phenotype. The change to a surface-attached mode of growth may be induced by 

environmental cues or by signals produced by neighboring cells. Accordingly, there is a large 

network of genes involved with attachment. Moreover, the components involved in biofilm 

formation can vary greatly as microbes from diverse genera seek the benefits of a biofilm lifestyle. 

From a therapeutic perspective, this means that there are many targets by which to influence 

microbial biofilm formation.  

Numerous anti-biofilm, anti-pathogenic and antivirulence compounds have been identified 

in plant essential oils (59, 61, 63, 120). Gesho, like other plant essential oils, is a mixture of diverse 

chemicals (74, 85). It is likely that some of the observed variation in gesho extract-induced activity 

is the result of different molecules contained therein affecting biofilm formation through diverse 

mechanisms. In this work we report two specific compounds with anti-biofilm activity derived 

from gesho. We predict that investigating additional constituents of gesho extracts will yield more 

novel molecules with anti-biofilm activity. 
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2.5 Figures and Tables 

 

 

Figure 1. Bactericidal effect of aqueous and ethanol extracts on log-phase, planktonic cells. 

(A-D) Staphylococcus aureus (n = 3-6); (E-H) Bacillus subtilis (n = 3-4) and (I-L) Streptococcus 

mutans (n = 3-4). Bars indicate number of bacteria present in culture following exposure to extracts 

for 1 h. Legend: leaf ethanol (white bars), leaf aqueous (horizontal striped bars), stem ethanol (grey 

bars), stem aqueous (slanted striped bars). Error bars are standard error of the mean. ANOVA and 

Kruskal-Wallis tests were performed; (*) indicates a significant difference (p < 0.05) between 

treated samples and the untreated control. 
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treated samples and the untreated control. 
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Figure 2.Effect of ethanol extracts on resting phase planktonic cell viability. 

(A-B) Staphylococcus aureus (n = 3), (C-D) Bacillus subtilis (n = 3-4), (E-F) Streptococcus mutans 

(n = 3). Bars indicate the number of viable cells after growth for 24 h in the presence of stem (light 

grey bars) and leaf (white bars) ethanol extracts. Black bars represent untreated controls. The 

inoculum cell density is indicated by a red dotted line. Error bars are standard error of the mean.  

ANOVA, T-test, Kruskal-Wallis tests were performed; (*) indicates a significant difference (p < 

0.05) between treated samples and the untreated control. 

 

 

 

 

 

 

 
 
 

        
 

    

          

Figure 2. Effect of ethanol extracts on resting phase planktonic cell viability. (A-B) 

Staphylococcus aureus (n = 3), (C-D) Bacillus subtilis (n = 3-4), (E-F) Streptococcus mutans (n = 

3). Bars indicate the number of viable cells after growth for 24 h in the presence of stem (light 

grey bars) and leaf (white bars) ethanol extracts. Black bars represent untreated controls. The 

inoculum cell density is indicated by a red dotted line. Error bars are standard error of the mean.  

ANOVA, T-test, Kruskal-Wallis tests were performed; (*) indicates a significant difference (p < 

0.05) between treated samples and the untreated control. 
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Figure 3. Effect of aqueous and ethanol extracts on Gram positive bacterial biofilm formation. 

(A-D) Staphylococcus aureus (n=10-15), (E-H) Bacillus subtilis (n=3-4) and (I-L) Streptococcus 

mutans (n=12). Bars indicate the extent of biofilm formation relative to untreated controls. Legend: 

leaf ethanol (white bars), leaf aqueous (horizontal striped bars), stem ethanol (grey bars), stem 

aqueous (slanted striped bars). Error bars are standard error of the mean. ANOVA and Kruskal-

Wallis tests were performed; (*) indicates a significant difference (p < 0.05) between treated 

samples and the untreated control.  
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(grey bars), stem aqueous (slanted striped bars). Error bars are standard error of the mean. ANOVA 

and Kruskal-Wallis tests were performed; (*) indicates a significant difference (p < 0.05) between 
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Figure 4. Effect of aqueous and ethanol extracts on Pseudomonas aeruginosa biofilm formation. 

Bars indicate the extent of biofilm formation relative to untreated controls. Legend: leaf ethanol 

(white bars), leaf aqueous (horizontal striped bars), stem ethanol (grey bars), stem aqueous (slanted 

striped bars). Error bars are standard error of the mean. Kruskal-Wallis tests were performed; (*) 

indicates a significant difference (p < 0.05) between treated samples and the untreated control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

Supplementary Figure 1. Effect of aqueous and ethanol extracts on Pseudomonas aeruginosa 

biofilm formation. Bars indicate the extent of biofilm formation relative to untreated controls. 

Legend: leaf ethanol (white bars), leaf aqueous (horizontal striped bars), stem ethanol (grey bars), 

stem aqueous (slanted striped bars). Error bars are standard error of the mean. Kruskal-Wallis tests 

were performed; (*) indicates a significant difference (p < 0.05) between treated samples and the 

untreated control. 
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Figure 5.Diagram of gesho leaf ethanol extract fractionation and chemical analysis. 

Crude ethanol extracts were prepared from ground leaves of R. prinoides, followed by liquid to 

liquid fractionation using hexanes, butanol and ethyl acetate. Butanol and ethyl acetate fractions 

were further separated via column chromatography and then analyzed via colorometric chemical 

tests, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry 

(GCMS). Chemical compounds identified via GCMS were screened for antimicrobial and anti-

biofilm activity.  

 

 

 

 

 

 

 

 

 

Figure 4. Diagram of gesho leaf ethanol extract fractionation and chemical analysis. 

Crude ethanol extracts were prepared from ground leaves of R. prinoides, followed by liquid 

to liquid fractionation using hexanes, butanol and ethyl acetate. Butanol and ethyl acetate 

fractions were further separated via column chromatography and then analyzed via 

colorometric chemical tests, Fourier transform infrared spectroscopy and gas 

chromatography-mass spectrometry (GCMS). Chemical compounds identified via GCMS 

were screened for antimicrobial and anti-biofilm activity.  
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Figure 6. Effect of low pressure liquid chromatography fractions on Staphylococcus aureus 

biofilm formation. 

Bars indicate the extent of biofilm formation relative to untreated controls. Legend: further 

separation of the butanol liquid to liquid fraction (grey bars), further separation of the ethyl acetate 

liquid to liquid fraction (white bars). Error bars are standard error of the mean. 

 

 

 

 

 

 

Figure 5. Effect of low pressure liquid chromatography fractions on Staphylococcus aureus 

biofilm formation. Bars indicate the extent of biofilm formation relative to untreated controls. 

Legend: further separation of the butanol liquid to liquid fraction (grey bars), further separation of 

the ethyl acetate liquid to liquid fraction (white bars). Error bars are standard error of the mean.  
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Table 1. Chemical tests indicate the presence of alcohol- and phenol-containing 

compounds in the butanol and ethyl acetate fractions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chemical Test Functional group Test result 

Ninhydrin test   Amines Negative 

Folin-Ciocalteu test Polyphenols Positive 

Beyer/ Potassium permanganate test Alkenes and Alkynes Negative 

Jones Oxidation/ Sodium Chromate test Alcohols Positive 

Carboxylic acid test Carboxylic acid Negative 

Biuret test Peptide bonds Negative 



33 

 

Figure 7. Fourier transform infrared spectroscopy of butanol and ethyl acetate fractions. 

Butanol (A) and ethyl acetate (B) fractions prepared on May 26th, 2017 (black) and June 15th, 2017 

(red) exhibit strong hydroxyl (blue box), alkane (green box) and alkene (yellow and grey box) 

peaks. Peak strength was 4-5 times stronger in the butanol fraction chromatogram than the ethyl 

acetate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. Fourier transform infrared spectroscopy of butanol and ethyl 

acetate fractions. Butanol (A) and ethyl acetate (B) fractions prepared on May 26th, 2017 (black) 

and June 15th, 2017 (red) exhibit strong hydroxyl (blue box), alkane (green box) and alkene (yellow 

and grey box) peaks. Peak strength was 4-5 times stronger in the butanol fraction chromatogram 

than the ethyl acetate.  
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Figure 8. Gas chromatography mass spectrometry analysis of butanol fraction. 

4-hydroxy-4-methyl-2-pentanone (A, C and E) and Ethyl 4-ethoxybenzoate (B, D and F) were 

identified as compounds present in the butanol fraction. There are numerous additional peaks in 

the mixture whose identities were not resolved or evaluated for antimicrobial or anti-biofilm 

activity. 

     

 

 

 

      

 

Figure 7. Gas chromatography mass spectrometry analysis of butanol fraction. 4-hydroxy-4-

methyl-2-pentanone (A, C and E) and Ethyl 4-ethoxybenzoate (B, D and F) were identified as 

compounds present in the butanol fraction. There are numerous additional peaks in the mixture 

whose identities were not resolved or evaluated for antimicrobial or anti-biofilm activity.    
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Figure 9. Effects of ethyl 4-ethoxybenzoate and 4-hydroxy-4-methyl-2-pentanone on S. aureus 

biofilm formation and planktonic cell viability. 

Top row, effect on biofilm formation. Middle row, effect on resting phase cell viability. Bottom 

row, effect on log phase cell viability. Bars indicate the impact of treatments after 24 h. Legend: 

ethyl 4-ethoxybenzoate (EEB) and 4-hydroxy-4-methyl-2-pentanone (HMP) with (white bars) or 

without (black bars) the presence of 1% DMSO. Each assay was performed in triplicate and error 

bars represent the standard error of the mean.  An ANOVA test was performed; (*) indicates a 

significant difference of (p < 0.05) between the treated samples and the untreated control. 

 

 

 

 

 

       

       

        

 

Figure 8. Effects of ethyl 4-ethoxybenzoate and 4-hydroxy-4-methyl-2-pentanone on S. 

aureus biofilm formation and planktonic cell viability. Top row, effect on biofilm formation. 

Middle row, effect on resting phase cell viability. Bottom row, effect on log phase cell viability. 

Bars indicate the impact of treatments after 24 h. Legend: ethyl 4-ethoxybenzoate (EEB) and 4-

hydroxy-4-methyl-2-pentanone (HMP) with (white bars) or without (black bars) the presence of 

1% DMSO. Each assay was performed in triplicate and error bars represent the standard error of 

the mean.  An ANOVA test was performed; (*) indicates a significant difference of (p < 0.05) 

between the treated samples and the untreated control. 
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Figure 10. Effect of ethyl 4-ethoxybenzoate and 4-hydroxy-4-methyl-2-pentanone on 

Pseudomonas aeruginosa biofilm formation. 

Bars indicate the extent of biofilm formation relative to untreated controls. Error bars are standard 

error of the mean. Kruskal-Wallis tests were performed; (*) indicates a significant difference (p < 

0.05) between treated samples and the untreated control. 

 

 

 

  

 

 

 

              
 

Supplementary Figure 3. Effect of ethyl 4-ethoxybenzoate and 4-hydroxy-4-methyl-2-

pentanone on Pseudomonas aeruginosa biofilm formation. Bars indicate the extent of biofilm 

formation relative to untreated controls. Error bars are standard error of the mean. Kruskal-Wallis 

tests were performed; (*) indicates a significant difference (p < 0.05) between treated samples and 

the untreated control. 
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3 RHAMNUS PRINOIDES (GESHO) STEM EXTRACT PREVENTS CO-CULTURE 

BIOFILM FORMATION BY STREPTOCOCCUS MUTANS AND CANDIDA 

ALBICANS 

3.1 Introduction 

Streptococcus mutans and Candida albicans form robust polymicrobial biofilms in the oral 

cavity that are associated with a variety of oral and systemic illnesses. Growing alone, 

Streptococcus mutans biofilms are the major etiologic agent of dental caries and tooth decay while 

Candida albicans biofilms can result in oral candidiasis (121, 122). Working together, S. mutans 

and C. albicans dual-species biofilm infections are causal agents of disease including early-

childhood caries, denture stomatitis, periodontitis, candidiasis, endocarditis and mucosal 

infections (123). In dual-species biofilms, these organisms exhibit a symbiotic relationship, 

exchanging metabolites and growth factors to ensure their mutual survival (124); this relationship 

can lead to enhanced biomass, exopolysaccharide production, resistance to stress and virulence 

gene expression (125, 126). This is a major concern as biofilms frequently have enhanced 

resistance to antibiotics, leading to treatment failure (7). In response, researchers have pursued 

plant extracts as a source of anti-biofilm therapeutics. There is a substantial body of research 

investigating the ability of plant extracts to control S. mutans  (127, 128) or C.albicans (129, 130)  

mono-species biofilm; however, considerably fewer studies have focused on these organisms in 

polymicrobial biofilms (127). This is of concern because polymicrobial biofilms are generally 

more difficult to eradicate than their mono-species counterparts (131–133).  

Rhamnus prinoides (gesho) has been used in traditional medicine throughout eastern Africa. 

The fruit, root, stems and leaves of gesho have been historically used to treat a variety of illnesses 

including ear, nose, and throat infections, tonsillitis, scabies, dandruff, rheumatism and pneumonia 
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(80, 81). Research on the antimicrobial activities of gesho have shown that extracts possess 

inhibitory activity against a variety of bacteria and plasmodia (75, 119), indicating that gesho is 

effective against both prokaryotes and eukaryotes. Based on this background information, we 

hypothesized that gesho extracts could be used to control Streptococcus mutans and Candida 

albicans biofilms, including co-culture biofilms. 

3.2 Materials and Methods 

3.2.1 Microbial strains and culture conditions 

Streptococcus mutans and Candida albicans were used in this work. Streptococcus mutans 

was a gift from Margaret Gould-Bartlett, Georgia State University and Candida albicans was a 

gift from the laboratory of Sidney Crow, Georgia State University. The S. mutans 16S rDNA and 

16S-23S intergenic spacer sequences were deposited to GenBank (NCBI, USA) under accession 

number MT318140; the GenBank accession number for the C. albicans 18S rDNA-ITS sequence 

was MT166273. The S. mutans and C. albicans strains used in this work shared over 99% 

similarity with the S. mutans T8 and C. albicans ATCC 18804 strains, respectively (Appendix A). 

S. mutans overnight cultures were grown in brain-heart infusion (BHI) (Becton, Dickinson, USA) 

broth while biofilms were formed in BHI broth supplemented with 0.5% sucrose. C. albicans 

overnight cultures were grow in yeast peptone dextrose (YPD) broth while biofilms were formed 

in 1X RPMI 1640 with L-glutamine (Corning, USA) supplemented with 165 mmol l-1 

morpholinepropanesulfonic acid (MOPS). 

3.2.2 Genetic analysis 

Genomic DNA was extracted from overnight cultures of S. mutans and C. albicans using 

a Quick DNA Fungal/Bacterial Miniprep Kit (Zymo Research, USA). Sequencing of the S. mutans 

16S rDNA and 16S-23S intergenic spacer and the C. albicans 18S and ITS regions were conducted 
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using the primers listed in Appendix A. Polymerase chain reactions were conducted using the Taq 

DNA polymerase kit from New England Biolabs Inc. (USA). Thermal cycling conditions for S. 

mutans included: initial denaturation at 95°C for 3 min; 30 cycles of 95°C for 30 sec, 55°C for 30 

sec and 68° for 2 min; and a final extension at 72°C for 5 minutes. C. albicans thermocycler 

parameters included: initial denaturation at 95°C for 3 min; 30 cycles of 95°C for 30 sec, 55°C for 

30 sec and 68° for 2 min 30 sec; and a final extension at 72°C for 5 minutes. Sanger sequencing 

was conducted at the Georgia State University core facility (Atlanta, GA USA) and Genewiz 

(South Plainfield, NJ USA). The resulting genetic sequences were assembled using DNA Baser 

Assembler v.5 (Heracle Biosoft, Arges, Romania). The contigs are found in GenBank under 

accession numbers MT318140 (S. mutans) and MT166273 (C. albicans). 

3.2.3 Chemicals and reagents 

The following reagents were purchased from Fisher Scientific (USA): crystal violet, 

potassium phosphate. Reagents purchased from Sigma Aldrich (USA) include: resazurin and 

sucrose. 95% ethanol was purchased from Decon Labs (USA). 2,3-Bis-(2-methoxy-4-nitro-5-

sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT) was purchased from Invitrogen (USA) 

and RMPI 1640 with L-glutamine was purchased from Corning (USA). Direct Yellow 96 was 

purchased from AK Scientific.  

3.2.4 Extract preparation 

Rhamnus prinoides stems and leaves were purchased from a local Ethiopian market 

(Buford, Georgia, USA). The authenticity of the stems and leaves was verified by two local experts 

on Ethiopian foods (134). 24 g of ground leaves or fractured stems were added to 150 ml of sterile 

water or 95% ethanol in a 250 ml flask (95, 96). Flasks were shaken in the absence of light at 200 

rpm at room temperature for four days. The extraction liquid was then collected and particulate 
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matter removed via centrifugation at 13,000 x g at 4 °C for 5 min; clarified supernatants were 

recovered for further processing. The extracts were air-dried under vacuum then collected in 50 

ml of water and frozen prior to lyophilization. Extracts were stored at -80 °C. The percent yield 

(w/w) of the leaf and stem ethanol extracts were: 8 and 2%, respectively.  

3.2.5 Streptococcus mutans biofilm formation assay  

In vitro Streptococcus mutans biofilms were grown in filter sterilized BHI broth 

supplemented with 0.5% sucrose (BHI-sucrose). Biofilm formation was assessed using a 

polystyrene 96 well microtiter plate crystal violet assay (97, 98). Overnight broth cultures were 

diluted to an initial OD600 of 0.01 (~ 3.8 x106 viable cells per milliliter of culture) in BHI-sucrose 

and combined with gesho extract to a final concentration of 7 mg ml-1.  Treatments were then 

serially diluted to final concentrations of 5, 3, 1, 0.5 and 0.25 mg ml-1. No vehicles were added to 

solubilize the treatments. Negative controls consisted of diluted cells in BHI-sucrose without plant 

extract. 100 µl of treated and untreated samples were added to each well of a microtiter plate and 

incubated at 37 ⁰C, 200 rpm for 24 h (135). The next day, planktonic cells and spent media were 

removed from each well and the 96 well plates were washed 3 times with sterile water. Biofilms 

were then stained with 150 µl of 0.1% crystal violet for 15 minutes at 200 rpm. Excess dye was 

removed and the biofilms washed 3 times with sterile water. The plates were allowed to dry then 

the crystal violet was solubilized in 150 µl of 95% ethanol. Crystal violet absorbance 

measurements at 595 nm were taken using an MD SPECTRAmax plate reader (Molecular Devices 

Corporation, USA). This experiment was performed in triplicate and the sample sizes were 

between 12 and 48.   
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3.2.6 Candida albicans biofilm formation assay  

Candida albicans biofilms were cultivated according to Pierce et al., 2015 with 

modifications (136). Thawed C. albicans cultures were streaked on YPD agar and incubated 

overnight at 37 ⁰C. The following day, 25 ml YPD broth was inoculated with a loopful of colonies 

and incubated at 30 ⁰C for 14-16 h. Samples of overnight culture were stained with 0.1% v v-1 

methylene blue and cell densities were quantified using a hemocytometer. After quantification, C. 

albicans cells were centrifuged and washed twice with PBS and adjusted to a final concentration 

of 1x10⁷ cells in filter sterilized RMPI-MOPS. Diluted cultures were combined with gesho extract 

to a final concentration of 7 mg ml-1.  Treatments were then serially diluted to final concentrations 

of 5, 3, 1, 0.5 and 0.25 mg ml-1. No vehicles were added to solubilize the treatments. Negative 

controls consisted of cells diluted in RMPI-MOPS without plant extract. 100 µl of treated and 

untreated samples were added to each well of a microtiter plate and incubated at 37 ⁰C, 200 rpm 

for 24 h. The next day, planktonic cells and spent media were removed from each well and the 96 

well plates were washed 3 times with sterile water. Biofilms were then stained with 150 µl of 0.1% 

crystal violet for 15 min at 200 rpm (137, 138). Excess dye was removed, and the biofilms washed 

3 times with sterile water. The plates were allowed to dry then the crystal violet was solubilized in 

150 µl of 95% ethanol. Crystal violet absorbance measurements at 595 nm were taken using an 

MD SPECTRAmax plate reader (Molecular Devices Corporation, USA) (97). This experiment 

was performed in triplicate and the sample sizes ranged between 16 and 39.  

3.2.7 Streptococcus mutans and Candida albicans dual-species biofilm formation 

assay 

In vitro growth of polymicrobial biofilms was conducted according to de Oliveira et al., 

2017 with modifications (139). S. mutans and C. albicans inocula were prepared as stated above. 
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BHI-sucrose S. mutans and RPMI-MOPS C. albicans inocula were combined at equal volumes 

and mixed thoroughly. Co-cultures were combined with gesho extract to a final concentration of 

3 mg ml-1 and 100 µl of treated and untreated samples were added to each well of a microtiter 

plate. Plates were then incubated at 37 ⁰C, 200 rpm for 24 h. No vehicles were added to solubilize 

the treatments. Negative controls consisted of diluted cells without plant extract. The following 

day, plates were washed, stained and measured as stated above. Experiments were performed in 

triplicate. 

3.2.8 Planktonic growth assay  

Streptococcus mutans and Candida albicans overnight cultures were prepared as stated 

above. Secondary overnight cultures of Streptococcus mutans, Candida albicans and combined 

Streptococcus mutans and Candida albicans were prepared in 20 ml of BHI, YPD and 1:1 BHI-

YPD, respectively. Secondary overnight broth cultures were then diluted to an initial OD600 of 0.01 

(approximately 2.4 x106 viable S. mutans cells and 1.5 x104 viable C. albicans cells per milliliter 

of culture) in 15 ml of fresh 1:1 BHI-YPD broth. GSE was added to a final concentration of 3 mg 

ml-1.  Negative controls consisted of cells diluted in broth media without plant extract. Cultures 

were statically incubated at 37 °C for 9 h and samples were taken at every hour for agar plating. 

Time point samples were serially diluted (1:10) in PBS and radially plated on BHI agar plates. 

Agar plates were incubated overnight at 37 °C to allow for colony formation and plate counts were 

used to quantify cell density and growth. Co-culture S. mutans and C. albicans colonies were 

differentiated microscopically based on colony morphology. YPD and BHI were used for growth 

experiments to avoid bacterial flock formation which occurs when sucrose is present in the media. 
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3.2.9 Streptococcus mutans regrowth assay 

Streptococcus mutans overnight cultures were prepared as stated above and secondary 

overnight cultures were prepared in 20 ml of BHI. Secondary overnight broth cultures were then 

diluted to an initial OD600 of 0.01 (approximately 2.4 x106 viable S. mutans cells per milliliter of 

culture) in 15 ml of fresh 1:1 BHI-YPD broth. GSE was added to the treatment flasks to a final 

concentration of 3 mg ml-1.  Negative controls consisted of cells diluted in broth media without 

plant extract. Cultures were statically incubated at 37 °C for 24 h. After 24 hours, 500 µl of each 

culture were added to a new flask of 15 ml BHI-YPB broth. Regrowth cultures were statically 

incubated at 37°C for 48 hours and samples were taken at t = 0, 8, 24 and 48 hours for agar plating. 

Time point samples were serially diluted (1:10) in PBS and radially plated on BHI agar plates. 

Agar plates were incubated overnight at 37 °C to allow for colony formation and plate counts were 

used to quantify cell density and growth.  

3.2.10 Biofilm killing assay 

Streptococcus mutans, Candida albicans and dual-species biofilms were formed as 

described above. Biofilms were allowed to form at 37 ºC for 24 h.  After incubation, spent media 

was removed and biofilms were washed twice with 150 µl of PBS. Gesho extracts were suspended 

in fresh, sterile media to a final concentration of 7 mg ml-1. Treatments were then diluted to final 

concentrations of 5, 3, 1, 0.5, 0.25 and 0.12 mg ml-1. No vehicles were added to solubilize the 

treatments. 100 µl of each treatment was added to each well of the microtiter plate and incubated 

at 37 °C for an additional 24 h. Negative controls consisted of 100 µl of fresh media without 

extract. After 24 h, planktonic cells and spent media were removed from each well and the biofilms 

were washed twice with 150 µl of PBS. 100 µl of resazurin (10 µg ml-1) or XTT (0.5 mg ml-1) in 

broth media were added to each biofilm. Plates were statically incubated at 37 ºC for 1 h for S. 
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mutans or 3 h for C. albicans and co-cultures. Resazurin fluorescence intensity was measured at 

λex= 570 nm λem= 590 nm using an Enspire fluorescence plate reader (PerkinElmer, USA) while 

XTT was measured at absorbance of 490 nm using a Victor plate reader (PerkinElmer, USA). Data 

were normalized to the untreated control. Experiments were performed in triplicate and the sample 

sizes ranged between 6-12 for treated samples and 14-24 for the untreated controls. 

3.2.11 Streptococcus mutans polysaccharide production 

Eight biofilms were formed for each treatment. Streptococcus mutans biofilms were 

formed as stated above. After 24 h of incubation, planktonic cells and spent media were removed 

from each well and the remaining biofilms were washed twice with 150 µl of PBS. 150 µl of 0.1% 

Direct Yellow 96 in PBS was then added to four biofilm wells and incubated in the dark, at room 

temperature for 30 min. Direct Yellow 96 binds polysaccharides such as beta glucans and was used 

for polysaccharide quantification. After incubation, unbound Direct Yellow 96 was aspirated and 

the biofilms were washed twice with 150 µl PBS. 100 µl of PBS were then added to each well and 

the fluorescence intensity was measured on a Victor plate reader at λex= 405 nm; λem= 535 nm. 

Biofilm cells were scraped from the surface of the remaining four wells and collected into 400 µl 

of PBS. Biofilm cells were then serially diluted (1:10) in PBS and plated on BHI agar. Agar plates 

were incubated at 37 °C for 48 h and plate counts were used to measure cell density. Polysaccharide 

concentrations were calculated by adjusting the fluorescence intensity to the number of cells. 

Experiments were performed in triplicate.  

3.2.12 Statistical analysis 

Statistical analysis was performed using IBM SPSS Statistics 22.0 software and VasserStats: 

website for statistical computation. Non-parametric (Kuskal-Wallis Test and Median Test) or 

parametric (ANOVA and t-tests) analyses were performed based on the characteristics of the data. 
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Comparisons were conducted between control (untreated) and gesho treated samples. Differences 

with a p-value < 0.05 were considered statistically significant. 

3.3 Results and Discussion 

3.3.1 Gesho ethanol extracts inhibit Streptococcus mutans and Candida albicans 

mono-species biofilm formation 

Previously, our laboratory reported the inhibitory effects of gesho extracts on Gram 

positive mono-species biofilm formation (134). In that work, gesho ethanol extracts were found to 

significantly inhibit Streptococcus mutans biofilm formation at 3, 5 and 7 mg ml-1 of treatment 

(134); however, the effects of extract treatment on polymicrobial biofilms or eukaryotic 

microorganisms were not assessed. The aim of this work was to expand on the anti-biofilm 

activities of gesho ethanol extracts and identify possible mechanisms of action. Gesho leaf and 

stem extracts significantly impacted S. mutans and C. albicans mono-species biofilm formation, 

resulting in up to 77 and 75 percent inhibition, respectively (Table 2). Treatment concentrations of 

3, 5, and 7 mg ml-1 of extract on S. mutans caused up to 97 percent inhibition and are reported in 

Campbell et al., 2019. Both extracts were effective; however, the stem extract (GSE) exhibited 

overall greater percentages of inhibition when compared to the leaf extract (GLE) at the same 

treatment concentrations. The effects of treatment on each species were different; S. mutans 

treatments were concentration-dependent while C. albicans treatment efficacies leveled off at 

approximately 50 percent inhibition relative to the untreated control for all concentrations ≥ 0.5 

mg ml-1 GSE. The anti-biofilm activities of gesho were similar to those reported for other plant 

extracts (127, 129, 139, 140). Due to the superior inhibitory activity of GSE on mono-species 

biofilms, we evaluated the impact of GSE on S. mutans and C. albicans dual-species biofilm 

formation. 
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3.3.2 Gesho stem ethanol extract prevents Candida albicans and Streptococcus 

mutans dual-species biofilm formation 

In co-culture, GSE not only impaired the ability of each species to form biofilms 

independently but also disrupted their synergistic relationship. C. albicans and S. mutans co-

cultures were treated with 3 mg ml-1 GSE due to its efficacy in treating S. mutans and C. albicans 

mono-species biofilms (Table 2).  In the untreated controls, co-culture biofilm formation was 

enhanced more than 5-fold compared to mono-species biofilms, indicating a synergistic interaction 

(Figure 11). In contrast, GSE inhibited dual-species biofilm formation by 97 percent relative to the 

untreated control. These observations were similar to the inhibitory effects on C. albicans and S. 

mutans polymicrobial biofilms reported for Rosmarinus officinalis extract, Camellia sinensis-

derived polyphenol 60, eugenol and thiazolidnedione-8 (139, 141).  

3.3.3 Gesho stem ethanol extract inhibits Streptococcus mutans planktonic growth    

We assessed whether GSE was inhibitory to planktonic growth and whether synergistic 

interactions were evident. In the absence of GSE, S. mutans and C. albicans in co-culture exhibited 

similar growth rates as when each species was grown alone, indicating that, in planktonic culture, 

no synergism occurred (Figure 12). This behavior is in contrast to what was observed in co-culture 

biofilms. 3 mg ml-1 GSE did not impact the growth of C. albicans in mono- or co-culture. On the 

other hand, GSE prevented the growth of S. mutans, acting in a bacteriostatic manner (Figure 12). 

After 24 hours of exposure to 3 mg ml-1 GSE, S. mutans was inoculated into fresh media with no 

GSE; there was an increase in cell density from 1.8x103 to 2.7 x108 CFU ml-1 after 48 hours (Table 

3).  
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3.3.4 Gesho extracts impact the metabolic activity of biofilm dwelling cells 

Biofilm dwelling cells are frequently resistant to chemical treatments due to the presence 

of a dense extracellular matrix, metabolically attenuated cells and persister cells (7). GSE was 

effective in reducing the metabolic activity of S. mutans and C. albicans in established mono-

species biofilms (Table 4). After 24 h of growth 3 mg ml-1 GSE was added to wells containing 

growing biofilms; after an additional 24 h, the metabolic activity for S. mutans and C. albicans 

mono-species biofilms were 23 and 55 percent relative to untreated controls, respectively (Table 

4). In contrast, adding 3 mg ml-1 GSE to established S. mutans-C. albicans dual species biofilms 

increased metabolic activity more than 50 percent with respect to untreated controls. These data 

illustrate the strength of the synergism between the two species and demonstrate the challenge of 

treating polymicrobial biofilms.  

3.3.5 Gesho extracts decrease polysaccharide production by Streptococcus mutans 

biofilm cells 

Beta glucans are the major polysaccharide present in S. mutans biofilms and greatly 

impacts mono- and dual-species biofilm formation (142). Plant extracts and pure compounds have 

been found to inhibit S. mutans biofilm formation through preventing beta glucan production (128, 

140); we hypothesized that gesho extracts could act in a similar manner. A fluorescent dye that 

binds to polysaccharides, Direct Yellow 96, was used to assess the effects of the stem ethanol 

extract on polysaccharide concentrations in the S. mutans biofilm matrix. A decrease in 

fluorescence indicated that extract treatments decreased polysaccharide production in a dose 

dependent manner with almost no glucans present at higher treatment concentrations (Figure 13). 

As beta glucans make up a significant proportion of biofilm matrix polysaccharides, these data 

indicated a potential mechanism by which GSE inhibited mono- and dual-species biofilm 
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formation. Beta glucans are synthesized by glucosyltransferase (Gtf) proteins through enzymatic 

conversion of sucrose (142). We hypothesize that compounds in the stem extract inhibit S. mutans 

Gtf glucan production, reducing S. mutans biofilm formation. It follows that the decrease in S. 

mutans and C. albicans dual species biofilm formation is also impacted by the reduction in glucans, 

as both organisms have been shown to use Gtf enzymes and glucans for attachment and biofilm 

enhancement (125, 126, 143). Overall, GSE promises to be a source of compounds that can inhibit 

S. mutans-C. albicans dual species biofilm formation.       

Gesho is used in traditional medicine and our findings support its use as an antimicrobial 

and anti-biofilm agent. The data presented regarding GSE’s efficacy against S. mutans and C. 

albicans biofilm formation and planktonic growth aligns with an earlier report regarding gesho’s 

ability to control S. aureus and B. subtilis biofilms (134).  Campbell et al., 2019 identified two 

pure compounds from gesho leaf extract and together with this work, demonstrate that both the R. 

prinoides leaf and stem are sources of bioactive compounds useful for controlling microbial 

pathogens. The effect of GSE on C. albicans was notable in that it did not negatively impact growth 

but still inhibited biofilm formation.  This combination of traits is indicative of an “anti-

pathogenic” treatment. Anti-pathogenic therapeutics target microbial virulence but are non-

biocidal; this reduces selective pressure resulting in antimicrobial resistance (65). To our 

knowledge, this work was the first to investigate the antimicrobial effects of Rhamnus prinoides 

extracts on Candida albicans or polymicrobial biofilms. To better understand the potential 

applications of gesho and gesho-derived compounds, further work into the chemical compositions 

and mechanisms should be conducted including investigations into Gtf binding and expression. 

Based on the data collected to date, gesho shows promise as a natural product that can be 

incorporated into oral hygiene products. 
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3.4 Figures and Tables 

 

Table 2. Inhibition of biofilm formation by gesho ethanol extracts 

 

 Concentration 

(mg ml-1) 

Percent inhibition2 

Extract S. mutans C. albicans 

GLE1 0.0 

0.2 

0.5 

1.0 

3.0 

5.0 

7.0 

0 ± 1 

13 ± 1* 

14 ± 2* 

26 ± 7* 

Campbell et al., 2019 

Campbell et al., 2019 

Campbell et al., 2019 

0 ± 3* 

52 ± 10* 

47 ± 10* 

51 ± 10* 

59 ± 9** 

46 ± 14* 

51 ± 10* 

GSE1 0.0 

0.2 

0.5 

1.0 

3.0 

5.0 

7.0 

0 ± 3 

33 ± 6* 

67 ± 5* 

77 ± 3* 

Campbell et al., 2019 

Campbell et al., 2019 

Campbell et al., 2019 

0 ± 3 

32 ± 9* 

65 ± 3* 

73 ± 3* 

68 ± 6* 

75 ± 2* 

70 ± 2* 

 

 

 

 

 

** Figure originated from the thesis of Raghda Ayman Ahmed Fathi, 2018, "Rhamnus prinoides 

(gesho) extract inhibits Streptococcus mutans and Candida albicans polymicrobial biofilm 

formation." Georgia State University. https://scholarworks.gsu.edu/biology_theses/82 

 

 

1Leaf ethanol (GLE) and stem ethanol (GSE) treatments 
2Percent inhibition are the mean of treated samples relative 

to the untreated control within the same species ± SEM 

* indicates a significant difference (p< 0.05) between the 

treated sample and the untreated control 
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Figure 11. GSE inhibits Streptococcus mutans and Candida albicans dual species biofilm 

formation. 

C. albicans (CA), S. mutans (SM) and dual species (SM+CA) biofilm formation were assessed 

after treatment with GSE (grey bars). Untreated biofilms acted as negative controls (white bars). 

Inset depicts biofilm formation of GSE treated samples only. All assays were performed in 

triplicate (n= 30). Error bars are standard error of the mean. Letters a, b and c indicate a 

significant difference (p< 0.05) between a treated sample and its corresponding untreated control. 

Asterisks indicate a significant difference among untreated or treated samples. 

 

** Figure originated from the thesis of Raghda Ayman Ahmed Fathi, 2018, "Rhamnus prinoides 

(gesho) extract inhibits Streptococcus mutans and Candida albicans polymicrobial biofilm 

formation." Georgia State University. https://scholarworks.gsu.edu/biology_theses/82 
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Figure 12. GSE arrests Streptococcus mutans growth. 

The planktonic growth of S. mutans (SM) and C. albicans (CA) mono- and co-cultures were 

assessed in the absence or presence of 3 mg/mL GSE. Solid lines represent untreated cultures 

while treated cultures are represented by dashed lines. 

 

 

 

 

 

 

 

 

 

 

B 

A 

Figure 2. GSE arrests Streptococcus mutans growth. The planktonic growth 

of S. mutans (SM) and C. albicans (CA) mono- and co-cultures were assessed in 

the absence or presence of 3 mg/mL GSE. Solid lines represent untreated 

cultures while treated cultures are represented by dashed lines. 
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Table 3. Streptococcus mutans regrowth after GSE removal 

 Cell counts ( x104) 

Time Untreated control 3 mg ml-1 GSE 

0 339 ± 237 0.2 ± 0.2 

8 24523 ± 16140 0.1 ± 0.1 

24 13250 ± 8567 1668 ± 1666 

48 0 ± 0 26500 ± 3500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

Table 4. Metabolic activity of biofilm dwelling cells after exposure to stem ethanol 

extracts 

 

 

 

 

 

Percent biofilm formation are the mean of extract treated samples relative to the untreated 

control for each species± the standard error of the mean (SEM).  

*indicate a significant difference (p< 0.05) between the treated samples 

 

 

 

 

 

 

 

 

 

 

Concentration 

(mg/mL) 

Streptococcus 

mutans 

Candida 

albicans 

S. mutans and 

C. albicans 

0 

0.2 

0.5 

1 

3 

5 

7 

100 ± 1.9 

66 ± 6* 

51 ± 7* 

37 ± 9* 

23 ± 5* 

31 ± 3* 

23 ± 4* 

100 ± 0.9 

73 ± 3* 

67 ± 2* 

60 ± 3* 

56 ± 2* 

53 ± 2* 

54 ± 1* 

100 ± 0.6 

108 ± 4 

121 ± 7* 

131 ± 4* 

145 ± 5* 

152 ± 2* 

164 ± 6* 
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Figure 13. GSE decreases Streptococcus mutans glucan production. 

Glucan concentration in S. mutans biofilms was assessed in the absence or presence of 3 mg/mL 

GSE. All assays were performed in triplicate. Error bars are standard error of the mean. Asterisk 

(*) indicates a significant difference (p< 0.05) between the untreated and treated samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

  

 

 

 

 

* * 

Figure 3. GSE decreases Streptococcus mutans glucan production. Glucan 

concentration in S. mutans biofilms was assessed in the absence or presence of 

3 mg/mL GSE. All assays were performed in triplicate. Error bars are standard 

error of the mean. Asterisk (*) indicates a significant difference (p< 0.05) 

between the untreated and treated samples. 
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4 4-ETHOXYBENZOIC ACID INHIBITS STAPHYLOCOCCUS AUREUS BIOFILM 

FORMATION AND POTENTIATES BIOFILM SENSITIVITY TO VANCOMYCIN  

4.1 Introduction 

Infections involving bacterial biofilms are notoriously difficult to treat due to their enhanced 

antibiotic resistance (7). Eradicating biofilms is further complicated by a global increase in 

antibiotic resistance among pathogens resulting from antibiotic misuse and overuse (144). A 

logical response to these interrelated problems is non-bactericidal therapeutic agents that prevent 

biofilm formation and also increase antibiotic susceptibility; such compounds would extend the 

longevity of currently used antibiotics and reduce selective pressure favoring resistance. These 

compounds are referred to as anti-pathogenic agents. An example of such a compound is 

hamamelitannin, which prevents Staphylococcus aureus biofilm formation and sensitizes it to 

vancomycin (71). Nonetheless, more anti-biofilm compounds with anti-pathogenic features are 

needed to diversify the existing arsenal (65).   

In recent work, we identified two compounds from Rhamnus prinoides, an east African shrub 

used in traditional medicine, that prevented biofilm formation by Gram positive bacteria (134). 

Notably, ethoxy-4-hydroxybenzoic acid (EEB) reduced biofilm formation by Staphylococcus 

aureus by 60 percent with minimal inhibition of growth, a feature associated with anti-pathogenic 

compounds (134). Using EEB as a starting point, in this work, we screened the activity of 

compounds with related structures to identify more potent anti-biofilm compounds with anti-

pathogenic characteristics. This work describes the effects of the compound 4-ethoxybenzoic acid 

(4EB) on S. aureus biofilm formation, antibiotic sensitivity and metabolite production.  
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4.2 Materials and Methods 

4.2.1 Bacterial culture conditions and reagents 

Staphylococcus aureus ATCC 6538 was grown in Luria-Bertani (LB) broth (Becton 

Dickinson and Company, USA). Compounds assessed in this study include: 2- hydroxybenzoic 

acid (salicyclic acid), 3-hydroxybenzoic acid, 4-hydroxybenzoic acid (paraben), 4-

hydroxybenzoic acid methyl ester (methyl paraben), 2,3-dihydroxybenzoic acid (pyrocatechuic 

acid), 2,5-dihydroxybenzoic acid (gentisic acid), 3,4-dihydroxybenzoic acid (protocatechuic acid), 

gallic acid, methyl gallate, ethyl gallate, propyl gallate, 4-ethoxybenzoic acid and ethyl 4-

ethoxybenzoic acid. The following reagents were purchased from Fisher Scientific (USA): crystal 

violet, dimethyl sulfoxide, 4-ethoxybenzoic acid, ethyl gallate, gallic acid, hexadecane, 3-

hydroxybenzoic acid, methyl gallate, potassium chloride, dibasic potassium phosphate, monobasic 

potassium phosphate and sodium chloride. Reagents purchased from Sigma, Aldrich or Sigma-

Aldrich (USA) include: hexadecane, gentisic acid, p-hydroxybenzoic acid, methyl paraben, 

protocatchuic acid, pyrocatechuic acid, resazurin, salicylic acid, fluorescein 5(6)-isothiocyanate 

(FITC) and vancomycin. Bacto agar, yeast extract and tryptone were purchased from BD 

Biosciences (USA). Ethyl 4-ethoxybenzoic acid, 95% ethanol, propyl gallate, and rabbit’s blood 

were purchased from Combi-Blocks (USA), Decon Labs (USA), Nutritional Biochemical 

Corporation (USA) and Hemostat Laboratories (USA). Florescent dyes SYBR Safe, propidium 

iodide, and Direct Yellow 96 were purchased from Invitrogen, Acros Organics and AK Scientific, 

respectively.  

4.2.2 Biofilm formation assay 

Biofilm formation was assessed using a polystyrene 96 well microtiter plate crystal violet 

assay (97). Overnight broth cultures were diluted to an initial OD600 of 0.01 in fresh LB broth and 
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combined with a target compound to obtain a final concentration of 7 mg/ml. Diluted cells (OD600 

= 0.01) were then used to serially dilute the compound to final treatment concentrations of 5, 3, 1, 

0.5 and 0.25 mg/ml. No vehicles were added to solubilize the treatments. Untreated cells served 

as negative controls. One hundred microliters of treated and untreated samples were added to each 

well of a microtiter plate and incubated at 37 °C, 200 rpm for 24 h (98, 99). After 24 h, planktonic 

cells and spent growth media were removed from each well and the plate was washed 3 times in 

sterile water. Biofilms were then dried at room temperature or 37 °C and stained with 150 µl of 

0.1% crystal violet for 15 min at 200 rpm. Excess dye was removed via washing in sterile water 

and the plate was allowed to air dry. Crystal violet was solubilized in 150 µl of 95% ethanol and 

absorbance measurements at 595 nm were taken using an MD SPECTRAmax plate reader 

(Molecular Devices Corporation, USA).  

4.2.3 Resting cell viability assay  

To quantify the viability of stationary phase planktonic cells, a growth agar-based assay 

was conducted. Spent media containing stationary phase planktonic cells were collected from 

microtiter plates after the conclusion of each biofilm formation assay. The collected cells were 

serially diluted (1:10) in PBS and dilutions were radially plated in 10 µl volumes on agar growth 

medium. Agar plates were incubated at 37 °C overnight to allow for colony formation and plate 

counts were used to assess viability. Colony forming units per milliliter of culture (CFU/ml) was 

calculated by dividing the colony counts (C) by the volume added (V) multiplied by the dilution 

factor (D): CFU/ml = C / (V x D). 

4.2.4 Vancomycin MIC assay 

Overnight broth cultures were diluted to an initial OD600 of 0.01 in fresh LB broth and 

combined with vancomycin to a concentration of 1600 µg/ml. Diluted cells (OD600 = 0.01) were 
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then used to serially dilute the vancomycin to final treatment concentrations of 800, 400, 200, 100, 

50, 25, 12.5, 6.3, 3.1, 1.6 and 0.8 µg/ml. Untreated cells served as negative controls. One hundred 

microliters of treated and untreated samples were added to each well of a microtiter plate and 

incubated at 37 °C, 200 rpm for 24 h. Sample turbidities were then measured at an optical density 

600 nm using an MD SPECTRAmax plate reader (Figure 16). The lowest concentration of 

vancomycin to inhibit planktonic growth (1.6 µg/ml) was used for subsequent growth curve assays 

(Figure 16). 

4.2.5 Staphylococcus aureus growth curve 

Overnight broth cultures were diluted to an initial OD600 of 0.01 in fresh LB broth and 

combined with 4-ethoxybenzoic acid (0.2 or 0.4 mg/ml), methyl gallate (0.2 or 0.4 mg/ml) or 

methyl paraben (0.8 mg/ml). Two milliliters of each treatment was added to 19 culture tubes and 

the samples were incubated for 24 h at 37 °C with shaking at 200 rpm. One culture tube from each 

sample was removed every hour and optical density measurements at 600 nm were taken. Time 

points were taken every hour for 9 hours. Final measurements were taken at 24 h the following 

day. Untreated samples and samples containing 1.6 µg/ml vancomycin served as negative and 

positive controls, respectively. Specific growth rates were calculated based on measurements made 

during the first four hours.  

4.2.6 Resazurin standard curve 

Overnight broth cultures of Staphylococcus aureus were diluted to an OD600 of 0.01 in 

fresh LB broth and incubated at 37°C, 200 rpm for 3 hr. After incubation, the optical density of 

the culture was measured and the culture was then diluted to an OD600 of 1.0; this culture was then 

diluted to optical densities (600 nm) of 0.5, 0.25, 0.12, 0.06, 0.03, 0.01, 0.008, 0.004 and 0.002. 

Cellular respiration was measured by adding 50 µl of each dilution to a 96 well plate followed by 
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the addition of 50 µl of 20 µg/ml resazurin solution, prepared in LB broth. Resazurin is a blue, 

non-fluorescent oxidation-reduction indicator that is converted to the pink fluorescent intermediate 

resorufin upon reduction. The 96 well plate was statically incubated for 3 hr at 37 °C. During 

incubation, fluorescence intensity was measured at λex= 570 nm λem= 590 nm every 6 minutes 

using an Enspire fluorescence plate reader (PerkinElmer, USA); these measurements were used to 

identify the time at which maximum fluorescence was achieved. Cell concentrations (CFU/ml) 

that correspond with resazurin samples were quantified using serial dilutions followed by plate 

counts. Samples were serially diluted (1:10) in PBS and dilutions were radially plated in 10 µl 

volumes on growth medium. Agar plates were incubated at 37 °C for 24 hours to allow for colony 

formation. 

4.2.7 Vancomycin MBC assay 

Staphylococcus aureus biofilms were formed as described above. Staphylococcus aureus 

biofilms were grown in LB broth. Overnight broth cultures were diluted to an initial OD600 of 

0.01 in fresh media and 100 µl of culture was added to each well of a 96 well polystyrene 

microtiter plate; biofilms were allowed to form at 37 ºC for 24 hrs.  After incubation, spent 

media were removed and biofilms were washed twice with 150 µl of PBS. Vancomycin was 

suspended in LB broth to a final concentration of 1600 µg/ml. Treatments were then serially 

diluted to obtain concentrations of 800, 400, 200, 100, 50, 25, 12.5, 6.3, 3.1, 1.6 and 0.8 µg/ml. 

Negative controls consisted of 100 µl of fresh LB without vancomycin. One hundred microliters 

of each treatment were added to each microtiter plate biofilm and incubated at 37 °C for 24 h. 

After 24 h, planktonic cells and spent growth media were removed from each well and the 

biofilms were washed twice with 150 µl of PBS. One hundred microliters of 10 µg/ml resazurin 

in LB were added to each biofilm and the plate was statically incubated at 37 ºC for 3 hrs. 
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During incubation, fluorescence intensity was measured at λex= 570 nm λem= 590 nm every 6 

minutes using an Enspire fluorescence plate reader (PerkinElmer, USA). Data were normalized 

to the emission reading at t = 0 and the rates of resazurin conversion to resorufin were calculated 

to identify the time at which maximum fluorescence was achieved. The number of viable biofilm 

cells were estimated using a resazurin standard curve that correlated bacterial cell density with 

the time required to reach maximum fluorescence intensity (Figure 18 and Table 8). 

4.2.8 Staphylococcus aureus biofilm killing assay  

Staphylococcus aureus biofilms were formed as described above. Staphylococcus aureus 

biofilms were grown in LB broth. Overnight broth cultures were diluted to an initial OD600 of 0.01 

in fresh media and 100 µl of culture was added to each well of a 96 well polystyrene microtiter 

plate; biofilms were allowed to form at 37 ºC for 24 hrs.  After incubation, spent media were 

removed and biofilms were washed twice with 150 µl of PBS. Methyl gallate or 4-ethoxybenzoic 

acid were suspended in LB broth to a final concentration of 7 mg/ml. Treatments were then serially 

diluted to obtain concentrations of 3.5, 1.7, 0.8, 0.4, 0.2 and 0.1 mg/ml. Vancomycin treatments 

were diluted to a final concentration of 3.1 µg/ml. No vehicles were added to solubilize the 

treatments. Negative controls consisted of 100 µl of fresh LB without compound or antibiotic. One 

hundred microliters of each treatment were added to each well of a microtiter plate and incubated 

at 37 °C, 200 rpm for 24 h. After 24 h, planktonic cells and spent growth media were removed 

from each well and the biofilms were washed twice with 150 µl of PBS. One hundred microliters 

of 10 µg/ml resazurin in LB was added to each biofilm and the plate was statically incubated at 37 

ºC for 3 hrs. During incubation, fluorescence intensity was measured at λex= 570 nm λem= 590 nm 

every 6 minutes using an Enspire fluorescence plate reader (PerkinElmer, USA). Data were 

normalized to the emission reading at t = 0 and the rates of resazurin conversion to resorufin were 
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calculated to identify the time at which maximum fluorescence occurred. The number of viable 

biofilm cells were estimated by using a standard curve that correlated the rate of resazurin 

reduction (time to maximum fluorescence) with cell number per ml (Figure 18).  

4.2.9 Staphylococcus aureus hemolysis assay 

Hemolysis activity was assessed according to Lee, et al, 2014 with a few modifications 

(61). Overnight Staphylococcus aureus broth cultures were diluted to an initial OD600 of 0.01 in 

fresh LB containing 4-ethoxybenzoic acid at 0.2 or 0.4 mg/ml. Cultures were then incubated for 

24 h at 37 °C with shaking at 200 rpm. One milliliter of each sample was transferred to 1.5 ml 

microfuge tubes and centrifuged at 10,000 rcf for 2 minutes. One hundred microliters of 

supernatant was added to 900 µl of 4% rabbit’s blood (previously washed twice with 1X PBS via 

centrifugation at 800 rcf for 2 min). Hemolysis samples were incubated for 1 h at 37 °C, shaking 

at 200 rpm. PBS and 10% SDS treated samples served as negative and positive controls, 

respectively. Samples were then centrifuged at 2,000 x g for 5 min to pellet any intact blood cells. 

One hundred microliters of each supernatant were added to a 96 well microtiter plate and 

absorbance measurements at 450 nm were taken using an MD SPECTRAmax plate reader 

(Molecular Devices Corporation, USA). 

4.2.10 Hydrophobicity test (Microbial Adherence to Hydrocarbon Test) 

Hydrophobicity analysis was conducted according to Ciccio, et al., 2015 with a few 

modifications (145). Three milliliters of Staphylococcus aureus cultures were grown in the 

presence of 4-ethoxybenzoic acid (0.2 or 0.4 mg/ml) for 24 h at 37 °C with shaking at 200 rpm. 

Cultures were diluted to an OD600 of 0.6 and washed with 1 ml PBS. Five milliliters of the 

inoculum were produced, 1 ml was removed for plating on growth agar and 1 ml of hexadecane 

was applied to the air-liquid interface or the remaining 4 ml. Hexadecane samples were vortexed 
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for 1 min and the phases allowed to separate for 15 minutes at room temperature. One milliliter of 

the aqueous layer was removed and plated on growth agar. Agar plates were incubated at 37 °C 

overnight and plate counts were conducted the following day. Results were interpreted as the 

percent of cells present in the aqueous layer prior to (A0) and after (A1) the addition of hexadecane 

[(A0-A1)/A0]*100.  

4.2.11 Membrane integrity assay 

Membrane integrity assays were conducted according to Brackman et al, 2016 with a few 

modifications (71). Overnight broth cultures of S. aureus were washed and diluted to an initial 

optical density (600 nm) of 1.0 in PBS. A 7 mg/ml stock solution of 4-ethoxybenzoic acid was 

prepared in diluted cells (OD600 = 1.0); the stock was then diluted to final treatment concentrations 

of 0.4 and 0.2 mg/ml in diluted cells (OD600 = 1.0). Two milliliters of each treatment were added 

to sterile polystyrene culture tubes and incubate at 37 °C, 200 rpm for 24 hrs. Untreated cells and 

heat-treated cells were used as the negative and positive control, respectively. Heat-treated cells 

were prepared by incubating 500 µl of diluted cells (OD600 = 1.0) in a 98 °C water path for 10 

minutes. Fifty microliters of each sample was added to a 96 well plate followed by the addition of 

50 µl of 10 µg/ml propidium iodide. 96 well plates were incubated in the dark for 15 minutes then 

read on an Enspire plate reader at λex= 535 nm; λem= 617 nm. 

4.2.12 Crystal violet standard curve 

Staphylococcus aureus biofilms were formed as stated above. Overnight broth cultures 

were diluted to an initial OD600 of 0.01 and treated with 4EB at final concentrations of 0.1, 0.2, 

0.4, 0.8, 1.6 and 3.5 mg/ml. One hundred microliters of treated cells were added to each well of a 

microtiter plate and incubated at 37 °C, 200 rpm for 24 h. Five biofilms were tested for each 

treatment concentration. After 24 h of incubation, planktonic cells and spent media were removed 
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from each well and the remaining biofilms were washed twice with 150 µl of PBS. One hundred 

microliters of PBS was added to two biofilm wells for each treatment and a sterile pipet tip was 

used to detach the biofilms from the wells.  Detached cells were then serially diluted (1:10) in PBS 

and dilutions were radially plated in 10 µl volumes on growth medium. Agar plates were incubated 

at 37 °C for 24 hours to allow for colony formation prior to conducting plate counts. Biofilms in 

the remaining 3 wells were stained with crystal violet as detailed above. A standard curve that 

correlated biofilm cell density (crystal violet absorbance) to S. aureus cell number (CFU/ml) was 

prepared and was subsequently used to normalize the measurements of proteins, polysaccharides 

and eDNA present in the biofilm EPS (Figure 20). 

4.2.13 Staphylococcus aureus extracellular polysaccharide production 

Staphylococcus aureus biofilms were formed as stated above. Overnight broth cultures 

were diluted to an initial OD600 of 0.01 and treated with 4EB at final concentrations of 0.2, 0.4 and 

0.8 mg/ml. One hundred microliters of treated cells were added to each well of a microtiter plate 

and incubated at 37 °C for 24 h. Six biofilms were tested for each treatment concentration. After 

24 h of incubation, planktonic cells and spent media were removed from each well and the 

remaining biofilms were washed twice with 150 µl of PBS. One hundred-fifty microliters of 0.1% 

Direct Yellow 96, a fluorescent polysaccharide-binding dye, in PBS were then added to 3 biofilm 

wells and incubated in the dark, at room temperature for 30 min. After incubation, unbound Direct 

Yellow 96 was aspirated and the biofilms were washed twice with 150 µl PBS. One hundred 

microliters of PBS was then added to each well and the fluorescence intensity was measured on a 

Victor V3 plate reader at λex= 405 nm; λem= 535 nm (PerkinElmer, USA). Biofilms in the remaining 

3 wells were stained with crystal violet as detailed above and the biofilm cell density was 

determined. For each sample, relative polysaccharide production was calculated by dividing the 
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measured fluorescence intensity by the corresponding number of biofilm cells. All experiments 

were performed in triplicate.  

4.2.14  Staphylococcus aureus extracellular DNA production 

SYBR Safe (Invitrogen, USA) is a fluorescent nucleic acid stain and was used to quantify 

biofilm extracellular DNA (eDNA). Twelve biofilms were formed for each treatment. 

Staphylococcus aureus biofilms were formed as described above with the addition of SYBR Safe 

to the growth medium (final concentration = 1X). After 24 h of incubation, planktonic cells and 

spent media were removed from each well and the remaining biofilms were washed twice with 

150 µl of PBS. One hundred-fifty microliters of PBS was then added to each well and the 

fluorescence intensity from the biofilm-associated cells was measured on a Victor plate reader at 

λex= 490 nm; λem= 535 nm. Biofilms in the remaining 3 wells were stained with crystal violet as 

detailed above and biofilm cell density was calculated using a standard curve. For each sample, 

relative eDNA production was calculated by dividing the measured fluorescence intensity by the 

corresponding number of biofilm cells. Seven replicates of each condition were performed. 

4.2.15 Staphylococcus aureus extracellular protein production 

Protein quantification assays were conducted according to Stiefel et al, 2016 with a few 

modifications (146). Staphylococcus aureus biofilms were formed as described above. Nine 

replicate biofilms were formed for each treatment. Overnight broth cultures were diluted to an 

initial OD600 of 0.01 and treated with 4EB at final concentrations of 0.2, 0.4 and 0.8 mg/ml. One 

hundred microliters of sample were added to wells of a microtiter plate and incubated at 37 °C for 

24 h. After 24 h of incubation, planktonic cells and spent media were removed from each well and 

the remaining biofilms were washed twice with 150 µl of PBS. One hundred-fifty microliters of 

20 µg/ml fluorescein 5(6)-isothiocyanate (FITC) in water was then added to 5 biofilm wells and 
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incubated in the dark, at room temperature for 30 min. FITC binds proteins and was used to 

quantify proteins in the biofilm matrix. After incubation, unbound FITC solution was aspirated 

and the biofilms were washed twice with 150 µl of a 0.9 percent sodium chloride solution. One 

hundred microliters of water were then added to each well and the fluorescence intensity was 

measured on a Victor plate reader at λex= 485 nm; λem= 535 nm. Biofilms in the remaining 4 wells 

were stained with crystal violet as detailed above and biofilm cell density was estimated using a 

standard curve. For each sample, relative protein production was calculated by dividing the 

measured fluorescence intensity by the corresponding number of biofilm cells. Four replicates of 

each condition were performed.  

4.2.16  Statistical analysis  

Statistical analysis was performed using IBM SPSS Statistics 22.0 software. Non-

parametric (Tukey’s test and Independent samples median test) or parametric (t-test) analyses of 

variance were conducted based on the characteristics of the data. One-Way ANOVA and t-test 

analyses were conducted using VasserStats: Website for Statistical Computation at vasserstats.net. 

Comparisons were conducted between the compound-treated samples and the untreated control. 

Differences with a p-value < 0.05 were considered significant and are designated with an asterisk 

(*). 

4.3 Results 

4.3.1 4-ethoxybenzoic acid, methyl gallate and methyl paraben exhibit anti-

pathogenic anti-biofilm activity  

In previous work, ethyl 4-ethoxybenzoic acid (EEB) inhibited Staphylococcus aureus 

biofilm formation with minimal impact on planktonic growth (134). In an effort to identify 

compounds with greater anti-pathogenic anti-biofilm activity, structurally related compounds to 
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EEB were screened using two parameters (Figure 14). First, we measured the “BP50”, the 

concentration of compound required to inhibit biofilm formation by 50 percent relative to an 

untreated control biofilm. Second, we measured the “LC50”, the concentration of compound 

required to reduce the growth of planktonic cells by 50 percent relative to an untreated control 

sample. The two parameters were graphed on an x-y plot such that the anti-biofilm character 

(BP50) of each compound was presented on the x-axis and the planktonic growth toxicity (LC50) 

was presented on the y-axis (Figure 15). Examination of the graph indicated that the compounds 

clustered in three general categories: low potency (BP50 ≥ 7.5 mM; LC50≥ 15 mM), biocidal 

(LC50 ≤ 15 mM) or anti-pathogenic (BP50 ≤ 7.5; LC50 ≥ 15) based on their BP50 and LC50 

values (Figure 15A, Table 5-6). Molarity was used in this analysis to allow for direct comparisons 

of compound activity; BP50 and LC50 concentrations (molarity and w/v) for each compound are 

provided in Table 6. 

3-hydroxybenzoic acid, paraben, pyrocatechuic acid, gentisic acid, protocatechuic acid, 

ethyl gallate and propyl gallate all possessed LC50 values less than 15 mM and thus were all 

categorized as biocidal regardless of their BP50 (Figure 15A). Low potency compounds included 

gallic acid, salicylic acid and EEB. BP50 and LC50 values for EEB were 104 mM and 818 mM 

respectively (note that EEB could not be seen on the graph with the other compounds). 4-

ethoxybenzoic acid (4EB), methyl gallate and methyl paraben were categorized as anti-pathogenic 

(Figure 15A). The range of possible anti-pathogenic concentrations of 4EB and methyl gallate 

were between 0.1 and 0.8 mg/ml (0.5 mM and 5 mM); for methyl paraben, these concentrations 

were between 0.4 and 1.7 mg/ml (2 mM and 11 mM) (Figure 15B-D). Treatment concentrations 

that inhibited at least 40 percent biofilm formation without inhibiting growth were selected for 

subsequent investigations (Figure 15B-D).   
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4.3.2 4-ethoxybenzoic acid, methyl gallate and methyl paraben attenuate the growth 

of Staphylococcus aureus 

The existence of concentrations of 4EB, methyl gallate and methyl paraben with no 

negative impact on planktonic growth after 24 hours of treatment (Figure 15B-D) led us to 

investigate the impacts of these compounds on the S. aureus log phase growth rate (Table 7 and 

Figure 17). Staphylococcus aureus cells were exposed to 0.2 and 0.4 mg/ml 4EB, 0.2 and 0.4 

mg/ml methyl gallate or 0.8 mg/ml methyl paraben; these concentrations were found to exhibit 

anti-pathogenic inhibition of biofilm formation (Figure 15B-D). At the tested concentrations, 

growth was attenuated by no more than 50 percent relative to untreated cells (Table 7). Treatments 

with 0.2 mg/ml 4EB showed the least effect on growth, which was attenuated by 12 percent, 

followed by 0.8 mg/ml methyl paraben and 0.2 mg/ml methyl gallate, which decreased the growth 

rate by 25 and 30 percent, respectively. Higher concentrations of 4EB and methyl gallate enhanced 

the negative impacts on growth to approximately 46 percent attenuation for both compounds. Due 

to the high concentrations of methyl paraben required to observe an anti-pathogenic phenotype, 

further work was not continued with this compound.  

4.3.3 4-ethoxybenzoic acid and methyl gallate enhance the anti-biofilm activity of 

vancomycin 

Anti-pathogenic, anti-biofilm compounds like hamamelitannin have been found to 

potentiate the activity of vancomycin against biofilm-dwelling cells (71, 147). To determine 

whether 4EB or methyl gallate also had this activity, resazurin viability assays were used to 

quantify the number of live cells in an established S. aureus biofilm after 24 hours of treatment 

with 4EB or methyl gallate alone or in combination with 3.1 μg/ml vancomycin (Table 9). MBEC 

assays were conducted to identify the concentration of vancomycin required to significantly reduce 
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biofilm biomass without eradicating all biofilm cells (Table 8).  Treatment with 3.1 μg/ml 

vancomycin alone killed 85 percent of biofilm cells compared to untreated control biofilms. 

Treatments with only 4EB or methyl gallate resulted in no more than 16 percent reduction in 

viability compared to the untreated control. Combining 3.1 μg/ml vancomycin with 4EB at 

concentrations ≥ 0.1 mg/ml reduced biofilm cell viability by an additional 44 to 85 percent 

compared to the vancomycin-only treated samples, indicating that 4EB potentiated vancomycin 

activity (Table 9). In contrast, methyl gallate in combination with vancomycin did not reduce 

biofilm cell viability compared to vancomycin alone. Given the lack of antibiotic potentiation, 

methyl gallate was excluded from further experiments. 

4.3.4 4-ethoxybenzoic acid alters Staphylococcus aureus hydrophobicity and EPS 

production  

The physiological impacts of 4EB on S. aureus were assessed by measuring its effects on 

membrane integrity, hydrophobicity, hemolysis activity and EPS production. Treatment with 0.4 

mg/ml 4EB significantly decreased the percentage of hydrophobic planktonic S. aureus cells 

relative to the untreated and 0.2 mg/ml treated samples (Figure 19). The percent of hydrophobic 

cells decreased from 78 to 49 percent. In addition to the effect on hydrophobicity, 4EB treatments 

impacted the relative amount of extracellular polysaccharides and proteins in the biofilm matrix 

(Figure 21A-B). Treatments of 0.4 and 0.8 mg/ml 4EB significantly enhanced relative extracellular 

polysaccharide production up to 9-fold while the effect on extracellular protein production was 

more modest with a 1-fold increase. Relative extracellular polysaccharide production steadily 

increased as biofilm formation decreased. The impact of treatment on eDNA was the opposite; the 

amount of eDNA produced decreased as biofilm formation decreased (Figure 21C). No change in 

S. aureus membrane integrity or hemolysis activity were observed upon treatment (Figure 22-23). 
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4.4 Discussion 

 An increased prevalence of antibiotic resistance threatens to leave humanity with limited 

resources to combat microbial infections. Anti-pathogenic anti-biofilm compounds such as 4EB 

can potentially contribute to controlling this problem. To our knowledge, this work is the first to 

describe the anti-biofilm and antibiotic sensitization effects as well as anti-pathogenic character of 

4EB. This information expands the functionality of 4EB, whose use has previously been associated 

with chemical synthesis or monooxygenase activation (148–150). We think that the BP50/LC50 

method described herein to characterize the activity of 4EB is a novel and effective way to 

recognize anti-pathogenic anti-biofilm compounds. Additionally, this work establishes the 

previously unreported anti-biofilm activities of 3-hydroxybenzoic acid and gentisic acid and 

supports prior findings for protocatechuic acid, salicylic acid, and gallic acid (72, 151–157).  

A structure-activity analysis of compounds related to EEB shed light on the contribution 

of specific molecular components to anti-biofilm activity. By comparing the BP50/LC50 profiles 

of 2-, 3- and 4-hydroxybenzoic acids, it was evident that a hydroxyl group in the ortho position 

significantly reduced both the anti-biofilm and antimicrobial activity. Alkylating the carboxyl 

group of 4-hydroxybenzoic acid to yield methyl paraben slightly reduced the antimicrobial effect 

but substantially increased the anti-biofilm activity. The antimicrobial activity of 4-

hydroxybenzoic acid has been proposed to result from its effect on membrane stability and 

transport processes (72, 151, 158, 159). Although the specific reason remains to be determined, 

methylation enhanced anti-biofilm activity. This finding is significant because methyl paraben is 

widely used in food products and is the subject of controversy related to mammalian toxicity 

resulting from chronic exposure (158, 160). 
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A comparison of di- and trihydroxybenzoic acids indicated that the position of the hydroxyl 

groups impacted anti-biofilm activity. Notably, adding a second hydroxyl group at the 3- position 

to 4-hydroxybenzoic acid (yielding protocatechuic acid) significantly reduced the anti-biofilm 

activity. A third hydroxyl group at the 2- position (gallic acid) substantially reduced both the anti-

microbial and anti-biofilm activity compared to protocatechuic acid. However, methylating the 

carboxyl group of gallic acid to form methyl gallate greatly increased the anti-biofilm activity; 

lengthening of the alkyl moiety (e.g. ethyl gallate and propyl gallate) increased biocidal activity. 

Several mechanisms of antimicrobial activity are known for the alkyl gallates including disruption 

of: membrane stability, polysaccharide production and oxidative phosphorylation (155, 161–163).  

 When elucidating the mechanism of activity of 4EB and structurally related compounds 

against S. aureus biofilm formation, two broad hypotheses must be considered. First, 4EB may 

inhibit biofilm formation through a physicochemical mechanism. In support of this hypothesis, 

4EB reduced the hydrophobicity of S. aureus, which in turn could reduce adhesion and surface 

colonization to negatively charged surfaces such as polystyrene, which was used in the screening 

assay. Charge interactions are known to be a factor in early stage biofilm formation; disruption of 

these interactions negatively impacts biofilm initiation (1, 164). A common feature of the three 

compounds categorized as “anti-pathogenic” in this work (4EB, methyl gallate, methyl paraben) 

was the 4-hydroxybenzoic acid central structure and a single methyl or ethyl moiety on the 

molecule. We hypothesize that the methyl or ethyl group increases the association of the molecules 

with the hydrophobic S. aureus membrane while the negatively charged region of the molecules 

interferes with surface association.  

Second, 4EB may reduce biofilm formation by influencing the transcription of requisite 

genes. Hamamelitannin (HAM), an anti-pathogenic compound with structural similarity to both 



71 

4EB and methyl gallate, has been reported to prevent S. aureus biofilm formation by altering the 

transcription of quorum sensing and stress response genes via the controversial TRAP 

transcriptional regulator (71, 165). Additionally, the structurally similar molecule gallic acid has 

been reported to act against S. aureus biofilm formation via the ica operon (155). These reports 

suggest that 4EB may also impact biofilm formation on a genetic level. In our work, 4EB was 

found to affect EPS production by S. aureus, increasing both extracellular polysaccharide and 

protein production; this could be the result of alterations in the expression of genes such as ica, 

atl, bap and dltA (151, 166). This physiological change appears to be contradictory to the overall 

anti-biofilm activity of 4EB. However, the increase in EPS production was only evident at high 

4EB concentrations when the corresponding biofilm biomass was low, leading us to hypothesize 

that the increase was a response to stress (20, 167). In general, several plausible mechanisms exist 

by which 4EB can reduce S. aureus biofilm formation. 

 Another feature of 4EB is that it synergized the activity of vancomycin against S. aureus 

biofilm-dwelling cells. In contrast, methyl gallate did not affect vancomycin activity, indicating 

that the interaction between 4EB and vancomycin was not simply due to the presence of a 

secondary compound but rather a characteristic of 4EB. HAM was found to increase vancomycin 

sensitivity by thinning the peptidoglycan cell wall of S. aureus (71). The mechanism by which 

4EB enhanced vancomycin sensitivity is presently unknown, however the effects of HAM on cell 

wall synthesis may act as a lead. 

 This work provides initial data on the anti-pathogenic and anti-biofilm activities of 4EB; 

however, additional effort is required to elucidate the full scope, applications and mechanisms of 

activity of this compound. The experiments reported here were conducted using a single, 

vancomycin-susceptible strain of S. aureus; to better understand the potential of 4EB as an anti-
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biofilm agent, investigations using other S. aureus strains and microbial species are necessary, 

including antibiotic resistant strains. Experiments are also required to determine whether 4EB can 

sensitize pathogens to additional antibiotics beside vancomycin. Phenotypic analyses to elucidate 

the mechanism of 4EB activity revealed impacts on cell hydrophobicity and extracellular 

polysaccharide production. Molecular analyses, including transcriptomics and mutagenesis, will 

help identify and verify the various targets of 4EB.   Overall, the anti-pathogenic and anti-biofilm 

activity of 4EB, along with its ability to potentiate vancomycin sensitivity, warrant its 

consideration as a therapeutic adjuvant to conventional S. aureus biofilm treatments. 
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4.5 Figures and Tables 

 

 

Figure 14. EEB-related compounds tested in this work 

All compounds were structurally similar to the gesho-derived compound ethyl 4-ethoxybenzoic 

acid (EEB). Compounds were selected to investigate the effect of functional group location on 

anti-biofilm activity. 
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Figure 15. Effects of EEB-related compounds on Staphylococcus aureus biofilm formation and 

viability. 

Data points represent the compound concentrations that resulted in half the maximum biofilm 

formation (BP50) and half the maximum planktonic growth (LC50). Compounds were 

characterized as anti-pathogenic, bactericidal or low potency (A). Anti-pathogenic 

concentrations of methyl gallate (B), 4-ethoxybenzoic acid (C) and methyl paraben (D) are 

indicated by arrow heads (B-D). The inoculum cell density is represented by the red dotted line. 
Error bars indicate standard deviation.  
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Table 5. Effect of phenolic acids on Staphylococcus aureus biofilm formation and 

stationary-phase cell viability 

 
 Concentration Biofilm Stationary 

phase cells 

 mg/mL mM % formation1 % inhibition2 
Log CFU/mL 

Untreated control 0.0 0.0 100 ± 18.3 (68) 0 8.9 ± 1.0 (5) 

Salicylic acid 7.0 

3.5 

1.7 

0.8 

0.4 

50.7 

25.3# 

12.3 

5.8 

2.9 

20.7 ±13.5 (17) 

70.4 ± 28.2 (16) 

137.4 ± 39.0 (16) 

146.6 ± 59.0 (16) 

132.2 ± 30.0 (17) 

79 

30 

0 

0 

0 

6.8 ± 0.2 (3) 

8.2 ± 0.5 (3) 

9.0 ± 0.3 (3) 

9.5 ± 0.0 (1) 

- 

3-hydroxybenzoic 

acid 

3.5 

1.7 

0.8 

0.4 

25.3 

12.3 

5.8 

2.9 

2.9 ± 3.1 (16) 

4.7 ± 7.2 (16) 

111.2 ± 42.3 (16) 

173.1 ± 42.9 (16) 

97 

95 

0 

0 

0.0 ± 0.0 (2)^ 

5.3 ± 1.0 (2)^ 

8.4 ± 0.1 (2) 

- 

p-hydroxybenzoic 

acid 

7.0 

3.5 

1.7 

0.8 

0.4 

0.2 

0.1 

50.7 

25.3 

12.3 

5.8# 

2.9 

1.4 

0.7 

2.0 ± 0.2 (4) 

2.3 ± 0.9 (13) 

1.3 ± 0.9 (17) 

43.4 ± 34.0 (17) 

145.1 ± 37.1 (17) 

119.0 ± 19.6 (17) 

107.5 ± 25.4 (10) 

98 

98 

99 

57 

0 

0 

0 

- 

1.9 ± 3.3 (3)^ 

2.8 ± 2.4 (3)^ 

7.4 ± 1.1 (3) 

8.8 ± 0.2 (3) 

- 

- 

p-hydroxybenzoic 

acid methyl ester 

7.0 

3.5 

1.7 

0.8 

0.4 

0.2 

0.1 

46.0 

23 

11.2# 

5.3# 

2.6# 

1.3# 

0.7 

3.0 ± 4.8 (15) 

1.4 ± 1.2 (18) 

12.0 ± 8.9 (21) 

46.1 ± 15.1 (21) 

66.9 ± 18.1 (22) 

93.3 ± 24.3 (22) 

94.9 ± 3.3 (4) 

97 

99 

88 

54 

33 

7 

5 

- 

4.0 ± 0.7 (2)^ 

7.8 ± 0.7 (5) 

8.8 ± 0.3 (5) 

9.0 ± 0.2 (4) 

9.1 ± 0.4 (2) 

- 

Pyrocatechuic acid 3.5 

1.7 

0.8 

0.4 

22.7 

11.0 

5.2 

2.6 

4.2 ± 2.7 (12) 

3.9 ± 2.0 (12) 

30.5 ± 25.6 (12) 

160.2 ± 19.4 (12) 

96 

96 

70 

0 

0.0 ± 0.0 (2)^ 

0.0 ± 0.0 (2)^ 

6.1 ± 0.7 (2)^ 

8.8 ± 0.0 (2) 

Gentisic acid 3.5 

1.7 

0.8 

0.4 

22.7 

11.0 

5.2 

2.6 

6.8 ± 9.7 (12) 

4.2 ± 7.5 (15) 

151.9 ± 73.1 (15) 

104.7 ± 27.9 (15) 

93 

96 

0 

0 

1.3 ± 1.8 (2)^ 

0.0 ± 0.0 (2)^ 

8.7 ± 0.2 (2) 

9.3 ± 0.3 (2) 

Protocatechuic acid 3.5 

1.7 

0.8 

0.4 

0.2 

22.7 

11.0 

5.2 

2.6 

1.3 

5.3 ± 10.7 (12) 

47.5 ± 32.8 (12) 

124.8 ± 49.4 (15) 

97.1 ± 22.1 (15) 

112.7 ± 14.7 (9) 

95 

53 

0 

3 

0 

0.0 ± 0.0 (2)^ 

6.0 ± 0.9 (2)^ 

8.9 ± 0.2 (2) 

- 

- 
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Table 5 continued.  

 Concentration Biofilm Stationary 

phase cells 

 mg/mL mM % formation1 % inhibition2 Log CFU/mL 

Untreated control 0.0 0.0 100 ± 18.3 (68) 0 8.9 ± 1.0 (5) 

Gallic acid 3.5 

1.7 

0.8 

0.4 

20.6 

10.0# 

4.7 

2.3 

25.5 ± 6.0 (16) 

102.3 ± 78.5 (16) 

168.7 ± 31.4 (16) 

173.3 ± 36.9 (16) 

75 

0 

0 

0 

4.1 ± 0.2 (3)^ 

8.3 ± 0.7 (3) 

8.8 ± 0.1 (3) 

- 

Methyl gallate 3.5 

1.7 

0.8 

0.4 

0.2 

0.1 

19.0 

9.2# 

4.3# 

2.2# 

1.1# 

0.5# 

14.4 ± 7.0 (16) 

23.1 ± 9.6 (16) 

39.9 ± 28.7 (16) 

38.4 ± 23.7 (16) 

42.9 ± 19.0 (12) 

50.6 ± 27.8 (6) 

86 

77 

60 

62 

57 

49 

- 

6.8 ± 0.4 (2) 

7.5 ± 0.3 (4) 

7.5 ± 0.4 (4) 

8.2 ± 0.2 (4) 

8.8 ± 0.2 (4) 

Ethyl gallate 3.5 

1.7 

0.8 

0.4 

0.2 

17.7 

8.6 

4.0 

2.0 

1.0 

15.4 ± 5.6 (16) 

24.9 ± 9.5 (16) 

100.7 ± 81.2 (16) 

75.5 ± 55.2 (16) 

108.3 ± 86.1 (12) 

85 

75 

0 

25 

0 

- 

5.4 ± 0.0 (1)^ 

6.0 ± 0.5 (3)^ 

6.7 ± 0.3 (3) 

7.6 ± 0.2 (3) 

Propyl gallate 3.5 

1.7 

0.8 

0.4 

0.2 

16.5 

8.0 

3.8 

1.9 

0.9 

17.7 ± 6.9 (12) 

22.4 ± 24.7 (12) 

23.2 ± 12.0 (15) 

69.3 ± 58.7 (15) 

146.4 ± 66.0 (12) 

82 

78 

77 

31 

0 

- 

5.6 ± 0.7 (2)^ 

6.2 ± 0.6 (3)^ 

6.9 ± 0.4 (3) 

7.4 ± 0.1 (3) 

4-ethoxybenzoic acid 7.0 

3.5 

1.7 

0.8 

0.4 

0.2 

0.1 

37.3 

21.1 

10.2 

4.8# 

2.4# 

1.2# 

0.6# 

2.5 ± 5.7 (3) 

6.2 ± 12.2 (16) 

11.1 ± 10.6 (16) 

12.1 ± 6.9 (16) 

22.3 ± 11.7 (16) 

62.6 ± 14.0 (12) 

88.5 ± 5.7 (6) 

97 

94 

89 

88 

78 

37 

11 

- 

6.8 ± 0.5 (3) 

6.6 ± 0.4 (3) 

7.8 ± 1.1 (3) 

9.2 ± 0.2 (3) 

9.4 ± 0.2 (3) 

9.5 ± 0.1 (3) 
1Percent biofilm formation are the mean relative to the untreated control ± the standard deviation 

(SD). Parenthetical values are the sample size (n).  
2Percent biofilm inhibition is the difference between the untreated control and the treatment 

^ indicates plate counts below that of the inoculum 6.4 ± 0.1 (n=5). 

# indicates treatment concentrations that inhibited biofilm formation without negatively impacting 

cell growth 
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Table 6. BP50 and LC50 of phenolic acid compounds on Staphylococcus aureus biofilm 

formation and viability 
 

 

Compound 

BP50 LC50 

mM mg/ml mM mg/ml 

methyl gallate 0.82 0.2 18.8 3.5 

ethyl gallate 6.7 1.3 9.8 1.9 

propyl gallate 2.9 0.6 6.6 1.4 

4-ethoxybenzoic acid 1.6 0.3 33.5 5.6 

p-hydroxybenzoic acid 8.0 1.1 14.0 1.9 

methyl paraben 5.7 0.9 22.9 3.5 

3-hydroxybenzoic acid 9.6 1.3 14.0 1.9 

gentisic acid 9.2 1.4 11.0 1.7 

pyrocatechuic acid 4.8 0.7 8.9 1.4 

protocatechuic acid 14.4 2.2 13.2 2.0 

gallic acid 17.3 2.9 21.6 3.7 

salicylic acid 38.5 5.3 46.4 6.4 

EEB+ 1% DMSO 103.6 20.1 818.0 158.9 
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Figure 16. Effect of vancomycin on Staphylococcus aureus planktonic growth. 

Growth of S. aureus after 24 hours of treatment with vancomycin (0.8 μg/ml-1600 μg/ml) was 

assessed to identify the minimal inhibitory concentration (MIC). Details regarding this 

experiment can be found in the materials and method section 4.4 Vancomycin MIC assay. 

Untreated samples (0 μg/ml) served as a negative control. 
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Figure 17. Effects of 4-ethoxybenzoic acid, methyl gallate and methyl paraben on 

Staphylococcus aureus growth. 

Growth of S. aureus in the presence of 0.2 and 0.4 mg/ml 4-ethoxybenzoic acid, 0.2 and 0.4 

mg/ml methyl gallate or 0.8 mg/ml methyl paraben was measured over 24 hours. Untreated (No 

Tx Control) and 1.6 μg/ml vancomycin treated samples served as negative and positive controls, 

respectively. Growth rates were calculated from t= 0 and t= 4 and are presented in table 1 along 

with the percent attenuation. Error bars indicate standard deviation. 
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Table 7. Effects of 4-ethoxybenzoic acid, methyl gallate and methyl paraben on 

Staphylococcus aureus growth rate 

 

Treatment 

Growth rate 

(replications/ hr) 

 

Percent attenuation 

Untreated control 1.11 0 

0.2 mg/ml 4-ethoxybenzoic acid 0.97 12 

0.4 mg/ml 4-ethoxybenzoic acid 0.58 47 

0.2 mg/ml methyl gallate 0.77 30 

0.4 mg/ml methyl gallate 0.59 46 

0.8 mg/ml methyl paraben 0.83 25 

1.6 μg/ml vancomycin 0.0 100 
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Figure 18. Resazurin standard curve. 

The time required for various cell densities to reach maximum fluorescence was plotted and a 

line of best fit was generated. The equation of the curve was used to estimate the quantity of 

viable biofilm-dwelling cells after treatment with 4EB or methyl gallate alone or in combination 

with vancomycin. 
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Table 8. Biocidal effect of vancomycin on biofilm-dwelling cells 

 

 

 

 

 

1Mean cell concentration ± the standard deviation (SD). Parenthetical values are the 

sample size (n). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vancomycin concentration 

(μg/ml) 

Quantity of viable 

biofilm cells (x104)1 

0 2581 ± 463 (3) 

0.8 2440 ± 533 (3) 

1.6 2015 ± 203 (3) 

3.1 773 ± 447 (3) 

6.2 3 ± 3 (2) 

12.5 2 ± 1 (3) 
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Table 9. Biofilm killing activity of compounds in combination with 2.1 mM vancomycin 

 
 

Compound 

 

Concentration 

(mg/ml) 

 

Compound only1 

Percent 

reduction 

compared to 

untreated 

control2 

 

Compound + 

3.1 μg/ml 

vancomycin1 

Percent 

reduction 

compared to 

untreated 

control2 

 

 

4EB 

0 

0.1 

0.2 

0.4 

0.8 

18.6 ± 2.8 (11) 

18.7 ± 1.8 (4) 

17.0 ± 5.3 (4) 

18.3 ± 5.0 (4) 

20.6 ± 3.7 (4) 

- 

0 

9 

2 

0 

2.7 ± 2.2 (11)b 

3.3 ± 1.8 (12)b 

1.5 ± 1.2 (12)b 

0.4 ± 0.5 (9)a,b 

1.0 ± 1.1 (12)a,b 

- 

0 

44 

85 

63 

 

 

Methyl 

gallate 

0 

0.1 

0.2 

0.4 

0.8 

18.6 ± 2.8 (11) 

15.7 ± 6.7 (4) 

15.8 ± 8.5 (4) 

16.2 ± 12.3 (4) 

28.1 ± 9.9 (4) 

- 

16 

15 

13 

0 

2.7 ± 2.2 (11)b 

3.2 ± 1.9 (11)b 

3.3 ± 2.2 (12)b 

5.7 ± 4.2 (12)b 

5.4 ± 7.6 (12)b 

- 

0 

0 

0 

0 

 
1Mean colony forming units per milliliter (x106) ± the standard deviation (SD). Parenthetical 

values are the sample size (n). 
2Percent reduction are the mean of treated samples relative to the untreated or vancomycin only 

treated controls. Controls contain 0 mg/ml of compound. 

(a) Indicated a significant difference (p<0.05) between vancomycin and combination treated 

samples.  

(b) Indicated a significant difference between the compound and combination treated samples. 
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Figure 19. Effects of 4-ethoxybenzoic acid on Staphylococcus aureus hydrophobicity. 

The hydrophobicity of cells treated with 4-ethoxybenzoic acid were categorized as low (≤50), 

moderate (50%-70%) or high (≥70%). Untreated samples served as a negative control. Error bars 

indicate standard deviation. ANOVA Tukey’s tests were performed; asterisks (*) indicated a 

significant difference (p< 0.05) between the treated samples and untreated control. 
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Figure 20. Crystal violet standard curve. 

Colony counts that correlated to crystal violet measurements were plotted and a line of best fit 

was generated. The equation of the curve was used to estimate the quantity of biofilm-dwelling 

cells in EPS production assays. 
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Figure 21. Effect of 4EB on Staphylococcus aureus extracellular polysaccharide, protein and 

DNA production. 

Biofilm-associated polysaccharide (A), protein (B) and extracellular DNA (C) production was 

quantified using fluorescent dyes (grey bars). The corresponding biofilm cell counts are 

presented on the secondary y-axis (black line). Untreated samples served as negative controls. 

Error bars indicate standard deviation. ANOVA tests were performed; asterisks (*) indicated a 

significant difference (p< 0.05) in polysaccharide production between the treated samples and 

untreated control. 
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Figure 22. Effects of 4-ethoxybenzoic acid on Staphylococcus aureus membrane integrity. 

Bars represent propidium iodide fluorescence intensity which is an indicator of membrane 

permeability. The untreated and heat treated samples acted as negative and positive control, 

respectively. Error bars indicate standard deviation. 
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Figure 23. Effects of 4-ethoxybenzoic acid on Staphylococcus aureus hemolytic activity. 

Bars represent the presence of hemolytic activity on rabbit red blood cells. The untreated, 10% 

SDS treated and 0.1% TritonX-100 treated samples acted as negative controls and 1.6 µg/ml 

vancomycin was used as a the positive control. 
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5 CONCLUSIONS 

Plants have been found to be a source of a variety of antimicrobial and anti-biofilm compounds 

(69, 70, 168, 169); Rhamnus prinoides is among these ethnopharmacologically relevant plant 

species. In this project, we identified and characterized the antimicrobial and anti-biofilm activities 

of gesho extracts and derived compounds on a variety of microorganisms including the 

opportunistic pathogens Staphylococcus aureus, Streptococcus mutans, Pseudomonas aeruginosa, 

and Candaida albicans. Gesho ethanol extracts were found to significantly inhibit mono-species 

biofilm formation via bactericidal, bacteriostatic and anti-pathogenic mechanisms in a species 

dependent manner. Additionally, GSE was found to inhibit S. mutans and C. albicans dual-species 

biofilm formation and to disrupt their synergistic relationship. Among these findings, the anti-

pathogenic anti-biofilm activities of GLE on S. aureus and GSE on C. albicans were of great 

interest due to their possible applications as anti-pathogenic therapeutics. Further investigations 

into the chemical composition of GLE identified two compound of interest, ethyl 4-ethoxybenzoic 

acid (EEB) and 4-hydroxy-4-methyl pentanone (HMP); both compounds exhibited anti-

pathogenic, anti-biofilm activity against S. aureus biofilms. Interestingly, HMP also significantly 

reduced biofilm formation of P. aeruginosa. Further investigations into this observation were not 

conducted, however the fact that HMP was able to inhibit biofilm formation of a resilient Gram 

negative bacterial species combined with the lack of antimicrobial studies on this compound 

warrants further investigations into its use as an anti-biofilm agent. 

The anti-pathogenic, anti-biofilm activity of EEB on S. aureus led to a structure-activity 

analysis of structurally similar phenolic compounds. This analysis identified 4-ethoxybenzoic acid 

(4EB), methyl gallate and methyl paraben as three compounds that inhibited S. aureus biofilm 

formation in an anti-pathogenic manner; 4EB also exhibited synergism with vancomycin 
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significantly decreasing the number of biofilm-dwelling cells when compared to treatments with 

vancomycin alone. Investigations into the phenotypic effects of 4EB on S. aureus found that 4EB 

negatively impacted cell hydrophobicity and enhanced relative extracellular polysaccharide 

production. Taken together, this data suggested that 4EB may have future applications in topical 

antiseptic or surface disinfectant. Transcriptomic and mutagenesis experiments along with in vitro 

and in vivo toxicology studies will go a long way to achieving this goal. Additionally, the impacts 

of 4EB on S. aureus have led to current investigations into the effects of 4EB on biofilm formation 

by other bacterial and fungal species; preliminary data from these experiments have been quite 

promising and point to even more directions that this project can take.     

The proliferation of antimicrobial resistance is a serious threat to human health and highlights 

the need for research on novel therapeutics such as anti-pathogenic compounds. Traditional 

medicine and phototherapeutics have been and continue to be a great source of antimicrobial agents 

as plants have evolved to produce a variety of compounds that prevent microbial colonization and 

discourage herbivory (170). Our work with Rhamnus prinoides extracts and derived compounds 

expands our repertoire of plant-based therapeutics and provides novel insights into applications of 

gesho. There are many directions that this project can be take going forward for both gesho extracts 

and gesho-derived compounds. Someday the fruits of the project may positively impact the lives 

of people around the world.  
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APPENDICES  

Appendix A 

 

Table 10. PCR primers for S. mutans and C. albicans strain identification 
Species Primer name Primer sequence Source 

S
. 

m
u

ta
n

s 

8UA fwd 5’-AGAGTTTGATCCTGGCTCAG-3’ (Fujiwara et al., 2001) 

1540R rvs 5’-AAGGAGGTGATCCAGCC-3’ (Fujiwara et al., 2001) 

16S mid seq fwd 5’-AGATACCCTGGTAGTCCACG-3’ (Campbell et al. 2020) 

16S mid seq rvs 5’-CGTGGACTACCAGGGTATCT-3’ (Campbell et al. 2020) 

TF9911 fwd 5’-GAAGTCGTAACAAGGTAGCCGT-3’ (Fujiwara et al., 2001) 

TF9912 rvs 5’-TGCCAAGGCATCCACC-3’ (Fujiwara et al., 2001) 

C
. 
a
lb

ic
a
n
s 18S rRNA fwd 5’-TATCTGGTTGATCCTGCCAG-3’ (Campbell et al. 2020) 

18S rRNA rvs 5’-TCGATAGTCCCTCTAAGAAGTG-3' (Teymuri et al., 2015) 

ITS1 rvs 5’-CCGCAGGTTCACCTACGGA-3’ (McCullough, Clemons 

& Stevens, 1999) ITS4 rvs 5’-TCCTCCGCTTATTGATATGC-3’ 
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>S. mutans_16S rRNA and 16S-23S intergenic spacer contig sequence (Genbank accession#: 

MT318140) 
TTGCCAAGGGCACCACCGTGCGCCCTTATTAACTTAACCTTATTTCTCGTTTCTCTGGCTTTTC

AGCGTCTCGGTTTCTTTCTTGTTCCCCTATAGCTGCGCTATAGGGCTTTTACTAGCTATTCAAT

TGTCAATGAACCATCTCTAGGATACTTATCATATCCTAAGTGGATTTTATAGACTTCCTTGTC

TTAAACAAGATATGAAGTTGAACTCCAGACTGACTTCTTAGAAAAATAGATCATCTTCTACA

GAAGTATTCGCAAGCGAACCGTCTGTTAGTATCCTGTTTTAATGGAGCCTAGCGGGATCGAA

CCGCTGACCTCCTGCGTGCAAAGCAGGCGCTCTCCCAGCTGAGCTAAGGCCCCACTTACCCT

CTCAAAACTAAACAAGAAGTTCCCCTAACGTGCTTTGCGTTTTTCCTTAGAAAGGAGGTGAT

CCAGCCGCACCTTCCGATACGGCTACCTTGTTACGACTTCACCCCAATCATCCATCCCACCTT

AGGCGGCTGGCCCCTAAAAGGTTACCTCACCGACTTCGGGTGTTACAAACTCTCGTGGTGTG

ACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCGTGCTGATCCGCGATTACTA

GCGATTCCGACTTCATGGAGGCGAGTTGCAGCCTCCAATCCGAACTGAGATCGGCTTTCAGA

GATTAGCTTGCCGTCACCGGCTCGCAACTCGTTGTACCGACCATTGTAGCACGTGTGTAGCC

CAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTATTACCGGCA

GTCTCGCTAGAGTGCCCAACTTAATGATGGCAACTAACAATAAGGGTTGCGCTCGTTGCGGG

ACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGCACCACCTGTCTCCGATGTA

CCGAAGTAACTTCCTATCTCTAAGAATAGCATCGGGATGTCAAGACCTGGTAAGGTTCTTCG

CGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGT

TTCAACCTTGCGGTCGTACTCCCCAGGCGGAGTGCTTATTGCGTTAGCTCCGGCACTAAGCC

CCGGAAAGGGCCTAACACCTAGCACTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATC

CTGTTCGCTACCCACGCTTTCGAGCCTCAGCGTCAGTGACAGACCAGAGAGCCGCTTTCGCC

ACTGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACATGGAATTCCACTCTCCCCTTC

TGCACTCAAGTCAGACAGTTTCCAGAGCACACTATGGTTGAGCCATAGCCTTTTACTCCAGA

CTTTCCTGACCGCCTGCGCTCCCTTTACGCCCAATAAATCCGGACAACGCTCGGGACCTACG

TATTACCGCGGCTGCTGGCACGTAGTTAGCCGTCCCTTTCTGGTAAGCTACCGTCACTGTGTG

AACTTTCCACTCTCACACACGTTCTTGACTTACAACAGAGCTTTACGATCCGAAAACCTTCTT

CACTCACGCGGCGTTGCTCGGTCAGACTTTCGTCCATTGCCGAAGATTCCCTACTGCTGCCTC

CCGTAGGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTAT

GTATCGTCGCCTTGGTAAGCTCTTACCTTACCAACTAGCTAATACAACGCAGGTCCATCTACT

AGTGATGCGCTTGCATCTTTCAATCAATTATCATGCAATAATTAATATTATGCGGTATTAGCT

ATCGTTTCCAATAGTTATCCCCCGCTAATAGGCAGGTTACCTACGCGTTACTCACCCGTTCGC

GACTCAAGAAAACACGGTGTGCAAGCACAGTGTGTTCTCTTGCGTCCCACTTGCATGTATTA

GGCACGCCGCCAGCGTTCGTCCTGAGC 

 

Figure 24.Streptococcus mutans 16S rRNA and 16S-23S intergenic spacer gene sequence. 

Segments of the S. mutans 16S rRNA and the 16S-23S intergenic region were amplified and 

sequenced using the 8UA fwd, MUT-R rvs, 16S mid seq fwd, 16S mid seq rvs, TF9911F and 

TF9912R primers. Sequences were then aligned using the analysis software DNA Base 

Assembler v5.15.0 to assemble a single contig. 
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>C. albicans_18S rRNA-ITS4 contig sequence (Genbank accession#: MT166273) 

TTGAGGTCAAGTTTGAAGATATACGTGGTGGACGTTACCGCCGCAAGCAATGTTTTTGGTTA

GACCTAAGCCATTGTCAAAGCGATCCCGCCTTACCACTACCGTCTTTCAAGCAAACCCAAGT

CGTATTGCTCAACACCAAACCCAGCGGTTTGAGGGAGAAACGACGCTCAAACAGGCATGCC

CTCCGGAATACCAGAGGGCGCAATGTGCGTTCAAAGATTCGATGATTCACGAATATCTGCAA

TTCATATTACGTATCGCATTTCGCTGCGTTCTTCATCGATGCGAGAACCAAGAGATCCGTTGT

TGAAAGTTTTGACTATTAGTAATAATCTGGTGTGACAAGTTGATAAAAAATTGGTTGTAAGT

TTAGACCTCTGGCGGCAGGCTGGGCCCACCGCCAAAGCAAGTTTGTTTCAAAGAAAAACAC

ATGTGGTGCAATTAAGCAAATCAGTAATGATCCTTCCGCAGGTTCACCTACGGAAACCTTGT

TACGACTTTTACTTCCTCTAAATGACCAAGTTTGACCAGCTTCTCGGTTCCAGAATGGAGTTG

CCCCCTTTCCTAAACCAATCCGGAGGCCTCACTAAGCCATTCAATCGGTAGTAGCGACGGGC

GGTGTGTACAAAGGGCAGGGACGTAATCAACGCAAGCTGATGACTTGCGCTTACTAGGAAT

TCCTCGTTGAAGAGCAACAATTACAATGCTCTATCCCCAGCACGACGGAGTTTCACAAGATT

TCCCAGACCTCTCGGCCAAGGCTTATACTCGCTGGCTCCGTCAGTGTAGCGCGCGTGCGGCC

CAGAACGTCTAAGGGCATCACAGACCTGTTATTGCCTCAAACTTCCATCGACTTGAAATCGA

TAGTCCCTCTAAGAAGTGACTATACCAGCAAATGCTAGCAGCACTATTTAGTAGGTTAAGGT

CTCGTTCGTTATCGCAATTAAGCAGACAAATCACTCCACCAACTAAGAACGGCCATGCACCA

CCACCCACAAAATCAAGAAAGAGCTCTCAATCTGTCAATCCTTATTGTGTCTGGACCTGGTG

AGTTTCCCCGTGTTGAGTCAAATTAAGCCGCAGGCTCCACTCCTGGTGGTGCCCTTCCGTCAA

TTCCTTTAAGTTTCAGCCTTGCGACCATACTCCCCCCAGAACCCAAAGACTTTGATTTCTCGT

AAGGTGCCGATTGCGTCAATAAAAGAACAACAACCGATCCCTAGTCGGCATAGTTTATGGTT

AAGACTACGACGGTATCTGATCATCTTCGATCCCCTAACTTTCGTTCTTGATTAATGAAAACG

TCCTTGGTAAATGCTTTCGCAGTAGTTAGTCTTCAGTAAATCCAAGAATTTCACCTCTGACAA

CTGAATACTGATACCCCCGACCGTCCCTATTAATCATTACGATGGTCCTAGAAACCAACAAA

ATAGAACCATAACGTCCTATTCTATTATTCCATGCTAATATATTCGAGCAAAGGCCTGCTTTG

AACACTCTAATTTTTTCAAAGTAAAAGTCCTGGTTCGCCCATAAATGGCTACCCAGAAGGAA

AGGCTCGGCTGGGTCCAGTACGCATCAAAAAAGATGGACCGGCCAGCCAAGCCCAAGGTTC

AACTACGAGCTTTTTAACTGCAACAACTTTAATATACGCTTTTGGAGCTGGAATTACCGCGG

CTGCTGGCACCAGACTTGCCCTCCAATTGTTCCTCGTTAAGGTATTTACATTGTACTCATTCC

AATTACAAGACCCAAAAGGGCCCTGTATCGTTATTTATTGTCACTACCTCCCCGTGTCGGGA

TTGGGTAATTTGCGCGCCTGCTGCCTTCCTTGGATGTGGTAGCCGTTTCTCAGGCTCCCTCTC

CGGAATCGAACCCTTATTCCCCGTTACCCGTTGAAACCATGGTAGGCCACTATCCTACCATC

GAAAGTTGATAGGGCAGAAATTTGAATGAACCATCGCCAGCACAAGGCCATGCGATTCGAA

AAGTTATTATGAATCATCAAAGAGCCCGAAGGCATTGATTTTTTATCTAATAAATACATCCC

TTCCAAACAGTCGGGATTTTAAGCATGTATTAGCTCTAGAATTACCACGGTTATCCAAGTAG

TAAGGTACTATCAAATAAACGATAACTGATTTAATGAGCCATTCGCAGTTTCACTGTATAAA

TTGCTTATACTTAGACATGCATGG 

 

Figure 25. Candida albicans 18S rRNA and ITS gene sequencing contig. 

Segments of the C. albicans 18S rRNA and ITS1-4 genes were amplified and sequenced using 

the 18S fwd, 18S rvs, ITS1 rvs and ITS4 rvs primers. Sequences were then aligned using the 

analysis software DNA Base Assembler v5.15.0 to assemble a single contig.  
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Table 11. BLAST results for strain identification 
 Description Query 

Cover 

E-value Percent 

identity 

Accession 
S

. 
m

u
ta

n
s 

Streptococcus mutans strain T8 99% 0.0 99.85% CP044492.1 

Streptococcus mutans strain LAR01 99% 0.0 99.69% CP023477.1 

Streptococcus mutans strain UA96 99% 0.0 99.69% AF139600.1 

Streptococcus mutans strain UA140 99% 0.0 99.64% CP044495.1 

Streptococcus mutans strain NN2025 99% 0.0 99.64% AP010655.1 

C
. 

a
lb

ic
a

n
s Candida albicans strain ATCC 18804 76% 0.0 99.82% HQ876034.1 

Candida albicans strain SC5314-P0 100% 0.0 99.77% CP025165.1 

Candida albicans strain SC5314-GTH12 100% 0.0 99.77% CP025182.1 

Candida albicans strain SC5314 79% 0.0 99.75% XR_002086442.1 

Candida albicans strain TIMM 1768 100% 0.0 99.77% CP032012.1 
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Appendix B 

Table 12. Metabolic activity of Streptococcus mutans and Candida albicans biofilm 

dwelling cells after exposure to ethanol and aqueous gesho extracts 

 

 

 

 

 

 

 

 

 

  Streptococcus mutans Candida albicans S. mutans and C. albicans 

Extract Concentration 

(mg/mL) 

% metabolic 

activity2 

% biofilm 

inhibition 

% metabolic 

activity2 

% biofilm 

inhibition 

% metabolic 

activity2 

% biofilm 

inhibition 

Control 0 100 ± 1.9 0 100 ± 0.9 0 100 ± 0.6 0 

GLE1 0.2 

0.5 

1 

3 

5 

7 

87 ± 4 

80 ± 6 

76 ± 9 

63 ± 11* 

59 ± 11* 

55 ± 10 * 

13 

20 

24 

37 

41 

45 

91 ± 2* 

88 ± 2* 

93 ± 1* 

104 ± 1 

102 ± 1 

103 ± 1 

9 

12 

7 

0 

0 

0 

103 ± 3 

102 ± 3 

103 ± 4 

107 ± 2 

113 ± 2* 

111 ± 5* 

0 

0 

0 

0 

0 

0 

GLW1 0.2 

0.5 

1 

3 

5 

7 

94 ± 2 

91 ± 2* 

90 ± 3* 

93 ± 2 

95 ± 2 

95 ± 3 

6 

9 

10 

7 

5 

5 

55 ± 3* 

46 ± 3* 

39 ± 2* 

23 ± 2* 

30 ± 2* 

29 ± 2* 

45 

54 

61 

67 

70 

71 

98 ± 2 

94 ± 3 

93 ± 3 

87 ± 2* 

84 ± 2* 

85 ± 2* 

2 

6 

7 

13 

16 

15 

GSE1 0.2 

0.5 

1 

3 

5 

7 

66 ± 6* 

51 ± 7* 

37 ± 9* 

23 ± 5* 

31 ± 3* 

23 ± 4* 

34 

49 

63 

77 

69 

77 

73 ± 3* 

67 ± 2* 

60 ± 3* 

56 ± 2* 

53 ± 2* 

54 ± 1* 

27 

33 

40 

44 

47 

46 

108 ± 4 

121 ± 7* 

131 ± 4* 

145 ± 5* 

152 ± 2* 

164 ± 6* 

0 

0 

0 

0 

0 

0 

GSW1 0.2 

0.5 

1 

3 

5 

7 

95 ± 2 

94 ± 2 

96 ± 2 

93 ± 2 

93 ± 2 

95 ± 3 

5 

6 

4 

7 

7 

5 

87 ± 2* 

78 ± 2* 

73 ± 2* 

62 ± 1* 

57 ± 1* 

49 ± 2* 

13 

22 

27 

38 

43 

51 

90 ± 3 

99 ± 4 

99 ± 3 

104 ± 3 

105 ± 2 

109 ± 3 

10 

1 

1 

0 

0 

0 

1Leaf ethanol (GLE), leaf water (GLW), stem ethanol (GSE) and stem water (GSW) treatments  
2Percent biofilm formation are the mean of extract treated samples relative to the untreated 

control for each species± the standard error of the mean (SEM).  

*indicate a significant difference (p< 0.05) between the treated samples 
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