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ABSTRACT 

B virus (BV, Macacine alphaherpesvirus 1), a neurotropic Simplexvirus, is enzootic in macaque 

monkeys, infects all of the 17 species of the macaque monkeys including Macaca mulatta, M. 

fascicularis, and M. nemestrina, the most extensively used nonhuman primate biomedical 

research models, but lifelong, mostly latent, zoonotic infection in humans often leads to severe 

neurologic impairment or fatal encephalomyelitis in up to 80% of reported cases. Early detection 

is key as no virus-eliminating therapeutics are available currently. Antivirals are available as a 

prophylactic measure, or as an effective therapy only if administered very early in acute, 

symptomatic infection. Because virus shedding is rare,  serological detection of BV-specific 

antibodies is often the only diagnostic option for identifying BV infection. Current BV 



diagnostic methods are labor-intensive complex assays and even these must be performed 

frequently to differentiate cross-reactive BV and HSV antibodies. Hence, it is critical to identify 

markers of specific immune responses and virus neutralizing targets. To define the relevance of 

BV gB in controlling the BV infection, by accurate diagnosis and informing rational vaccine 

design, the hypothesis “B virus neutralization and specific antibody induction are  

each dependent on unique glycoprotein B epitopes” was tested. 

Epitope mapping of the neutralizing mAb identified novel mimotopes, corresponding to aa 

residues 115-120 and aa residues 515-525 of BVgB, that are potential targets for virus 

neutralization and may serve as epitope-focused recombinant protein-based BV vaccine 

candidates. Epitope mapping of the non-neutralizing mAb, using phage display and peptide 

array, revealed a B virus specific epitope that can identify anti-BV polyclonal antibodies from 

both BV infected humans and macaques without cross reacting with HSV1 and 2 polyclonal 

antibodies. Through this study I propose a novel, simple, rapid and cost-effective method of fine 

mapping linear epitopes using phage display and compound mutagenesis that circumvents the 

use of expensive peptide array and laborious mutagenesis scanning techniques. The impact of 

this study will inform vaccine designs that will block virus entry, as well as the development of 

novel strategies for early and unequivocal identification of B virus zoonotic infections in 

individuals with highly cross-reactive antibodies. 
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1 INTRODUCTION  

1.1 B Virus  

Herpes B virus (BV), endemic in macaques monkeys, is a member of 

family Herpesviridae, subfamily Alphaherpesvirinae, genus Simplexvirus [1-3]. The linear DNA 

genome of ~155 kbp with about 75% G+C content is enclosed in an icosahedral capsid present in 

an unstructured tegument protein surrounded by a lipid envelope embedded with 12 

glycoproteins [4, 5].  

Its natural hosts include all the 17 macaque species. The rhesus and pigtail macaque BV strains 

have a genome identity >99% while the genome identity amongst other macaque BV strains is 

~89–95%. It is genomically and immunologically related to herpes simplex virus types 1 and 2  

and other closely related monkey alpha herpesviruses such as Baboon Herpesvirus Papio 2 

(HVP-2), herpesvirus simian agent 8 (SA8) and chimpanzee herpes virus (ChHV) and to a lesser 

extent the viruses of squirrel monkeys (HVS1) and spider monkeys (HVA1) [6-13]. 

The BV is transmitted horizontally via direct contact and exchange of bodily secretions 

[14-16]. BV infections in humans although rare, but often leads to severe neurologic impairment 

or fatal encephalomyelitis in 70-80% cases. B virus infects mucosal epithelia, the epithelial and 

dermal layers of the skin, from there it spreads to the sensory neuron endings of the sensory 

ganglia, travelling retrograde, it ultimately spreads to the central nervous system (CNS). The 

survivors are left with lifelong neurological disorders and associated problems. Majority of the 

transmission occurs due to contact with captive macaques via bites or scratches but other modes 

of transmissions are contact of mucosal membranes with infected macaque urine, feces, or 

cultured cells or via needlestick injury [17-19]. So far there has been only one case of a human to 

human transmission [20].  
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BV is considered a macaque equivalent of human HSV, as just like HSV its rapid lytic 

replication cycle produces extracellular progeny after about 6 hours of infection and the BV 

proteins are synthesized as a part of immediate early/early/late gene expression program [21]. 

Moreover, the BV genetic arrangement is orthologous to that of HSV and it rarely causes fatal 

infections in its natural host -macaques. BV glycoproteins gC (UL44), gD (US6) and VHS 

(UL41) have shown to have structural and functional properties similar to HSV but such 

similarities have not been studied for other proteins. 

1.1.1 B virus entry 

Generally, for the entry of an enveloped virus a single surface glycoprotein binds to its 

receptor on a host cell membrane and brings the viral envelope and the cell membrane in close 

proximity to initiate fusion. But in herpes viruses this function is performed by three 

glycoproteins gB and gH/gL in conjunction with a fourth accessory protein. Although, different 

herpesviruses may utilize different accessory proteins, gD (HSV), gP50 (Porcine herpes virus; 

PRV), UL128, UL130, UL131 (HCMV), gp42 (EBV), for viral entry but the “core fusion 

machinery” is formed by three surface glycoproteins gB and gH/gL heterodimer, whose 

functions are conserved across the herpesviruses, are involved in fusion [22-31]. The structure of 

gB is conserved is across the all herpesviruses whereas gH/gL structure varies.  

The accessory proteins, for e.g. gD in case of HSV, are required for cell tropism or to 

initiate the process of virus entry. The binding of gD to its receptors releases gD from its 

autoinhibited state that triggers a conformational change in gH/gL and subsequently gB that 

exposes the hydrophobic fusion domains of gB responsible for virus– cell and cell– cell fusion. 

The gD receptors are not conserved across the herpes viruses. The HSV gD interacts with 
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HVEM and nectin-1 on the host cells to activate the core fusion machinery but pseudorabies 

virus (PRV) can only use nectin-1 as a gD receptor but cannot use HVEM. Similarly, BV gD 

utilizes Nectin-1 but not HVEM or PILRα for cell-cell fusion and virus entry [32, 33]. But BV 

can utilize both gD dependent and independent cell entry and transmission mechanisms, hence 

gD might be dispensable for virus entry [34]. 

BV gH forms the larger part, 847 aa residues, of the gH/gL complex whereas gL forms 

the smaller part, 224 aa residues, of the complex. Herpesvirus gH are generally composed of 

three structural domains, a N-terminal domain that is considered unstable alone but is stabilized 

by gL, a central helical domain and a C-terminal b-sandwich domain. The latter two domains are 

structurally conserved across all the herpes viruses. These domains contain heptad-repeat and 

fusion peptides that are mostly buried in the core of the protein. The gH/gL complex was 

believed to be a fusion protein due to the presence of the fusion peptides, but as the crystal 

structure was solved no resemblance to any known viral fusogen were found [35-37]. Moreover, 

fusion cannot occur without an interaction between gH/gL with gB[38]. Multiple studies have 

shown that gB is the only fusogen of HSV used in virus entry, and gD and gH/gL are only the 

regulators of this process [37, 39, 40]. 

 
1.1.2 B virus glycoprotein B 

BV glycoprotein B is composed of about 891 aa residues with aa residues 98-712 

forming the ectodomain, aa residues 713-761, 762-783 and 784-891 forming the predicted 

membrane proximal region, transmembrane domain and cytoplasmic domain. In addition to 

being the one of the most immunogenic BV glycoproteins it is also postulated to be the BV 

fusion protein as the BV neutralizing mAbs used in this study have been found specific to gB 
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[41-43]. The crystal structure of BV gB has not been solved but since the gB structure is highly 

conserved across the herpes viruses Herpes simplex virus glycoprotein B will be used as a 

reference throughout this study. The herpes virus gB is a homotrimer that has been classified as 

class III viral fusion protein, possessing the features of both class I and class II fusogens [44, 45]. 

The herpes virus gB, like other class III fusion proteins contains short hydrophobic segments at 

the base of the protein that help the virus to forma pores in the host cell membrane. 

Class I fusogens are trimeric with their fusion loops hidden internally in the pre-fusion 

state. The post-fusion state is different from prefusion and is characterized by group of six α-

helices [46]. Class II fusogens are also trimeric but are made up of multiple β-pleated sheets that 

can be arranged as either homodimers or heterodimers with internally located fusion domains 

[47]. Class III fusogens, like class I and II are trimeric but contain both α-helices and β-pleated 

sheets. They dissociate during fusion and return to a different post-fusion state that is different 

from pre-fusion state [45, 48].  

The fusion loops appear as multiple short hydrophobic segments of aa that form a ridge 

surrounded by charged residues. HSV1 has two fusion loops found on the domain I, as described 

by Heldwein et al. fusion loop 1 (FL1; region aa 173 to 179) and fusion loop 2( FL2 258 to 265) 

[44, 49]. But neutralization of the virus is not solely reliant on blocking of the fusion loops. 

Multiple neutralizing mAbs have been shown to bind on different domains of gB besides the 

fusion loops [50]. 

The fusion process is regulated by the membrane proximal region (MPR) of gB. The 

MPR covers up the fusion loops present in the domain I of gB [51]. About 40% residues of MPR 

are highly conserved herpesviruses and mutation of these residues renders virus non-infectious 
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[52].  The gB mediated fusion is also regulated by gH ectodomain and a short gH cytotail. The 

mutation of more than 6 aa residues of the gH cytotail impairs the fusion mechanism [53]  

Hence by mapping the gB epitopes important vaccine candidates and other markers of 

diagnostic value that can be used to identify BV specific immune responses can be discovered. 

 
1.1.3 Threat by B virus  

Fewer than two-dozen pathogens cause more than five million deaths each year.  Over 

300 million humans a year become sick every year with over half the world’s population being at 

risk on any given day.  The critical barrier to control infectious diseases including new and 

recurring emerging infections is largely our lack of knowledge about which immune defenses are 

effective at limiting pathogen spread. B virus, Macacine alphaherpesvirus 1, is one such virus 

that often causes a fatal zoonotic disease that has to be controlled.  This infection costs funding 

organizations globally many millions of dollars annually, yet these resources only minimize the 

ever-present threat of zoonotic infection.  

Three of the 17 species of macaque monkeys that comprise the genus Macaca species M. 

mulatta, M. fascicularis, and M. nemestrina have been used extensively as biomedical research 

models for nearly a century making BV the most serious health occupational hazard for people 

working with macaques. [1, 2, 54]. Individuals who become infected via bite, scratch, splash, or 

fomites  caused by the natural host, members of the genus Macaca sp., remain infected for life. 

They may survive as a result of timely antiviral intervention.  The mortality in untreated cases is 

about 80%.  Survivors may shed periodically after recovery [55-58].  

1.1.4 Diagnosis of B virus 

Due to the neurotropic nature of BV, and establishment of latency in the peripheral 

neurons, and the unpredictable viral shedding, the definitive diagnosis using virus culture or 
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virus-specific nucleic acids detection (PCR) is impractical. Although PCR assays may not be 

useful in case of latent infections, they are a robust method of detecting miniscule amounts of 

viral DNA in swabs from bites or scratch. The infected individual and the captive monkey 

responsible for the infection can both be tested for a more definite diagnosis. Several PCR 

methods are being currently used [63, 64]. Since an individual or a monkey could be infected 

with different strains, or multiple strains simultaneously, of BV diagnosis using PCR might 

become challenging due to significant sequence differences amongst the virus strains [65-68].  

Hence serology is the only practical option. But concurrent infections with HSV1 and 2 

further complicates the serological diagnosis of B virus due to the presence of cross reactive 

HSV1 and HSV2 antibodies extensive antigenic cross-reactivity between BV and HSV [7, 8, 60-

62]. The current B virus diagnostic methods such as titration ELISA (tELISA) and the 

confirmatory tests such as western blot analysis, the recombinant-based ELISA, and competition 

ELISA that cannot always distinguish between BV and HSV antibodies need to be updated [41, 

42, 62]. 

To develop simple and accurate serological differential diagnostic tools it is therefore 

critical to identify B virus specific epitopes that can distinguish between BV specific and HSV1 

and HSV2 specific antibodies. To this end, our laboratory has identified and characterized a 

panel of B virus specific mAbs [43]. One of such BV virus specific mAb 9F1, that does not 

cross-react with HSV1 and HSV2, will be used to map BV specific functional epitopes using a 

unique approach that uses random peptide phage display, overlapping peptide array and 

compound mutagenesis scanning.  
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1.1.5 Interventions against B virus 

In addition to having a high fatality rate, the B virus infections just like herpes simplex 

virus infections persists for the lifetime of the host. The appearance of symptoms can vary 

greatly between individuals can be managed by using antivirals such as acyclovir, valacyclovir, 

and famciclovir, but they may only work for mild symptoms and not for severe symptoms that 

can appear as early as 8 days[16, 57, 69]. Also, it is not practical to provide these drugs as 

prophylaxis to the individuals that might be considered at high exposure risks, for e.g. primate 

workers. Moreover, BV has found to be less sensitive to these drugs, in some cases as much as 

10 folds less effective than HSV [70-72]. Other drugs like penciclovir (PCV), ganciclovir 

(GCV), cidofovir (CDV), and an experimental drug FEAU provide better protection [71, 72] 

Hence, it is vital to have a vaccine that can control the viral infection. The vaccine might 

be the safest prophylactic measure that can be administered to the individuals at high risk of 

infections. Hence, in an attempt to identify the vaccine candidates, specific targets of the B virus 

neutralizing antibodies must be identified. In this study we will attempt to identify the targets of 

neutralizing anti-B virus gB monoclonal antibodies using the phage display method.  

Another manifestation of the BV targets identified by this study could be to use the 

markers in combination with a non-toxic topical viricidal drug that can either effectively block 

virus entry or precipitate the virus at the site of entry. This could be an effective way of 

providing rapid prophylactic treatment prevent the virus from entering and replicating. 

1.2 Monoclonal antibody epitope mapping  

Antibodies or in other words immunoglobulins (Igs) are one of the most versatile and robust 

components of the immune system of all vertebrates. Their ability to specifically identify 

antigenic determinants makes them an important tool for diagnostics and immunotherapeutics. 



8 

Understanding the antibody- epitope interactions is the first step towards developing an effective 

diagnostic and epitope-focused recombinant protein-based BV vaccine. To this end we will be 

using three monoclonal antibodies, produced by immunization of mice with BV Ag, one BV type 

specific and two neutralizing to map epitopes responsible for inducing specific antibodies and 

virus neutralization to discover epitopes responsible [43]. Following approaches will be used in 

this study for epitope mapping: 

1.2.1 Random peptide Phage Display libraries 

Phage display is a selection method in which a heterologous short segment of a protein is 

fused with a capsid protein of a bacteriophage and displayed on the virion surface. It was first 

described by George P. Smith in 1985 when he used phage gene III of M13 bacteriophage to 

create a fusion protein [73]. The recombinant bacteriophages thus produced could be enriched 

and provided a physical link between the expressed peptide and the encoding DNA. Peptides of 

variable lengths 6-12 aa residues in length, that may or may not be di-sulphide restricted, are 

usually expressed on the bacteriophage and are used to map linear and/or conformational 

epitopes of a target. Each peptide expressed is presented on the pIII coat protein or the pVIII coat 

protein. When the peptide is fused to pIII five copies of the peptides are displayed per phage  on 

each of the pIII coat protein. When the peptides are fused to pVIII gene several hundred copies 

of the peptide are expressed on each of the pVIII coat protein. Although, if all the pVIII coat 

proteins are fused with a peptide it may compromise the function of the protein and ultimately 

the phage viability. Hence to circumvent this issue hybrid phages are produced in which some of 

the pVIII coat proteins are wild type and some are fused to the peptide. Alternatively, a phage 

hybrid can be created using a phagemids. In this method a bacterial host is co-infected with a 
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phagemid that carries the genes encoding the fusion protein and a helper phage carrying the 

genes required for the formation of phage particles.  

 Peptides specific for the target antibody(s) are identified by affinity selection (aka 

biopanning). For biopanning the phage library is incubated with the target to allowing the phages 

expressing peptides, that represent either the complete, partial epitope or a mimotope, to bind to 

the target antibody. The unbound phages are washed away, and the bound phages are eluted. The 

eluted phages are titered and amplified. This completes one round of positive selection. A round 

of negative selection is performed using a non-specific target, to minimize the selection of any 

non-specific phages, and the unbound phages are amplified. These amplified phages should 

undergo two more rounds of positive selection to enrich the phage population specific for the 

target. The phage population thus obtained is sequenced.  

Phage display (PhD) has several applications besides mAb (B cell receptor) and T cell 

receptor epitope mapping such as discovering the target molecule of a cell receptor. The cell 

membrane receptors are key players in cell signaling functions and hence are targets of potential 

drugs [74, 75]. Protein-protein interactions play a major role in governing the normal 

physiological functions. PhD has been used to find partners of highly conserved protein domains 

such as Src homology (SH) 3 domains [76]. Organ specific peptides can be identified using PhD. 

This method was used to discover brain vasculature targeting peptides [77]. To improve the 

therapeutic index and reduce the emergence of drug resistance anti-cancer drugs have been 

delivered to solid tumors using peptide mediated liposomes[78]. The peptide mediated liposome 

is constituted of an anticancer drug, a liposome and a targeting ligand (peptide). To discover the 

target ligand phage display is used.  
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1.2.2 Linear peptide array  

This method is a derivative of the method first described by Mario Geysen in 1984 known as 

Pepscan. A library of peptides, usually the entire sequence of a particular protein is coated on a 

surface as overlapping peptide and the desired antibody is used to scan the coated peptides to 

locate its target [79]. A positive reaction produces a fluorescent signal which is read by an 

optical reader. If two distant peptides bind to the same target of interest it signifies that the two 

peptides are parts of a discontinuous epitope. This technique allows the detection and 

quantification of simultaneous multiple binding reactions from miniscule amounts of sample. 

This technique can only be used only to identify the linear epitopes of a target. Moreover since 

the plate is coated with linear peptides only any antibody specific to any of the post translational 

protein modifications such as acetylation, methylation, phosphorylation, glycosylation will not 

bind to the coated peptides. 

1.3 Summary 

In summary, BV infection in humans either causes a lifelong severe disease or results in 

death. To tackle the disease caused by B virus there is an urgent need to develop effective tools 

for unequivocal diagnosis of B virus. Since BV glycoprotein B is one of the most immunogenic 

glycoproteins it must be used as a prime candidate for the discovery of specific markers that can 

distinguish B virus specific antibodies. To control the virus spread of the virus in infected 

individuals again B virus gB should be explored for any markers responsible for neutralization of 

the virus as gB is most likely the only fusogenic glycoprotein out of all the 12 BV glycoproteins. 

By targeting the gB epitopes responsible for the fusion the virus spread and thus the infection can 

be controlled. Hence the goal of this study is to identify the role of a specific glycoprotein, gB, in 

neutralization of the virus and induction of type-specific antibodies. To accomplish this goal we 
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have two objectives: 1) identify epitope(s) that induces (a) neutralizing, and (b) type specific 

antibodies, and 2) exploit this new information to inform rational vaccine strategies to block B 

virus infection, as well as to ensure rapid and unequivocal identification of B virus infections. To 

accomplish these objectives, the hypothesis that B virus neutralization and specific antibody 

induction are each dependent on unique Glycoprotein B (gB) epitopes should be tested. To 

test this hypothesis, the following sub-hypotheses presented in each specific aim will be tested. 

 
Aim 1. B virus gB epitope corresponding to alpha herpesvirus fusion loop domain is 

a target for B virus neutralization. 

Aim 2. Specific gB epitope(s) induce unique, B virus-specific humoral response(s) 

differentiable from those induced by closely related members of the virus subfamily. 

2 AIM 1: TEST IF B VIRUS gB EPITOPE CORRESPONDING TO ALPHA 

HERPESVIRUS FUSION LOOP DOMAIN IS A TARGET FOR B VIRUS 

NEUTRALIZATION. 

Untreated B virus infections results in mortality in 80% of the cases. Since no 

therapeutics are currently available against B virus it is critical to identify vaccine candidates that 

could be used to treat the B virus infections. Preliminary plaque reduction neutralization assays 

(PRNT) using the B virus neutralizing antibodies IgG1 5A2 and 4E11 have shown that these 

neutralizing antibodies are able to neutralize the BV, SA8 and HVP2 viruses up to 75%, 63% 

and 33%, respectively and target BV gB. The PRNT and the western blot results show that the 

two monoclonals have a similar pattern of functional activity and are thus closely related. Out of 

the 12 glycoproteins present on the envelop of the B virus gB, gC, gD and mgG have found to be 

the most immunogenic [2, 80]. Several neutralizing antibodies have been mapped to the fusion 
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loops of the glycoprotein B (gB),  a class III fusion protein, of HSV1 [81-83] . The binding of 

neutralizing antibodies to the fusion loop has shown to block the cell-cell fusion [84]. Hence 

establishing the fusion loops as the targets for neutralization in HSV1 infections. Since the 

crystal structure of BV has not been solved yet, the question arises if BV gB, just like HSV1 gB, 

is also a class III fusion protein that is required for fusion, and therefore is an important target for 

neutralization of the B virus just like HSV1.  

The role of gB and gH/gL in herpes virus fusion has been well characterized in HSV1 

[38, 85, 86] . The entry mechanism of Herpes simplex viruses is believed to be conserved across 

species and generally requires four membrane glycoproteins: gD, gB and heterodimeric gH/gL. 

gD is the receptor binding protein that defines the cell tropism, gB cannot cause fusion on its 

own and gH/gL is another glycoprotein required for fusion[87, 88]. Hence, the fusion of BV 

might be dependent mostly on gB and gH/gL. The blocking of gB’s interaction with gH/gL 

blocks fusion in HSV1 infections[38, 85]. Hence, we postulate that the neutralizing antibodies 

against gB will either bind to the gB fusion loops directly or to the gB motifs that interact with 

gH/gL and abrogate the interaction of gB and gH/gL and thus inhibit the entry of BV. Thus, 

identifying the epitopes of BV neutralizing mAbs using phage display libraries and mapping 

their location on a BV gB model, based on the BV sequence and crystal structure of HSV1 gB, 

will help us identify the motifs involved in viral neutralization and their role in viral entry. The 

peptides synthesized based on the epitope sequences will represent the immunogenic regions of 

the gB that are important for inducing neutralizing antibodies against B virus in the host, hence 

the active peptides will serve as an important vaccine candidates. 



13 

2.1 Identify the epitope/mimotope sequence(s) recognized by BV neutralizing mAb 4E11 

by random peptide phage display library. 

To identify the epitopes of gB that might be involved in the fusion machinery of the B 

virus the epitope mapping of the BV neutralizing mAb IgG1 4E11 using commercial random 

peptide 7-mer (heptapeptide), 12-mer (dodecapeptide)  and cyclic (loop-constrained 

heptapeptide) phage libraries were employed. The twenty phage clones obtained after a round of 

positive phage screening followed by a round of negative screening and then two consecutive 

rounds of positive selection phage screening from each library were tested for their specificity 

for the mAb 4E11 in a phage ELISA (Fig. 1). Out of the twenty clones picked from each of the 

three libraries only one phage clone- Clone 20 from the Cyc phage library bound to the mAb 

4E11 with an OD (A450) of 0.773. The clone 20 did not bind with the anti- BV VP13/14 mAb 

12F5C1, hence exhibiting that it was specific to the 4E11. None of the other clones, including 

ones selected from other libraries, bound to either of the mAbs. This shows that there was a poor 

enrichment of the 4E11 specific phages by the third round of the screening.  

To confirm that this phage clone was specific for 4E11 and to test if it was also specific to the 

closely related 5A2 mAb the phage clone was directly coated on an ELISA plate and tested for 

its ability to capture the mAbs 4E11, 5A2 and 12F5C1 (Fig. 2). The clone 20 bound to both mAb 

5A2 and 4E11 and not to 12F5C1. The binding of the clone 20 with 5A2 increased at a higher 

rate compared to 4E11 with the increasing concentration of the mAbs (Fig. 2a). The binding of 

5A2 to the clone was significantly higher than the binding of 4E11 (p<0.005) and 12F5C1 

(p<0.0001) to the same clone at the dilution of 40µg/mL of the mAbs. These results show that 

the mAb 5A2 is more specific to the phage clone identified by the mAb 4E11 than the 4E11 

itself. The clone 20 was sequenced by sanger’s method. The DNA sequence was translated and 
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aligned with the conserved phage sequence to reveal the amino acid sequence 

CEPFWTNCGGGS. 

2.2 Identify the epitope/mimotope sequence(s) recognized by BV neutralizing mAb 5A2 

by random peptide fd (landscape) phage display library. 

The commercial phage display libraries used in the previous experiment were limited in 

the types of peptides (7,12-mer and cyclic) and number of peptides expressed per phage. The 

phage libraries used earlier comprised of phages expressing only 7-mer and 12-mer linear and 

cyclic 7-mer peptides on each of the five pIII proteins of the phages. Both of these issues were 

resolved by using a fd phage (landscape) library that comprised of phages expressing either one 

of the linear or looped 8,6,10,12-mer peptides on about half of the hundreds of the pVIII proteins 

of the phages. Moreover, since the mAb 4E11 wasn’t highly specific for the selected phage clone 

in the previous experiment (Fig. 2), mAb 5A2 was used for the mapping with the fd phage 

(landscape) library. The screened phage pool obtained after each round of phage screening were 

used directly to amplify the recombinant pVIII gene of possibly all the mAb 5A2 binding phage 

clones by PCR. The PCR amplification was performed with a high-fidelity Taq polymerase in 

triplicates to account for any amplification bias. Amplicons of about 140bp were obtained from 

each phage pool triplicate from each biopan Fig. 3. Since the insert size varies between 18 to 36 

base pairs within each phage pool the bands observed represents the average size of all the 

amplicons in a phage pool. Hence a band of 140 bp is consistent in all the samples. 

Over 97% of all the reads obtained from the NGS were successfully merged (Table. 1). The total 

reads obtained for the phage pools ranged between  40,808 and 91,457 as summarized in table 1.  

These results show that out of 1000 million possible recombinant pVIII fusion peptides sequence 
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combinations, present in a phage pool, about 50,000 sequences, on average, were read. More 

than 97% of which, when read in both forward and reverse direction (paired end reads), merged 

into a single sequence as the overlapped region was identical.  

The sequence reads were grouped based on their consensus/ frequencies ( f ). The sequences that 

are unique (f =1)  or recur 2-9 times (f = 2 to 9),  recur between 10-49 times (f =10 to 49), 50-99 

times (f =50 to 99),  100-199 times (f =100 to 199), 200-299 times (f =200 to 299), 300-350 

times (f =300 to 350) were grouped as "Consensus 1-9", "Consensus 10-49", "Consensus 50-99", 

"Consensus 100-199", "Consensus 200-299", "Consensus 300-350", respectively. Any sequences 

with f >350 were not grouped and were analyzed individually. Fifteen such sequences, that were 

the most abundant phage sequences in the biopan 3 phage pool, were identified and their 

abundances were traced in each of the preceding biopans i.e. biopans 1 and 2. The average of the 

sequence abundances/frequencies in triplicates for all of the 15 peptide sequences in each biopan 

are  shown in Fig. 4b and Table 2. The abundances of the each of the selected 15 peptide 

sequences were less than 10 in the first biopan but increased significantly over the next two 

biopans except for 5A2-P4, 5A2-P9, 5A2-P11, 5A2-P12, 5A2-P14. These results show that there 

was a progressive enrichment of most of the mAb 5A2 binding sequences in the consecutive  

rounds of positive selection.  

The percent phage sequence distribution in a biopan phage population was determined by 

calculating the percent frequency for each of the sequence groups and the 15 selected individual 

sequences (Figure 4a and c, Table 2). The biopan 1 phage pool mostly (89%) consisted of phages 

with “Consensus 1-9”. The share of this group reduced dramatically to 48% in the second biopan 

and was ultimately reduced to 14% by the third biopan. Whereas the share of all the individual 

sequences increased over the consecutive biopans. For example, the sequence 5A2-P1 
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(CHWEWGSYGIVRTC) was 0% of the biopan 1 phage pool but by the second and third biopan 

it increased to 0.8% and 4.5%, respectively (Fig. 4c, Table 2). These results highlight the 

progressive increase in the diversity of the mAb 5A2 binding sequences over the consecutive 

biopans.  

The peptide 5A2-P1 (CHWEWGSYGIVRTC) with the highest % total reads (4.5%) and 

frequency (2178), and 5A2-P14 (PVHVSAPSAL) with the lowest % total reads (0.73)  and 

frequency (350.6) most likely represent the peptides with most and the least affinities amongst 

the 15 peptide sequences in biopan 3 (Figure 4b and c, Table 2). The specificities of these 

peptide sequences for the mAb 5A2 will be tested in a peptide ELISA to identify the sequence 

that is most likely to represent the mimotope/epitope.   

2.3 Validate that peptides corresponding to the phage displayed peptide sequences are 

specific to BV neutralizing antibodies in a peptide ELISA. 

The most abundant mAb 5A2 binding and 4E11 binding recombinant pVIII fused peptide 

sequences were identified using NGS and phage display respectively. To test which one of these 

sequences truly represented the epitope/ mimotope of the mAb 5A2 and or 4E11 peptides 

corresponding to these sequences were synthesized and tested for binding to the mAb 5A2 and 

compared with binding to a non-specific anti-BV gB mAb 9F1 on a CovaLink plate. To mimic 

the cyclic peptides expressed on the phages the two cystines present on each cyclic phage 

sequence were linked with a disulphide bond during the commercial synthesis of the peptides. 

The peptide specificity was measured as the OD (absorbance at 405-490 nm) produced by the 

binding of the mAbs. A peptide was considered specific if the difference in the OD5A2 and 

OD9F1, at two or more dilutions of the peptide, was greater than 0.2. The peptides 5A2-P2, P3, 

P4, P5, P7, P12, P15 and P.4E11.PhD had OD5A2 - OD9F1 > 0.2 at the peptide dilutions 10 and 5 



17 

µg/mL, 20, 5 and 1.25 µg/mL, 20 and 1.25 µg/mL, 5 and 1.25 µg/mL, 20, 10, 1.25 µg/mL, 5, 

2.5, 1.25 µg/mL, 2.5 and 1.25 µg/mL and 20-1.25 µg/mL respectively (Table 3).  

Since the peptides 5A2-P2, P3, P4, P5, P7, P12, and P15 show OD5A2 - OD9F1 > 0.2 only at two 

or three dilutions they probably represent only part of the complete epitope/ mimotope. 

Conversely,  P.4E11.PhD shows OD5A2 - OD9F1 > 0.2 at all dilutions hence it should be more 

specific than the other peptides and should be a better representative of the mAb 4E11 and/or 

mAb 5A2 epitope.  

The mAb 5A2 instead of 4E11 was used to measure the peptide activity of the P.4E11.PhD since 

mAb 5A2 bound much better than 4E11 to phage displayed peptide (of the same sequence) in the 

pELISA (Figure 2). P.5A2.PhD (Figure 5N) is a peptide of aa sequence CWAPFWSDCGGGS 

identified previously using commercial phage display library. The mAb 9F1 specific control 

peptide OP2, as expected, was highly specific for the mAb 9F1 and had a minimum cross-

reactivity  with the mAb 9F1. Collectively, these results show that out of all the peptides that 

were considered specific for the mAb 5A2 P.4E11.PhD shows the highest specificity and thus 

should better mimic the mAb 5A2 and/or 4E11 epitope.  

 

2.4 Determine putative location of the epitope/mimotope on BV gB by mapping the 

epitope to the predicted three-dimensional model of gB. 

The peptide sequences tested in the peptide ELISA were tested for the presence of target 

unrelated motifs using the TUPScan tool. The QSYPL motif which is a confirmed binder to 

unrelated antibodies was present in the 5A2-P3, 5A2-P9 and 5A2-P11 peptide sequences. 

Another motif W-x(2)-W which is a confirmed plastic binder was present in the 5A2-P7 peptide 

sequence. These sequences were not used for further analysis.  



18 

A 3D model of BV gB that was prepared by projecting BV gB sequence (uniprot Q7T5E1) on 

the known crystal structure of HSV1 gB (PDB code 6BM8) as shown in Figure 6 was used to 

visualize the epitopes [89]. The five domains (Domain I-V) corresponding to those delineated by 

Heldwein et al were identified and marked on the BV gB model [44]. The BV gB aa residues 

that correspond to the 5A2-P2, 5A2-P4, 5A2-P5, 5A2-P12, 5A2-P15, P.4E11.PhD sequences 

were identified using the Episearch webtool [90]. The BV gB model was used as a query model 

and the 5A2-P2, 5A2-P4, 5A2-P5, 5A2-P12, 5A2-P15, P.4E11.PhD sequences were used as 

query sequence. The predicted result with the highest possible score of 1 was selected for each 

query. The query sequence with 5A2-P4 returned two results with score 1 (5A2- P4.1 and 5A2-

P4.2). The summary of the Episearch results is shown in the Table 4. The epitope sequence 

corresponding to peptide 5A2-P2 was mapped to the predicted domain II (Fig 7a), 5A2-P4.1, 

5A2-P4.2, P.4E11.PhD, 5A2-P12 to domain III (Fig. 7b,c,e,f) and 5A2-P5 to domains IV and III 

(Fig. 7d).  The peptide 5A2-P15 was mapped to the disordered signal sequence region of the 

model hence it was not shown in Figure 7. Out of the six predicted epitope sequences mapped on 

the 3D model five of them map to the domain III and out of the five, four map to same two 

discontinuous regions of the domain III composed of  aa residues 103-120 and aa residues 513-

558.  

Collectively these results show that the mAbs 5A2 and 4E11 have a common discontinuous 

epitope that is located on the two discontinuous regions of the predicted domain III of BV gB. 

Hence, we disproved our hypothesis that stated the mAb 5A2 and 4E11 epitopes are located on 

fusion loops located in the domain I of gB. 
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2.5 Aim I Conclusions 

The goal of this aim was to test if the neutralizing mAb targeted the fusion loops that are 

generally found at the base of the herpes virus gB. This base is made up of two domains- domain 

I and V, as defined by Heldwein et al (Fig.7) [44]. The domain I forms majority of the base and 

the fusion loops are located on this domain. To test our hypothesis, we identified the mimotopes 

that represent the corresponding epitope of gB that is targeted by the neutralizing mAbs 5A2 and 

4E11 using two distinct phage display libraries and different sequencing approaches to analyze 

the selected phages from each library. A commercial pIII fused random peptide phage display 

library and a fd phage (landscape) pVIII fused random peptide phage display library was used to 

map the epitopes of mAb 4E11 and 5A2 respectively, and sanger’s sequencing and NGS, 

respectively, were used to sequence the selected phages.   

The phage display mapping of the gB with the mAb 4E11 yielded only one positive clone 

despite the three rounds of positive selection which are sufficient to enrich the target (antibody) 

specific phage population [73, 91]. This could be due to a harsh panning strategy, such as the use 

of a closely related mAb for negative selection step. The best specificity binders in the original 

library might have been weeded out by the closely related mAb in the negative selection step 

leaving only the poor affinity binders. These poor binders may have low specificity for the mAb 

and may eventually be outnumbered by the high affinity low specificity binders leaving very few 

of the high affinity high specificity binding clones.  The one positive phage clone-20 was more 

specific for the closely related mAb 5A2 than 4E11 that was used to map the clone, this could be 

because the 5A2 was developed against a more immunogenic part of the epitope and thus has a 

higher specificity for the postulated common/proximal epitope of the two mAbs. Besides that, 
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5A2 may have some conformational advantage over 4E11 that improves its binding with the 

peptide expressed on the clone.  

The use of fd phage (landscape) library when used in conjunction with NGS is a powerful 

tool as there is about 30-fold more expression of peptide per phage thus providing a lot more 

opportunities for target binding compared to the commercial pIII fusion phage libraries. The 

NGS is a highly robust technique that makes it possible to analyze thousands of phage sequences 

at once. As a result, we were able to analyze about 50,000 sequences mAb 5A2 binding phage 

sequences on average per biopan per replicate.  

Since the peptide function (i.e. recognition of the target antibody) is directly dependent on 

the accuracy of its DNA sequence, we had to ensure that there was minimum error in the 

amplification of the fusion peptide DNA sequences and NGS. To this end we used a high fidelity 

DNA polymerase, to avoid incorporation of mismatched base pairs, we kept the PCR cycles to a 

minimum (15 cycles total) to further reduce the chances of any error made by the polymerase 

and we performed PCR amplification for each phage pool in triplicates and then each of these 

triplicates was sequenced individually. As evident from Fig. 5 and Table 2 there was not a single 

mismatch in the 15 sequences that were selected based on their abundance. Also, the small size 

of the error bars in Fig. 5 b there shows that there was a minimum difference in the abundance of 

the each of the 15 sequences within the triplicates in each biopan.  

The Fig. 5b compares the average of crude frequency values of each of the 15 selected 

sequences within the three biopans whereas Fig. 5c compares the average of frequencies of each 

sequence in relation to the total reads of that sample (% of total reads) within the three biopans. 

Hence it is a more accurate depiction  of the differences in the phage sequence frequencies 

between biopans. It is also worth noticing that the pattern of the graph showing the crude 
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(average) sequence frequencies (Fig. 5b) is almost identical to the graph showing the percent of 

total reads (Fig. 5c) even though the total reads for each replicate of each biopan are different 

(Table 1). This is only possible if the sequence: total reads ratio remains constant throughout the 

replicates. Hence this shows that our sequencing results were highly accurate. 

Since, the binding of the 5A2 specific peptides to mAb 5A2 was compared with that of a 

high affinity anti-BV gB mAb 9F1, this was a stringent comparison. Hence, wherever the 

difference between the peptide binding with mAbs 5A2 and 9F1 (OD5A2 - OD9F1) was greater 

than 0.2 for at least two dilutions of the peptides, the peptides were be considered specific to the 

mAb 5A2.  

The magnitude of the difference observed in the activity of the mAbs for their respective 

peptides was observed to be quite significant. The mAb 9F1 had much higher binding with its 

peptide OP2 (OD~ 4), whereas mAb 5A2 binding with its corresponding peptides (e.g. 

P.4E11.PhD) was significantly less (OD~ 0.8). If the quality and similarity of the peptide with 

the mAb epitope of the synthesized peptides are anticipated to be similar, as both peptide 

sequences were identified using the same methods, then the low binding of mAb 5A2 and the 

high binding of mAb 9F1 could be due to their respective low and high affinities. 

The synthesized peptides represent the actual fusion peptides that were expressed on the 

phages. The binding of the peptides 5A2-P2, 5A2-P4, 5A2-P5, 5A2-P12, P.4E11.PhD to the 

mAb 5A2 was higher than their binding with a high affinity BV gB mAb 9F1. This confirms that 

these peptides were specific for the mAb 5A2. When mapped to the 3D model of the BV gB the 

sequences of peptide 5A2-P2 and peptides 5A2-P4, 5A2-P5, 5A2-P12, P.4E11.PhD correspond 

to the domain II (the middle region) and domain III (the core region) respectively. The domain 

III contains three discontinuous segments aa residues 104-120, 487-559 and 648-656. Most of 
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the domain III representing peptides are concentrated in the short segments of 113-120 and 516-

526, and only one of them (5A2-NGS5) corresponds to 528-609.  

Hence, we can conclude that the neutralizing mAbs 5A2 and 4E11 are at least partially 

specific for a discontinuous epitope, aa residues 113-120 and 516-526, located at the domain II 

of BV gB.  
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2.6 Tables 

Table 1. Summary of Next Generation Sequencing of the screened phage pools 
Sample ID Merged Reads Not merged reads Total Reads Merged Over Total (%) 
 5A2-B1A              45,768                1,057          46,825             97.74  
 5A2-B1B              47,466                1,145          48,611             97.64  
 5A2-B1C              46,520                1,174          47,694             97.54  
 5A2-NSA              50,770                1,210          51,980             97.67  
 5A2-NSB              78,884                1,920          80,804             97.62  
 5A2-NSC              88,784                2,672          91,457             97.08  
 5A2-B2A              42,013                1,238          43,251             97.14  
 5A2-B2B              41,285                1,034          42,319             97.56  
 5A2-B2C              39,140                   813          39,953             97.97  
 5A2-B3A              46,141                1,085          47,226             97.70  
 5A2-B3B              44,998                1,060          46,058             97.70  
 5A2-B3C              47,129                1,095          48,224             97.73  
 5A2, Monoclonal antibody 5A2; B1, Biopan 1; B2, Biopan 2; B3, Biopan 3; NS, Negative 
selection; A/B/C, triplicates A,B and C  
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Table 2. The frequencies of selected mAb 5A2 binding peptide sequences 
Peptide 

ID 
aa Sequences Biopan 1 Biopan 2 Biopan 3 

f 
%  of 
total 
reads 

f 
%  of 
total 
reads 

f 
%  of 
total 
reads 

Consensus 
1-9 

--- 42,232.51 89.10 8671.50 48.10 6977.33 14.55 

Consensus 
10-49 

--- 2,038.16 4.30 8003.33 18.41 9070.67 18.91 

Consensus 
50-99 

--- 161.16 0.34 4720.50 10.79 4418.00 9.33 

Consensus 
100-199 

--- 0.00 0.00 5454.00 12.47 5798.67 12.09 

Consensus 
200-299 

--- 0.00 0.00 2715.33 5.46 3394.33 3.08 

Consensus 
300-350 

--- 0.00 0.00 1461.00 3.73 6977.33 3.98 

5A2-P1 CHWEWGSYGIVRTC 1.33 0.00 355.33 0.80 2178.33 4.54 
5A2-P2 IRTASTQYRPPS 0.67 0.00 467.33 1.09 1893.33 3.95 
5A2-P3 CTQSYPSPDC 0.33 0.00 554.33 1.28 1234.33 2.57 
5A2-P4 CLPYFTIPQC 0.00 0.00 1691.33 4.06 1173.00 2.45 
5A2-P5 CPGRAAGVFLSELC 0.33 0.00 284.67 0.68 1127.00 2.35 
5A2-P6 VRHVSITSTH 0.00 0.00 113.67 0.27 1130.00 2.36 
5A2-P7 CEYREWFPWLVHSC 0.33 0.00 817.00 1.88 1170.00 2.44 
5A2-P8 TWWQYSFAEKHP 0.33 0.00 200.00 0.46 939.33 1.96 
5A2-P9 TQSYPPPS 1.00 0.00 2114.33 4.94 875.33 1.82 
5A2-P10 ASLPGNPPYPPL 1.00 0.00 429.67 0.99 822.33 1.72 
5A2-P11 PVRTQSYPNPEL 0.67 0.00 986.00 1.29 752.00 1.57 
5A2-P12 CPPRWCETLP 2.00 0.00 990.67 2.39 528.67 1.10 
5A2-P13 CPGFDVGLIPSC 0.00 0.00 126.67 0.28 383.67 0.80 
5A2-P14 CGTFTPC 5.33 0.01 495.33 1.18 350.67 0.73 
5A2-P15 PVHVSAPSAL 0.67 0.00 100.50 1.34 356.33 0.74 
5A2, Monoclonal antibody 5A2; P1- P15, Peptide 1-15; AA, Amino acid; f, frequency; 
Sequence frequencies and the percentage of total reads shown are the mean values of 
sequence frequencies and percentage of total reads obtained from the sequencing of 
triplicates of phage amplicons from each biopan. 
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Table 3. Difference in OD5A2 – OD9F1 in a direct binding Covalink peptide ELISA 

Peptide ID OD5A2 – OD9F1 
20 10 5 2.5 1.25 

5A2-P2 0.139 0.294 0.256 -0.052 -0.219 
5A2-P3 0.201 0.05 0.288 0.015 0.392 
5A2-P4 0.2 0.149 0.11 0.193 0.529 
5A2-P5 0.115 0.029 0.228 0.131 0.249 
5A2-P6 -0.109 -0.079 -0.244 0.05 -0.04 
5A2-P7 0.281 0.241 -0.035 0.089 0.293 
5A2-P8 -0.163 -0.138 0.02 -0.09 -0.129 
5A2-P9 -0.007 0.037 0.014 0.177 0.379 
5A2-P10 0.013 0.061 0.328 0.075 0.153 
5A2-P11 0.282 -0.171 0.048 -0.023 0.146 
5A2-P12 0.03 0.03 0.305 0.203 0.476 
5A2-P14 -0.115 0.035 0.274 0.008 0.053 
5A2-P15 -0.091 -0.131 -0.013 0.346 0.24 
5A2 PhD -0.165 0.043 0.101 0.041 0.124 

4E11 PhD 0.226 0.358 0.347 0.306 0.362 
OD5A2, absorbance by 5A2 binding; OD9F1, absorbance by 5A2 binding ; 5A2-P2-P15, mAb 
5A2 selected peptides 2-15; P.5A2.PhD, mAb 5A2 selected peptides using phage display; 
P.4E11.PhD, mAb 4E11 selected peptide using phage display; The OD5A2 - OD9F1 > 0.2 are 
underlined. The peptides having OD5A2 - OD9F1 > 0.2 at more than two dilutions of the 
peptide are shown in bold.  
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Table 4. Episearch results summary: Mapping of conformational epitopes 

 

Peptide ID aa Sequences Predicted Residues Score Predicted 
Length 

5A2-P2 IRTASTQYRPPS 

R386 , T387 , Y389 , A390 , S392 
, R393 , Q425 , Y428 , Q459 , 
R461 , R462 , P463 , A466 , A467 
, T469 , P470 , P472 , S473 , 
A474 

1 19 

5A2-P4.1 

CLPYFTIPQC 

 
F114 , Q116 , P117 , P119 , C120 
, I513 , C516 , L518 , Q519 , 
L523 , T524 , L525 

 
1 

 
12 

 
5A2-P4.2 

 
Q113 , F114 , Q116 , P117 , C516 
, L518 , Q519 , L523 , T524 , 
L525 , I537 , T541  

1 12 

5A2-P5 CPGRAAGVFLSELC 

 
C103 , P105 , P106 , V111 , V112 
, E528 ,A529 , R530 , L532 , P534 
, A536 , S539 ,A540 , V542 , 
R549 , L551 , G552 , V554 , 
V557 , S558 , E606 , E609 

1 22 

5A2-P12 CPPRWCETLP 

 
E115 , P117 , R118 , P119 , C120 
, W515 , C516 , E517 , L518 , 
E522 , L523 , T524 , L525 , W526 

1 14 

5A2-P15 PVHVSAPSAL 

 
P7 , L8 , P9 , L10 , P11 , S12 , 
P13 , L14 , V15 , P16 , L17 , L18 , 
A19 , A21 , V622  

1 15 

P.4E11.PhD CEPFWTNCGGGS 
F114 , E115 , P117 , P119 , C120 
, W515 , C516 , E517 , N520 , 
E522 , T524 , W526 , N527 

1 13 

5A2-P2-P15, mAb 5A2 selected peptides 2-15; P.5A2.PhD, mAb 5A2 selected peptides using 
phage display; P.4E11.PhD, mAb 4E11 selected peptides using phage display; aa, amino 
acids 
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2.7 Figures 

 
Figure 1. Immunoreactivity of selected phage clones expressing random peptides 

with mAb IgG1 5A2 in a phage enzyme‐linked immunosorbent assay (pELISA). 
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Twenty phage clones with (a) 7-mer, (b) 12-mer, and (c) random cyclic peptide displays were 

randomly selected after three rounds of biopanning and detected using anti-BV gB mAb 5A2 and 

anti-BV VP13/14 mAb 12F5C1 (negative control) on a in a pELISA . 

  



29 

 
Figure 2. Testing the capture of mAbs by phage clone coated on an ELISA plate. 

A phage clone selected from pELISA was tested for its ability to capture B virus neutralizing 

mAbs. Panel (a) shows the capture of two-fold diluted (40µg/mL- 2.5µg/mL) B virus 

neutralizing mAbs IgG1 5A2 and 4E11 and a control mAb 12F5.C1 by 1.00E+11 PFU/mL 

phage clone 20 selected by mAb 4E11. Panel (b) compares the amount of mAbs captured at the 

dilution of 40µg mAb/mL by the 4E11 phage clone. The OD values represent average mean 

values from duplicate tests. 
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Figure 3. Validation of the size of the recombinant pVIII fusion peptide expressing 

amplicons. 

The recombinant pVIII fusion peptide expressing gene from the phage pools obtained from the 

four rounds of biopanning and an unscreened library were amplified by PCR in triplicates (a, b, 

c). The approximate size of the amplicons from each PCR replicate was determined by gel 

electrophoresis. 
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Figure 4. Enrichment of IgG1 5A2 binding aa sequences in consecutive rounds of 

biopanning. 

After three rounds of positive selection biopanning against mAb 5A2 the phage pools eluted 

from each round show progressively increased selection of mAb 5A2 binding phage sequences. 

The sequences that are unique,  recur 2-9 times (consensus 1-9), sequences that recur between 

10-49 times (Consensus 10-49),  sequences that recur between 50-99 times (Consensus 50-99),  
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206-284 times (Consensus 206-284), sequences that recur between 303-431 times (Consensus 

303-431), and fifteen sequences with the highest number consensuses amongst all the reads are 

shown. Panel (a)  shows the percent (of total reads) distribution of mAb binding sequences for 

each biopan. Panel (b) compares the average of crude frequency values of each of the 15 selected 

sequences within the three biopans whereas (c) compares the average of frequencies of each 

sequence in relation to the total reads of that sample (% of total reads) within the three biopans. 
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Figure 5. Measuring the peptide activity in a direct binding assay. 
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To validate that the peptides (5A2 P2-P12 and 5A2 P14,P15, P.5A2.PhD, P.4E11.PhD) 

identified by the phage display epitope mapping represent/mimic the epitope(s) of the mAb 5A2 

and 4E11 each of the synthesized peptides (a-p) diluted two-fold dilution from 20-1.25 µg/mL 

were tested for their binding to the mAb 5A2 and 9F1 by using the peptides as an antigen in a 

direct ELISA. The binding of peptides with mAb 5A2 and 9F1 was compared for each peptide. 

(p) A peptide OP2 with known specificity for mAb 9F1 was tested for its binding with both 

mAbs 5A2 and 9F1.     
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Figure 6. A three-dimensional structure of a full-length BV gB monomer. 

A 3D model of the monomer of gB with Q (stability value)= -4.84 is shown. Domain I (residues 

141-350) is shown in blue, linker regions (residues 121-128; 479-486) in magenta, Domain II 

(residues 129-140; 351-446) in green, domain II- disordered region (residues 447-478) in light 

green, domain III (residues 104-120; 487-559; 648-656) in yellow, domain IV (residues 98-103; 

560-647; 560-647) in orange, domain V (residues 657-712) in red and the membrane proximal 

region (MPR), transmembrane domain (TMD) and cytoplasmic domain (CTD) (residues 713-

891) are not shown for simplicity. 
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Figure 7. Mapping of conformational epitopes to the predicted three-dimensional 

model of BV gB. 

The location of mimotope sequences corresponding to the peptides, that showed high binding 

with the mAb 5A2, on BV gB is shown. The peptides 5A2-P2 (IRTASTQYRPPS) was mapped 

to the predicted domain II (a), 5A2-P4 (CLPYFTIPQC) panel (b) and (c), P.4E11.PhD 

(CEPFWTNCGGGS) panel (e) and 5A2-P12 (CPPRWCETLP) to domain III (f) and 

P5(CPGRAAGVFLSELC) to domain IV and III (d).  
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3 AIM II: TEST IF SPECIFIC gB EPITOPE(S) INDUCE UNIQUE, B VIRUS-

SPECIFIC HUMORAL RESPONSE(S) DIFFERENTIABLE FROM THOSE 

INDUCED BY CLOSELY RELATED MEMBERS OF THE VIRUS SUBFAMILY. 

B virus (BV, Macacine alphaherpesvirus 1) is enzootic in macaque monkeys, but zoonotic 

infection in humans cross reacts with other alpha herpesviruses [60, 92, 93]. The cross reactivity 

is due to the shared homologous genes between B virus and human herpes simplex virus type 1 

(HSV-1) and type 2 (HSV-2) [2]. There is about 62% similarity in aa acid sequences between all 

homologous proteins of B virus  and both HSV-1 and HSV-2[65]. The currently available 

diagnostics that rely on detecting the levels of these antibodies induced by BV fail to 

differentiate whether antibodies in humans are specific for BV in the presence of high levels of 

anti-HSV antibodies[42, 80, 94]. In order to overcome this challenge, it is critical to identify the 

unique epitopic markers of the B virus to be able to induce specific humoral immune responses. 

A random peptide phage display epitope mapping and custom BV gB peptide array epitope 

mapping will help us identify novel BV specific epitopes that can be used to increase the 

sensitivity and specificity of a BV serological test for humans. The phage screening can help us 

identify linear, conformational or discontinuous epitopes, whereas the overlapping peptide array 

is a high throughput assay and can identify linear epitopes. 

3.1 Identify epitope sequences recognized by BV specific mAb by random peptide phage 

display library. 

To probe for continuous and/or  discontinuous epitopes of the mAb 9F1 we screened the 

phage displayed 7-mer, 12-mer and a loop-constrained heptapeptide cyclic random peptide 

libraries. After three rounds of biopanning,  carefully selected, phage clones were randomly 

picked from 7-mer, 12-mer, and cyclic third round eluate titration plates prior to amplification.  
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Subsequently, each clone was amplified and evaluated for its activity with the mAb 9F1 and a 

non-specific mAb G12D122 (negative control) in phage ELISA (Fig. 8). We observed that all 

twenty 7-mer clones (1-20), eighteen of the twenty 12-mer phage clones (clones 10 and 20 did 

not react) and thirteen of the twenty cyclic phage clones were recognized by mAb 9F1. None of 

the selected phage clones reacted with the mAb G12D12. Sequencing of the positive phage 

clones revealed consensus sequences of 1)“SWRPGDYGGG”, 2)“ANWSHWEFNRRPGGG”, 

and 3)“ACWRPGDMACGGG” within the 7-mer, 12-mer, and Cyc phage clones, respectively 

(Table 5). The high redundancy of 41%, 69% and 94% observed in the sequences of the 

randomly selected 7-mer, 12-mer, and cyclic- clones signifies a high degree of sufficient 

enrichment by the third and final round of selection, eliminating the need of a fourth selection 

round. The consensus motif “RPGD” of the 7-mer and Cyc- phage clones and the consensus 

motif “RRPG” of the 12-mer phage clones corresponded to BV gB sequence of amino acids (aa) 

461-465. The 7-mer, 12-mer, and Cyc- phage clones had an overall consensus motif “RPG”. The 

7-mer phage clones 10, 11, and 12, and the 12-mer phage clone 16 had OD >0.6 (A450), but could 

not be sequenced due to low DNA concentrations. Peptides biotinylated at the carboxyl terminal 

corresponding to the 7-mer, 12-mer, and cyclic phage clone consensus sequences were 

subsequently synthesized. Phage display sequencing results provided an idea of the approximate 

size (10-15 aa) and motif (RRPGD) to search for within the BV gB sequence. Hence, we 

synthesized another biotinylated peptide, OP2 Mod, BVgB sequence aa 457-468, 

“REQERRPGDAAA”. This peptide matched the characteristics of mAb 9F1-recognized epitope 

as defined by the phage display as it contains the consensus motif “RRPGD” and was 12 aa in 

length.  
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3.2 Identify epitope sequences recognized by BV specific mAb by peptide array. 

To identify the complete linear epitope which binds with mAb 9F1, the BV gB overlapping 

peptide array was employed. The peptides were spotted on a chip with four subgrids, on each 

subgrid either 90nmol, 180nmol, 270nmol or 460nmol of peptide per spot were spotted in 

duplicates (Fig. 10a). The four different concentrations of peptides were optimized to minimize 

signal-to-noise-ratios for the positive signals. Results revealed that mAb 9F1 bound to only a 

single 24-aa region of BV gB sequence, aa 451-474, represented by the four overlapping 

peptides with a consensus sequence ERRPGD (Fig. 10d).  The florescence intensity 

corresponded to the amount of mAb 9F1 reacting with the peptides. As predicted, the 

fluorescence, and thus mAb binding, increased with increasing concentrations of the overlapping 

peptides, suggesting that the peptide spot does not saturate with peptides even until 360 nmol 

(Fig. 10b). OP1 demonstrated the highest activity as it had the highest mean fluorescence 

amongst the four overlapping peptides. There was a significant difference in the mean 

fluorescence intensities of the OP1 with OP2, OP3 and OP4 (p< 0.05) at the peptide 

concentration of 270 nmol/spot (Fig. 3C). At other concentrations of the peptides (360, 180 and 

90 nmol) there was no significant difference (p> 0.05) between the four overlapping peptides. 

These results suggest that each of one of these peptides represents the epitope of the mAb 9F1, 

OP1 having a slightly better activity than the rest of the peptides. 

 

3.3 Validate that peptides corresponding to the unique BV gB motifs identified by 9F1 

are specific to 9F1 in a CIBE. 

To establish that the peptides truly represent the BV epitope identified by the mAb 9F1, 

each of the phage display identified peptides (PhdPs 1-3) and OP2 Mod1 peptide were tested for 
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their ability to block the binding of the B virus specific mAb 9F1 and a control mAb 7G8 to the 

B virus whole antigen (Fig. 9). PhdP1, PhdP2, PhdP3 and OP2 Mod blocked a maximum of 

75.23%, 66.29%, 63.29% and 72.62 of mAb 9F1 binding respectively (Fig. 9c). Whereas, the 

maximum blocking of the control mAb 7G8 binding to the B virus whole antigen by PhdP1, 

PhdP2, PhdP3 and OP2 Mod1 was only 34.51%, 32.10%, 19.14% and -14.47% respectively, at 

12.5 µg of peptide/mL (Fig. 9d). This shows that all the peptides represent/mimic the target of 

the mAb 9F1 and not the control mAb 7G8. The maximum blocking of 9F1 binding by OP2 

Mod1 could be achieved at a low concentration of just 25µg/mL whereas 100µg/mL of peptide 

was required to achieve similar levels of blocking by PhdP1-3.  

Overall, amongst the PhdPs, PhdP1 exhibited the best sensitivity and PhdP3 exhibited the best 

specificity for the mAb 9F1. The OP2 Mod1, even at low concentration of 12.5ug/mL, has a 

comparable sensitivity to PhdP1 and PhdP3 but much better specificity (Fig. 9c, e). This is 

probably due to the fact that the peptide with aa sequence closest to the BV gB sequence, i.e. 

OP2 Mod1, is more efficient at blocking compared to PhdP1-3 that only partially resemble the 

BV gB sequence. Hence these results show that the OP2 Mod1 peptide represents the epitope 

recognized by mAb 9F1 more accurately than the PhdPs 1-3. The comparatively higher activity 

of OP2 Mod1 is further evident in the direct binding ELISA (Fig. 11) 

3.4 Validate that peptides corresponding to the unique BV gB motifs identified by 9F1 

are specific to 9F1 in a direct binding assay  

To determine the best configuration of aa residues for optimal epitope function we 

synthesized C-terminally biotinylated peptides from the available phage clone, peptide array and 

modified peptide array sequences, and tested their activity in direct ELISA. The activity between 
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the peptides was compared by measuring the difference in the absorbance at 1:6250 dilution of 

mAb  (Figure 11d-f and Table 6). The overlapping peptides, OP2, OP3 and OP4 exhibited 

comparable activity (Fig. 11a,d) which was the highest amongst all the peptides tested (Fig. 11a-

c, Table 6). Although insignificant (p>0.05), OP2 peptide shows marginally better activity than 

OP3 and OP4. Contrary to the results obtained from peptide activity comparison in figure 11c, 

OP1 shows the least activity out of the four overlapping peptides. OP2’s activity was 

significantly higher (p<0.05-p<0.0001) than all the phage display peptides (PhdP1-3). Amongst 

the PhdPs, PhdP3 exhibited the highest activity (Fig. 11d).  

To test if the N terminal aa of OP1 were responsible for the low activity of the peptide we 

performed a conservative replacement by substituting six N terminal aa residues-YVRELL of 

OP1 with aa residues of similar hydropathy indices-FLHDVV. This further reduced OP1 

activity, suggesting that the peptide originally existed in the best possible configuration and the 

modification caused an adverse functional and or structural change (Fig. 11e). The removal of 

the N terminal motifs “ELL” from the OP2 peptide sequence to get the peptide OP2 Mod1 

sequence insignificantly (p> 0.05) reduced the activity of the OP2 Mod. However, the removal 

of the last six C terminal aa “AAATPK” from OP2 to get OP2 Mod2 significantly (p< 0.0001) 

reduced the activity of OP2 Mod2 highlighting the importance of the C terminal sequences for 

the optimal epitope function. 

The activity of the CS peptide that had only the peptide array consensus sequence “ERRPGD” 

was significantly lower (p<0.0001) than the OP2.  By adding three Alanines to the N terminus 

and six to the C terminus of the CS sequence we created a 15 aa long peptide CS Mod1 which 

had significantly higher activity (p<0.0001) than CS (Fig. 11f, Table 6). Although significantly 
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different, CS Mod1 had activity similar to the OP2 (p<0.05) suggesting that the motif “AAA” 

and the size of the peptide are critical for its activity. 

We wanted to test if the “ER” aa of the CS peptide are important for the peptide activity hence 

we replaced the aa with “AA” and restored the size of the peptide to 15aa by adding additional 

five and seven Alanines to the N terminal and six and three Alanines to the C terminal to get CS 

Mod2 and CS Mod3. Both these modifications further reduced the activity of the peptide 

compared to the CS peptide (Fig. 11f). Hence suggesting that “ER” motif, “AAA” motif along 

with the size of peptide is critical for peptide activity.  

 

3.5 Mapping the epitope ELLREQERRPGDAAA to the three-dimensional structure of 

gB.  

Since no structural information about the B virus glycoprotein B (BVgB) is available, a 3-

dimensional model of a monomer of BVgB was prepared by projecting BVgB sequence on the 

x-ray crystallographic structure of full-length gB from a closely related HSV1 homolog (PDB 

code 6BM8) [89] . Five different models were generated from the program I-TASSER and were 

tested for protein structure stability with QMEANDisCo. The stability (Q values) were -4.84, -

4.99, -5.29, -5.67, and -7.66 for each of the model 3, 5, 2, 4 and 1. A model, of the highest Q 

value of -4.84, shown in Figure 5, was selected for the mapping of the most responsive epitope 

(residue 454-468) ELLREQERRPGDAAA corresponding to the peptide OP2 (Fig. 11) 

highlighted in green in Fig.  12. The “RPGD” motif, identified by phage display, mapped to 

residues 461-465 of BV gB (highlighted in red in Fig 12), is integral part of the mapped epitope. 

It forms a loop that pokes out of the predicted domain II (residues 129-140, 351-446, 447-478; as 

described for HSV1 gB by Heldwein et al[44]) which might be the most surface accessible area 
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of the epitope as evident in Fig. 5B. Other high response epitopes corresponding to OP1, OP3 

and OP4 peptides (residues 451-465; 457-471 and 460-474, respectively) were all mapped to the 

predicted domain II in the proximity of OP2 epitope but are not shown in the figure 12 for 

simplicity. The location of the epitope on the “exposed” surface of BV gB as shown in figure 5B 

and as depicted earlier on a HSV1 gB model [95] suggests that it is accessible for interaction 

with B cell receptors and is most likely a B-cell epitope. 

3.6 Validating the specificities of the peptides, identified by phage display, for anti-BV 

and anti- herpesvirus polyclonal antibodies in a direct binding enzyme linked 

immunosorbent assay. 

To test the hypothesis that the peptides identified by phage display epitope mapping are 

specific to BV antibodies the PhDPs (1-3) and the peptide OP2 Mod1 that was discovered from 

alignment of PhDPs consensus sequence with BV gB were tested for their binding with macaque 

and human anti-BV and human anti-HSV antibodies in a peptide coated ELISA. As expected, all 

the peptides showed high binding (OD~ 4) with the mAb 9F1. Although PhDP1 had significantly 

lower binding (p<0.05) to 9F1 than the other peptides. OP Mod 1 was significantly (p<0.05) 

better at capturing anti-BV antibodies from rhesus BV+, cynomolgus BV+ serum pools than the 

PhdPs and it showed minimal reactivity with rhesus and cynomolgus BV- serum pools (Figure 

13a). PhdP1 was significantly better at binding to anti-BV antibodies from all BV infected 

humans than other peptides (p<0.005). But it also bound to rhesus BV- (p<0.05), cynomolgus 

BV- (p<0.0001) and Human BV- serum (p<0.05), HSV1+ pool (p<0.0001) and HSV2+ pool  

(p<0.0001) significantly more than any other peptide (Fig. 13b). Although it was significantly 

better (p<0.005) than any other PhDP in capturing cynomolgus BV+ Abs it bound to least 
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amount of Abs from the rhesus BV+ pool. PhdP3 showed the most amount of binding with the 

rhesus BV+ sera amongst all the PhdPs.  

Collectively, these results show that PhdP1 is sensitive but not specific for BV antibodies in 

humans. Whereas OP2 Mod1 is both specific and sensitive for BV antibodies in rhesus and 

cynomolgus macaques, and humans. Although, in humans, its sensitivity is lower than that of 

PhdP1. 

3.7 Validating the specificities of the peptides, identified by peptide array and compound 

mutagenesis studies, for anti-BV and anti- herpesvirus polyclonal antibodies in a 

direct binding enzyme linked immunosorbent assay 

To test if the peptides OP2, CSMod2, and the HSV1 and HSV2 correlates of OP2, HSV1-OP2 

and HSV2-OP2 respectively, are specific for anti-BV and anti-herpesvirus polyclonal antibodies 

the peptides were tested in a peptide coated direct ELISA. Both OP2 and CS Mod 1 are specific 

and sensitive for the Rh BV+ and cynomolgus BV+ serum (Fig. 14a). OP2 overall has better 

sensitivity and specificity for human BV+ sera. OP2 binds significantly (p<0.005) more with Hu 

BV+ (BP)  and insignificantly more than the Hu BV+ (LS) but CS Mod1 binds marginally better 

to Abs from Hu BV+ (CT) and Hu BV+ (SZ). OP2 does not cross react with human either of the 

BV- sera, HSV1+ pool, two of the three individual HSV1+ sera, HSV2+ pool and two of the 

three individual HSV2+ sera (Fig. 14b,c). CS Mod 1 on the other hand has a significantly more 

cross-reactivity with one of the human BV- serum (p<0.05), and HSV2+ pool and individual sera 

(p<0.05) compared to OP2. Hence these results suggest that OP2 has better sensitivity and 

specificity than CS Mod 1 for human BV+ sera. 

HSV1-OP2 and HSV2-OP2 do not cross-react with any macaque BV+ sera but do cross react 

with two of the five human BV+ sera and one of the human BV- sera each of which were both 
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HSV1 and HSV2 negative. As expected, the HSV1-OP2 reacted with HSV1+ pool and all the 

HSV1+ individual sera but it did cross-react with two of the individual HSV2+ sera without 

showing any cross-reactivity for the HSV2+ pool. These results suggest that HSV1-OP2 is 

specific and sensitive for HSV1+ sera but can cross-react with BV+ sera and show  mild cross-

reactivity for HSV2+ sera.  

HSV2-OP2 peptide cross-reacts with HSV1+ pool and all individual sera and reacts with two out 

of three individual HSV2+ sera but surprisingly does not react with HSV2+ pool. These results 

suggest that HSV2-OP2 has poor sensitivity and specificity for HSV2+ sera. 

 

3.8 Determining the sensitivity and the specificity of OP2 peptide for Macaque sera in a 

direct binding assay 

Since in the previous experiments the peptide OP2 exhibited high specificity and 

sensitivity for the limited number of macaque serum sample we wanted to test if the same was 

true for a larger sample size. Hence the binding of the peptide OP2 with BV+ and BV- rhesus 

and cynomolgus sera was measured in a direct binding assay. To determine the total number of 

BV+ sera identified and BV- sera not identifies by OP2 a cut-off of OD (A 405-490) =0.3 was used. 

The sera that on binding with OP2 had OD (A 405-490) > 0.3 were considered BV+ positive and 

sera with OD (A 405-490) < 0.3 were considered negative. Out of the 30 BV+ rhesus and 

cynomolgus macaque sera tested  28 and 17 respectively,  were found to be positive (Fig. 15 a 

and c). Out of the 20 BV- rhesus and cynomolgus macaque sera tested  none of them were found 

to be positive (Fig. 15 b and d). Hence the sensitivities and specificities of OP2 for BV+ rhesus 

and cynomolgus sera are 93.3% and 56.7%, and a 100% respectively.  
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3.9 Testing the cross-reactivity of the peptide OP2 with HSV sera. 

To validate that the OP2 does not cross react with HSV sera the peptide was tested with 

only HSV1+, only HSV2+, both HSV1 and 2 positive, both HSV1 and 2 negative sera in a direct 

binding ELISA. OP2 did not cross react with either of the HSV1 and 2 standard serum pools. It 

only reacted with the mAb 9F1, 1 out of 20 HSV1 positive only sera, 4 out of 20 HSV2 positive 

only sera and 13 out of 20 both HSV1 and 2 positive serum samples (Fig. 16 a-c). Unexpectedly 

OP2 also non-specifically reacted with 6 out of 20 HSV1 and 2 negative serum samples (Fig. 

16d). These results show that that even though OP2 does not cross react with HSV1 + only and 

HSV2+ only sera the peptide appears to be a lot less specific when being tested with both HSV1 

and HSV2 antibodies simultaneously. 

3.10 Aim II Conclusions 

Zoonotic B virus infection causes rapidly debilitating fatal central and peripheral nervous 

system disease in humans that is challenging to diagnose early when the presence of cross 

reactive HSV1 and HSV2 serum and/or CSF antibodies are present [92]. Hence, in our effort to 

develop an accurate serological assay for unequivocal identification of zoonotic B virus 

infection, we isolated and characterized a BV-specific reagent, mAb 9F1, to map BV-specific 

epitopes[96].  To identify the amino acid residues critical for the epitope function, we used a  

novel combination approach comprising random peptide phage display, overlapping peptide 

arrays, and compound mutagenesis.   

Through phage display epitope mapping we identified an epitope comprised of an “RPGD” 

motif, which mapped precisely to aa 461-465 region of the possibly one of the most surface 

accessible regions of the predicted domain II of BV gB protein (Fig. 5B). With this information, 

we synthesized OP2 Mod peptide, a 12-aa peptide, BVgB sequence aa 457-468 with the 
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“RPGD” motif at its center with activity greater than any of the phage display peptides when 

using a direct binding ELISA. The overlapping peptide array analysis revealed the complete 

epitope and the constitutive aa residues that were used to synthesize four peptide sequences of 

high specific activities. Because overlapping peptide array epitope mapping is a semi 

quantitative method, additional testing of the activity of the mAb reactive peptides using peptide 

ELISA was done in combination with compound mutagenesis to define and refine 

immunoreactive regions of identified immunoreactive epitopes, or mimotopes [96].  

The multiple amino acid modifications made within domains flanking the core consensus 

region of the BV- specific epitope we study here facilitated identification of  a collective effect 

of the residues on specificity without synthesizing custom phage display libraries that are 

generally employed for fine epitope mapping [97-100]. We determined that for full activity the 

consensus sequence “ERRPGD” alone is insufficient in that the immunoreactivity of the peptide 

size was improved with 15 aa, “ER”, “RPGD” and “AAA” motifs at the N terminus, center and 

at the C terminus respectively.  The optimal size of 15 aa probably represents the epitope size 

that can be accommodated in the antigen binding pocket of the mAb. Other methods involving 

mutagenesis of the antigen fragment representing the putative epitope displayed on yeast or 

phages do not validate the specificity of the mAb selected phages. Hence analyzing the specific 

activity of the peptides expressed on these cells/phages may provide erroneous data regarding the 

role of individual aa residues in epitope function[101-104] .  

The comparison of the relative activities of overlapping peptides (Fig. 4), each individually 

representing the actual epitope sequence, suggests that either of the four overlapping peptides 

OP1, OP2, OP3 and OP4 could be used to effectively detect a specific anti-B virus antibody. But 

using the entire epitope sequence, BVgB aa 451-474, might not be optimal for serological 
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differential diagnosis of B virus in humans as it might contain cross reactive aa residues. Any 

conservative replacement or deletions of certain aa residues in some of these OPs negatively 

affected the activity of these peptides suggesting the functional relevance of the original residues. 

Out of all the overlapping peptides OP4 might be the best candidate for the serological 

differential diagnosis of B virus infections as in addition to satisfying all the three 

aforementioned conditions for maximum activity it also has maximum number of aa acid 

residues that are unique to BV (Fig. 3D).  

The 15-fold increase in the peptide activity of CS Mod1 by addition of alanine to both 

amino and carboxy terminals of CS peptide sequence could be attributed to a favorable entropy 

change that might have offset the enthalpy loss and may not necessarily be due to the binding of 

alanines to the paratope of the 9F1 as described by Greenspan and Di Cera [105]. When 

comparing CS Mod1 peptide sequence and peptide activity with that of OP3 (Table 2) it is 

evident that either the aa residues flanking ERRPGDAAA are not involved in binding with the 

paratope, are neutral, or they produce the same thermodynamic stability as the alanine 

substitutions of the original aa residues. Despite comparable activity to OPs CS Mod1 may not 

be a good candidate for differential diagnostics as it still misses the unique aa residues that 

distinguish it from the corresponding HSV1 and HSV2 epitope. 

In  direct ELISA it was observed that PhdP3 activity is significantly (p<0.0001) higher 

than that of other PhdPs (Fig. 4C, D) but in cELISA PhdP3 activity was comparable to other 

PhdPs (Fig. 2C, E). This might be due to a blocking disadvantage posed by the cyclic nature of 

the PhdP3 or the differences in the binding opportunities presented to the mAb by the 

immobilized peptide, in direct ELISA, versus the solubilized peptide in cELISA. The 
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immobilized peptide might provide a better opportunity to bind to the mAb compared to the 

solubilized peptide.  

The overlapping peptide 2 (OP2) of sequence ELLREQERRPGDAAA was mapped to a 

region (residues 447-478) of the 3D model of B virus gB. This region corresponds to the 

predicted disordered segment of domain II of HSV1 gB, the only closely related glycoprotein for 

which the 3D structure is available and also the most conserved herpesvirus entry glycoprotein 

[44]. The disordered segment is found on the lateral side of gB and is postulated to be involved 

in an umbrella like folding and unfolding of gB between pre and post fusion states. An anti-

HSV1 mAb C226 that binds to a discontinuous epitope (234-472), an epitope that partially falls 

in the HSV1 gB segment (464-487), corresponding to our B virus epitope (451-474), can 

neutralize HSV1[50] suggesting that mAb 9F1 might have a neutralizing function. But the 9F1 

failed to neutralize B virus in a plaque reduction neutralization assay (unpublished results). This 

region has also been shown to be the locus of post-translational modification in some 

herpesviruses[106]. This might suggest that the blocking of this epitope using the mAb 9F1 

might hinder the post-translational modifications, as the protein is being released from the golgi 

of the host cell,  and thus may result in the loss or alteration of gB’s activity, which could be its 

interaction with gD or gH/gL complex, in addition to the fusion of the virus with the host cell 

[107-109].  
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3.11 Tables 

Table 5. Peptide sequences of the selected phage clones. 
Phage Clone   Amino acid sequence 
7M-1         S W R P G E Y G G G   
7M-2         S W R P G D Y G G G   
7M-3         S W R P G D Y G G G   
7M-4         S W R P G D Y G G G   
7M-5         S W R P G D Y G G G   
7M-6         S W R P G D Y G G G   
7M-7         S W R P G D Y G G G   
7M-8         S W R P G D Y G G G   
7M-9         S W R P G D Y G G G   
7M-13         S W R P G D Y G G G   
7M-14         S W R P G D Y G G G   
7M-15         S W R P G D Y G G G   
7M-16         S W R P G D Y G G G   
7M-17         S W R P G D Y G G G   
7M-18         S W R P G D Y G G G   
7M-19         S W R P G D Y G G G   
7M-20         S W R P G D Y G G G   
Cyc-1        A C W R P G D M A C G G G 
Cyc-4        A C W R P G D M A C G G G 
Cyc-5        A C W R P G D M A C G G G 
Cyc-9        A C W R P G D M A C G G G 
Cyc-10        A C W R P G D M A C G G G 
Cyc-14        A C W R P G D M A C G G G 
Cyc-15        A C W R P G D M A C G G G 
Cyc-16        A C W R P G D M A C G G G 
Cyc-19        A C W R P G D M A C G G G 
Cyc-3        A C T P R P D G R C G G G 
Cyc-7        A C D D R R P G S C G G G 
Cyc-8        A C D L I R R P G C G G G 
Cyc-6        A C S L R P G D L C G G G 
12M-1 A N W S H W E F N R R P G G G      
12M-2 A N W S H W E F N R R P G G G        
12M-8 A N W S H W E F N R R P G G G        
12M-12 A N W S H W E F N R R P G G G      
12M-13 A N W S H W E F N R R P G G G      
12M-14 A N W S H W E F N R R P G G G      
12M-18 A N W S H W E F N R R P G G G      
12M-5 G N W C H R E D N R R P G G G        
12M-7 G N G C H R G D N R R P G G G        
12M-3 S W F N D E L D R R P G G G G        
12M-4 A G W S P P G F D R R P G G G        
12M-9 R N D P F A W K D R R P G G G        
12M-11 G H T A V S G D D R R P G G G      
12M-15 T F S N F G S N D R R P G G G      
12M-17 S I D R Y P G W R R S P G G G        
12M-6 G F T V F T S H D C R P G G G        
12M-19 M N D P F A W K D C R P G G G      
Consensus                     R P G               
BV gB 
 (452-471) V R E L L R E Q E R R P G D A A A T P K 

7M, 7-mer phage; Cyc, loop-constrained heptapeptide cyclic phage; 12M, 12-mer phage; BV gB, B virus glycoprotein 
B. The motifs common in all the sequences are highlighted in bold. Overall consensus is highlighted on a segment 
(residues V452- K471) of BV gB sequence in bold. 
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Table 6. Summary of characteristics and activity of the synthesized peptides. 

Core 
Motif 

Supplementary 
 Motifs Name No. of  

AA Amino acid sequence Peptide 
Activity 

M
ot

if  
R

PG
D

 

AAA and ER present 

OP2 15aa ELLREQERRPGDAAA 4.58 
OP3 15aa REQERRPGDAAATPK 4.42 
OP4 15aa ERRPGDAAATPKPSA 4.32 

CS Mod1 15aa AAAERRPGDAAAAAA 4.38 
OP2 Mod1 12aa REQERRPGDAAA 4.35 

AAA missing 

OP1 15aa YVRELLREQERRPGD 3.97 
OP1 Mod 15aa FLHDVVREQERRPGD 2.58 
OP2 Mod2 9aa REQERRPGD 0.27 

CS 6aa ERRPGD 0.29 

ER missing 
CS Mod2 15aa AAAAARPGDAAAAAA 0.24 
CS Mod3 15aa AAAAAAAARPGDAAA 0.22 

ER and AAA missing 
PhdP3 12aa CWRPGDMACGGG 4.24 
PhdP2 10aa SWRPGDYGGG 1.07 

Motif 
RPG ER and AAA missing PhdP1 15aa ANWSHWEFNRRPGGG 0.18 

None ER and AAA missing No Peptide 15aa ---- 0.26 
Aa, Amino acids; mAb, Monoclonal antibody; Mod, modified; OP, Overlapping peptide; CS, 
Core sequence; PhdP, Phage display peptide.The motifs present on the BV gB sequence are 
highlighted in bold. Peptide activities shown are the mean values of absorbance (A405-
490nm) of peptides in triplicates at 1:6520 dilution of mAb 9F1. 
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3.12 Figures 

 
Figure 8. Immunoreactivity of selected phage clones expressing random peptides 

with mAb 9F1 in a phage enzyme‐linked immunosorbent assay (pELISA). 

Twenty phage clones with (a) 7-mer, (b) 12-mer, and (c) random cyclic peptide displays were 

randomly selected after three rounds of biopanning and detected using mAb 9F1 and G12D12  

(negative control). 
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Figure 9. Testing if the peptides represent or mimic the 9F1 epitope by measuring 

the blocking of BV-specific mAb 9F1 binding to BV whole antigen by the peptides. 

Blocking of (a) mAb 9F1 (b) mAb 7G8 binding to BV whole antigen by the synthetic peptides. 

The percent blocking of (c) the mAb 9F1 and (d) control mAb 7G8 binding by the peptides 

calculated using the formula 100-(OD of the peptide/OD control peptide (ConP)*100). (e) 

Percent blocking of mAb 9F1 and mAb 7G8.D3 binding by the peptides at 25µg of peptides/mL. 
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Figure 10. Identification of epitopes of mAb 9F1 using overlapping peptide array. 

An overlapping peptide array of BV gB amino acid sequence with 15 amino acids long 

peptides and an overlap of 4 amino acids between the peptides was used. (a) A cropped section 

of the peptide array slide showing only the positive spots. The observed flourescence is due to 

the binding of mAb 9F1 with the four overlapping peptides (OP1-4) that were coated at three 

fold dilutions from 460- 90 nmol/spot in duplicates. (b) The mean flourescence intensities were 

calculated for each overlapping peptide at different concentrations using ImageJ. (c) Comparison 

of the mean flurescence intensities of OPs (1-4) at the concentration of 270 nmol/spot. (d) The aa 

sequence of 9F1 epitope of herpes B virus gB (UniProtKB - Q7T5E1), the corresponding 

epitopes of HSV2 (UniProtKB - P08666) and HSV1 (UniProtKB - P10211), the overlapping 

peptides and their location on the BV gB sequence is shown. The aa residues that are unique but 

are common to either HSV1 or HSV2 are underlined, aa residues that are unique only to herpes 

B virus are underlined and highlighted in grey. Consensus sequence of overlapping peptides is 

highlighted in bold. 
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Figure 11. Measuring the peptide activity in a direct binding assay 

The synthesized biotinylated peptides were tested for their binding to the mAb 9F1 by using the 

peptides as an antigen in a direct ELISA. The OD values represent average mean values from 

triplicate tests. The peptide binding with mAb 9F1 was grouped based on the amino acid residues 

present in the peptides(a) Peptides with “RPGD”, “ER”, “AAA” motifs and are 15 aa long, (b) 
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peptides missing either one of these elements and (c) peptides missing two or more of these 

elements. The binding of peptides to 1:6250 dilution of mAb 9F1 was compared between (d) 

peptides identified using overlapping peptide array and phage display (e) OP2 and OP1 with 

their respective modifications. (f) OP2 and peptides synthesized based on the consensus 

sequences, from peptide array and phage display, and the modifications of the consensus 

sequence.  
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Figure 12. Mapping of the epitope (OP2) ELLREQERRPGDAAA to a three-

dimensional model of a BV gB monomer. 

A 3D model of the monomer of gB ectodomain (residues G72-E891) was generated by 

projecting the BV gB sequence on the crystal structure of full length HSV1 gB (PDB code 

6BM8). Panel A, ribbon representation of BV gB monomer (residues A98-A712), shows the 

epitope (OP2) ELLREQERRPGDAAA (residues 454-468) highlighted in green. The inset shows 
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the location of individual amino acid residues that constitute the epitope.  Panel B, a solvent-

accessible surface representation of the predicted domain II (residues 129-140, 351-446, 447-

478) of BV gB, shows the location of the complete epitope (green) and consensus sequence 

RPGD (red) on domain II. The consensus sequence RPGD is magnified in the inset to emphasize 

the surface accessibility of the residues. 
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Figure 13. Testing the specificities of the peptides, identified by phage display in a 

direct binding enzyme linked immunosorbent assay. 

The specificities of PhdPs 1-3 and OP2 Mod1 (discovered from alignment of PhDPs consensus 

sequence with BV gB) for (a) Rhesus, cynomolgus and (b) human sera are shown as absorbance 

values at 409-490nm . 
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Figure 14. Testing the specificities of the peptides, identified by peptide array and 

compound mutagenesis studies, in a direct binding enzyme linked immunosorbent assay. 

The specificities of OP2, CS Mod1, HSV1-OP2 and HSV2-OP2 peptides for (a) Rhesus, 

cynomolgus and (b) human BV positive and negative sera, and  (c) human HSV sera are shown 

as absorbance values at 409-490nm. 
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Figure 15. Determining the sensitivity and the specificity of OP2 peptide for 

Macaque sera. 

The peptide OP2, identified using peptide array, was tested for its sensitivity and specificity for 

the BV infected rhesus and cynomolgus macaques. ELISA plates were coated with OP2 and the 

binding of polyclonal antibodies from (a) BV infected rhesus sera, (b) BV uninfected rhesus 

sera, (c) BV infected Cynomolgus sera, (d)  BV uninfected cynomolgus sera was determined by 

measuring the OD (absorbance at 405-490nm). 
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Figure 16. Testing the cross-reactivity of the peptide OP2 with HSV1 sera. 

The cross-reactivity of the peptide OP2 with sera from (a) HSV1 only positive humans, (b) 

HSV2 only positive humans (c) both HSV1 and HSV2 positive humans (d) both HSV1 and 

HSV2 negative humans was measured in a direct binding ELISA by determining the binding of 

sera to the coated peptide by measuring the OD (absorbance at 405-490nm). 
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4 MATERIALS AND METHODS 

4.1 Epitope mapping by commercial random peptide phage display library 

Mapping of BV gB epitopes specific for monoclonal antibody IgG2a 9F1 was performed 

using linear random peptide phage display libraries (heptapeptide: Ph.D.-7, dodecapeptide: 

Ph.D.-12 and loop-constrained heptapeptide: Ph.D.-C7C; New England Biolabs) as per 

manufacturer’s instructions. Briefly, the wells of flat bottom Maxisorp immunoplates (Nunc) 

were coated with 150µL of 100 μg/ml 9F1 mAb/well in 0.1 M NaHCO3 buffer (pH 8.6) and 

incubated overnight at 4°C with gentle agitation in a humidified container. The coating solution 

was poured out and 300µL of blocking buffer (5mg/mL bovine serum albumin in 0.1 M 

NaHCO3; pH 8.6) was added, followed by incubation at 37oC for 1 h. After washing the plate 6x 

with TBST (TBS + 0.1% (v/v) Tween-20), 2x1011 phage clones diluted in 100µL of TBST were 

added and incubated for 1 h at 37oC with gentle agitation. After washing the plate 10x with 

TBST the bound phages were eluted with 100µL of 0.2 M Glycine-HCl (pH 2.2) for 10 min and 

neutralized with 15 μl of 1 M Tris-HCl (pH 9.1). The eluted phages were amplified in ER2738 

culture and precipitated with 20% PEG 8000/2.5 M NaCl. After one round of negative selection 

using mAb G12D122 two additional rounds of selection of amplified phages, twenty random 

well separated plaques were selected, amplified and tested by ELISA.  

Phage Titration 

To each 10 µL of ten-fold serially diluted phages 200µL of a mid-log phase ER2738 

culture was added and incubated at RT for 2 mins. Each phage dilution was then mixed with 3 

mL of 45oC top agar and then poured onto a pre-warmed LB/IPTG/Xgal plate. The plates were 

allowed to cool for 5 minutes and incubated overnight at 37°C. The plaques were counted on 
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plates that had approximately 100 plaques. 

4.2 Phage ELISA I (Phage capture by coated mAb) 

Each of the 20 blue plaques picked from the titeration plate were transferred to tubes 

containing 1 ml of 1:100 diluted overnight culture of ER2738. The tubes were incubated at 37°C 

with shaking for 5 hours. The bacteria were pelleted down and 5 μl of the supernatant from each 

clone was added to a 20 ml culture for each clone and incubated with vigorous aeration for 5 

hours at 37°C. The bacteria were pelleted down and the phage was precipitated from the 

supernatant using 20% PEG 8000/2 .5 M NaCl. An ELISA plate was coated with 100 μg/ml of 

target mAb in 0 .1 M NaHCO3, pH 8 .6 and incubated overnight at 4°C in a humidified chamber. 

The plates were then incubated with blotto for 1 hour at 37°C. The phage clones (1011 virions) 

were diluted 1:10 in blotto and incubated with shaking at RT for 2 hours. HRP-anti M13 (GE 

Healthcare, USA) diluted at 1:5000 in blotto was added and incubated at 37°C for 1 hour. The 

plates were washed 6x with TBST after each incubation. TMB substrate (ThermoFisher, USA) 

100ul/well was added and the plates were incubated at 37°C for 20 min. To stop the reaction 1M 

H2SO4 50ul/well was added and the absorbance (OD450nm) was measured using a plate reader. 

The positive phage clones were sequenced, and the peptide sequences were synthesized 

commercially (Peptide 2.0, Chantilly, VA). An additional lysine was added to the C terminal of 

certain peptides for biotinylation. 

4.3 Phage ELISA II (Antibody capture by coated phage) 

An ELISA plate was coated with 1011 PFU/mL phages in 0 .1 M NaHCO3, pH 8 .6 and 

incubated overnight at 4°C in a humidified chamber with shaking. The plates were then 
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incubated with blotto for 1 hour at 37°C. The mAbs were diluted two folds from 40 µg/mL-

2.5µg/mL in blotto and incubated at 37°C for 1 hours. Anti-mouse IgG H+L (Bethyl 

Laboratories, USA) alkaline phosphatase conjugated secondary antibody diluted at 1:500 in 

blotto was added and incubated at 37°C for 1 hour. The plates were washed 3x with BBST after 

each incubation. To prepare the substrate solution p-nitrophenyl phosphate (pNPP) tablets 

(Sigma) were added in 1 M diethanolamine buffer containing 0.5 mM MgCl2, pH 9.8 (1 mg of 

pNPP/ml), and  200 µL of freshly prepared mixture was added to each well. The reaction was 

stopped by adding 50µL of  3N NaOH per well after 30 minutes of incubation and the optical 

densities (ODs) were read on an automatic microplate reader at 405-490 nm. 

4.4 Epitope mapping by fd random peptide phage display library 

The fd phage display library (linear and looped 8,6,10,12-mer peptides) were a kind gift from Dr. 

Jonathan Gershoni, Tel Aviv University, Israel.  For the first round of positive selection the mAb 

5A2 (10μg) was mixed with 1×1010 phage library in a total volume of 100 μl of blocking solution 

(3% BSA in TBS. After incubating the tube on a shaker for 1 hour at RT 50μl of Invitrogen 

Protein G Magnetic Beads were added to the tube and incubated for another 30 minutes at RT on 

a rotator. The beads were washed three times with TBST. The bound phages were eluted using 

105μl of 0.1M glycine pH2.2. To neutralize the pH 19μL of TRIS-HCl pH 9.1 was added. The 

eluted phages were titrated and used to infect an exponentially growing DHF5a F+ culture with 

intact pilli. Infected bacteria were allowed to amplify in 100 ml volume of 2YT medium, in 0.5 

litter flask, at 37° C, at 225 rpm, for 20 hours. Tetracycline (20 μg/ml final concentration) was 

added after one hour of incubation. After pelleting the bacteria, the phages were precipitated out 

using 33% PEG 6000/3.3 M NaCl to obtain the amplified bound phages. 
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A negative selection round was performed using the bound phages from the first round of 

selection using the same steps as before except a control mAb 7G8 was incubated with the 

phages. The unbound phages were amplified and used for two more rounds of positive selection. 

Titration of the phages 

The phages to be titrated were diluted 10 folds. An overnight DH5aF+ (200µL) culture 

was mixed with 3.5 mL of 0.5% agarose and immediately pour over a pre-warmed LB-agar 

plate. After cooling, a drop (2 µl) of each phage dilution was applied to two squares (duplicates) 

marked on the LB-agar plate. The drops were allowed to dry and incubated overnight 37 0C. The 

number of plaques in each square were counted under a microscope and an average was 

calculated. 

4.5 Epitope mapping by peptide array 

Overlapping peptide array was performed in collaboration with Ulrike Beutling, Dr. Mark 

Broenstrup from the Department of Chemical Biology, Helmholtz Centre for Infection Research, 

Germany. A peptide array based on the sequence of gB herpes B strain E2490 (GenBank 

accession number AF533768) was prepared and used as described before for the assay [95]. 

4.6 Amplification of mAb binding fd phage recombinant pVIII gene 

The mAb selected phages were used directly for PCR using for Platinum SuperFi Green 

PCR Master Mix (Invitrogen, USA) as per the manufacturer’s instructions. PCR, performed in 

triplicates for each sample, was used to amplify the recombinant pVIII gene of the phages. For 

15 PCR cycles two consecutive steps of denaturation at 980C for 2 and 20 min followed by 5 

seconds of extension at 720C were performed. The annealing step was omitted since the Tm of 

the oligos was very high – approaching the extension temperature. Forward primer 
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5’ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGCGGCCAACGTGGC 3’ and 

reverse primer 5’ GACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGGTCGGCCCCA 

GCGGC 3’ with partial illumina adaptors (highlighted in bold) were used for the PCR. 

Purification and quality control of Amplicons 

The amplicons were purified using Mag-Bind Total Pure NGS beads (Omega Bio-Tek, USA) as 

per the manufacturer’s instructions. Briefly, the PCR samples were mixed with the beads and 

incubated for 5 mins. The beads were washed with 70% ethanol twice, air dried and eluted by 

incubating with 10 mM Tris pH 8.0 for 5 mins. The DNA concentration of the eluates was 

determined for normalization using Qubit 4 (ThermoFisher, USA) as per the manufacturer’s 

instructions and the size of the amplicon was confirmed by agarose (2%) gel electrophoresis. 

4.7 Next Generation Sequencing of 5A2 specific phages 

Next generation sequencing (NGS) on the illumina platform was performed by Genewiz 

corporation. Briefly, PCR amplicon samples were prepared with the TruSeq library preparation 

kit and sequenced on the MiSeq with 2x250bp configuration. After quality and adapter trimming, 

paired reads were merged into a single sequence if they overlapped and the overlapped region 

was identical. The target region was identified by anchoring the highly conserved flanking 

regions. Consensus sequences were identified and abundances for each consensus sequences 

were calculated for each sample within the target region between the two highly conserved 

sequences. After translating the unique nucleotide sequences into protein sequences, a unique 

protein sequence identification and abundance calculation was performed. 
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4.8 Competitive Inhibition Binding ELISA  of Monoclonal Antibody 9F1 to a Synthetic 

Peptide 

A Competitive Inhibition Binding ELISA (CIBE) was used to determine the specific activity of 

the peptides. The wells of a flat bottom 96 well plate (Corning, USA) were coated with 1µg of 

recombinant BV gB diluted in 1X PBS with 0.08% azide and incubated overnight in a 

humidified chamber at 4oC. The wells were blocked with 150µl of blotto (borate-buffered saline 

containing 2.5% nonfat dry milk and liquid gelatin)/well for 1 h at 37oC.  Blocking and 

subsequent incubations with peptide-mAb mixture and anti-mouse IgG H+L (Bethyl 

Laboratories, USA) alkaline phosphatase conjugated secondary antibody were done for 1 h at 

37oC. Each incubation step was followed by three washes with borate-buffered saline–0.05% 

Tween 20. The peptides and monoclonal antibodies were diluted two folds from 100µg/mL – 

6.25µg/mL and 1:2000(9F1) and 1:64000 (7G8) respectively in blotto. The peptides were 

incubated with the specific IgG2a 9F1 mAb and a control mAb IgG2a 7G8 for 1 h at 37oC 

separately in eppendorf tubes. The peptide-mAb mixture thus obtained and 50µL/ well of each 

was added to the BV gB coated plate. The conjugate was diluted at 1:500 in blotto, and 50µL/ 

well was added. To prepare the substrate solution p-nitrophenyl phosphate (pNPP) tablets 

(Sigma) were dissolved in 1 M diethanolamine buffer containing 0.5 mM MgCl2, pH 9.8 (1 mg 

of pNPP/ml). and  200 µL of freshly prepared mixture was added to each well. The reaction was 

stopped by adding 50µL of  3N NaOH per well after 30 minutes of incubation and the optical 

densities (ODs) were read on an automatic microplate reader at 405-490 nm. The percent 

competition was calculated using the formula 100-(OD of the peptide/OD control peptide*100). 
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4.9 Direct Binding Enzyme-linked immunosorbent assays 

The peptide activity was determined by measuring the binding of peptides to human and 

macaque serum, and mAb 9F1 in a direct ELISA. The wells of a flat bottom 96 well plate 

(Corning, USA) were coated with 50µL of 25µg/mL of Streptavidin (New England Biolabs) 

diluted in 1X PBS with 0.08% azide/well. The plate was incubated overnight in a humidified 

chamber at 4oC. The wells were blocked with 150µl of 2% bovine serum albumin in BBS 

(borate-buffered saline)/well.  Blocking and subsequent incubations with peptides, serum, IgG2a 

9F1 mAb and anti-mouse IgG H+L (Bethyl Laboratories, USA) alkaline phosphatase conjugated 

secondary antibody were done for 1 h at 37oC. Each incubation step was followed by three 

washes with borate-buffered saline–0.05% Tween 20. The biotinylated peptides, serum, IgG2a 

9F1 and the conjugate were diluted in the blocking buffer at 0.5 µg/mL, 1:10, five-fold serial 

dilutions from 1:50 to 1:156250 and 1:500, respectively. To prepare the substrate solution p-

nitrophenyl phosphate (pNPP) tablets (Sigma) were added in 1 M diethanolamine buffer 

containing 0.5 mM MgCl2, pH 9.8 (1 mg of pNPP/ml), and  200 µL of freshly prepared mixture 

was added to each well. The reaction was stopped by adding 50µL of  3N NaOH per well after 

30 minutes of incubation and the absorbance was read on an automatic microplate reader at 405-

490 nm. 

4.10 Direct Binding Cova-linked immunosorbent assays 

The peptide activity was determined by covalently linking the peptides via their carboxylic group 

to the CovaLink (ThermoFisher, USA). The wells of a CovaLink plated were coated with 

peptides that were first diluted at 70µg/mL in sulpho-NHS and then diluted two folds from 

20µg/mL-1.25, ug/mL in water. EDC (50µl ) was added to all the wells and the plates were 

incubated O/N at RT. The plates were washed with 3 X COVA Buffer and for the last wash 
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incubated 15 min at RT before discarding followed by blocking using 2% BSA in BBS for 1 h at 

RT. The primary antibodies diluted 1:100 in blocking buffer were added and plate incubated at 

RT for 1hr followed by a 5x wash with BBST. Anti-Mouse (H+L) AP diluted 1:500 in blocking 

buffer was added and the plate was incubated at RT for 1hr followed by 5x wash with BBST. 

PNPP substrate 200uL/well was added and the plates were incubated at RT for 30 mins and the 

absorbance was read on an automatic microplate reader at 405-490 nm. 

4.11 Mapping the epitopes on 3D model 

The sequence of B virus (BV) gB retreived from uniprot with id Q7T5E1 was used to prepare a 

model of a hypothetical complex. The known structure of Herpes Simplex Virus (HSV1) gB 

(PDB code 6BM8) were used as templates for computer modeling of the B virus (BV) gB.  

The model structures were prepared using I-TASSER (Iterative Threading ASSEmbly 

Refinement) software approbated in the framework of Critical Assessment of Structure 

Prediction (CASP) conferences as described previously[110]. The stability of the B virus (BV) 

gB protein globule structure was calculated using the package QMEAN (Qualitative Model 

Energy Analysis)[111]. The conformational epitopes were identified using the webtool Episearch 

[90]. The sequence alignments were performed using Megalign pro. The illustrations of protein 

structures were prepared using Pymol [112]. 
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5 CONCLUSIONS 

5.1 Novel epitope-focused recombinant protein-based potential BV vaccine candidates 

Treatment of zoonotic B virus has been restricted to a few nucleoside-inhibitors, and 

beyond these interventions options have not changed in nearly 50 years. Hence this study, 

provides important information to formulate interventions against BV. This study has identified, 

for the first time multiple gB mimotopes that, individually, represent at least the partial 

epitope(s) critical for antibody neutralization of the virus, providing for the first time possible 

novel vaccine candidates that might be used as a therapeutic intervention for late-stage B virus 

infection. Five out of six mimotope sequences (specially P.4E11.PhD CEPFWTNCGGGS) 

specific for mAb 5A2 were mapped to the discontinuous epitope (aa residues 113-120 and 516-

526) of domain III (or the core) of the BV gB. This is consistent with the targets of neutralizing 

antibodies as most of them are found buried in the core of the target proteins. 

The peptides representing these epitopes should be tested further for their activity. In this 

work each peptide was tested individually for its binding with the mAb 5A2 but maybe using the 

six peptides together might result in an improved collective function, as each peptide might 

represent only a part of the epitope and a combination might represent the complete epitope. 

Furthermore, their activities should also be tested by measuring their ability to block the 

neutralization of BV by the mAbs 5A2 and 4E11 in a plaque reduction neutralization assay. If 

they are able to block the neutralization, they can be used to vaccinate macaques. The macaques 

can then be monitored for the production of the BV neutralizing antibodies specific for these 

peptides. If these experiments are successful, a prophylactic, effective and safe intervention 

against BV infection will be made available. The data from this research will provide physicians 

and scientists new options for vaccine development for the first time in nearly a half of a century. 
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5.2 Advantages of Epitope based Vaccines 

 
Although the epitope vaccines are not commercially available yet, the epitope vaccines in 

addition to being capable of generating specific immune responses have multiple advantages 

[113]. The epitope-based vaccines can help “focus the immune response”. When a pathogen 

invades the host, the immune system is exposed to a plethora of antigens. Not all of these 

antigens will be responsible for a protective function. Moreover, the host cannot generate an 

equally strong response to all these antigens. Hence by using  epitope focused vaccines we can 

“focus the immune system” to produce a desired set of antibody repertoire. Successful pathogens 

over multiple rounds of replication inside their hosts are able to distract the immune system by 

directing it to immunodominant epitopes with no protective value, hence exhausting the immune 

system. The highly immunogenic mutation prone five variable loops of HIV-1 gp120 constantly 

exhaust the immune system without producing any protective effect [114, 115]. The epitope-

based vaccine could “enhance the immunity” as the selected epitopes can induce the generation 

of protective antibodies instead of surface reacting antibodies. Epitope based vaccines can also 

help avoid enhancement of infections caused by Fc-receptor-mediated endocytosis of 

immunocomplexed pathogens as observed in case of HIV and Dengue infections. Another 

application of the epitope-based vaccines could be to prevent the generation of auto antibodies. 

When designing the vaccine, we can blast the epitope sequence to check for any aa residues that 

might mimic the self-antigens. Any residues that resemble the self-antigens can be excluded 

from the vaccine to avoid triggering an autoimmune disease.  

5.3 Novel marker for differential diagnosis of B virus 

This study for the first time describes the use of an epitope-based BV specific peptide that 

can be used to detect BV specific antibodies and distinguish them from HSV antibodies. By 
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employing pIII fused random peptide phage display libraries, compound mutagenesis and 

peptide array we were able to identify a highly reactive epitope of the BV type specific non-HSV 

cross-reacting mAb 9F1. The peptides corresponding to the phage display sequences and the 

peptide array sequences were compared for their specificities and sensitivities and it was 

observed that the peptide OP2 (ELLREQERRPGDAAA) was highly sensitive and specific in 

detecting BV antibodies from rhesus and cynomolgus macaques. OP2 was also very specific in 

detecting BV specific antibodies and had low cross reactivity with HSV antibodies but was 

comparatively less sensitive in detecting the antibodies from human sera. 

It was observed that OP2 is specific for BV antibodies and HSV1-OP2 and HSV2-OP2 

were specific for the anti-HSV1 antibodies (Fig. 15). The two peptides could be used in 

conjunction to quantify the amount of cross-reactive antibodies in the serum sample of the 

suspected BV infected patient to rule out the false positive due to the presence of cross reactive 

HSV antibodies. Collectively, these results suggest that the peptide OP2 can be used alone or in 

combination with other BV specific antigens to detect BV specific antibodies in a peptide 

ELISA. The data from this research will provide physicians and scientists new options for 

unambiguous diagnosis for the first time in nearly a half of a century. 

5.4 A novel, simplified and cost-effective fine epitope mapping approach  

We propose the use of random peptide phage display in conjunction with compound mutagenesis 

as a relatively inexpensive, fast and reliable alternative to other expensive/lengthy approaches 

that either involve a coating slides with the entire sequence of the target protein as overlapping 

peptides, or the developing custom phage display libraries in combination with mutagenesis 

scanning to identify functional epitopes [101-104] . Through this study we propose the following 

novel approach. To identify an epitope of the maximum possible activity the aa residues flanking 
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the consensus sequence found by phage display should be identified and, instead of cloning and 

expressing epitope mutants, 4-5 peptides of overlapping sequences with three aa shift of 15-20 aa 

in length should be synthesized and tested for specificity in a peptide ELISA. Further a set of 3-4 

aa residues might be deleted (compound mutagenesis) simultaneously to identify residues 

required for optimal peptide activity. These synthesized peptides should provide the most 

optimal activity for the respective mAb as observed in this study.  

The antigen candidates for unambiguous serological differential diagnostics should be rich 

in specificity determining residues. But at the same time aa residues of an epitope that may not 

contribute to the epitope binding directly, may be involved in contact, affinity, or affinity of 

discrimination[116]. Hence, to avoid mischaracterizing the residues, exhibiting such roles, that 

are often found adjacent to the critical aa residues, as non-critical, we for the first time, used a 

compound mutagenesis scanning approach in combination with phages display and peptide array 

epitope mapping, where a compound- additive or cooperative i.e. effect of multiple adjacent aa 

residues on specificity instead of studying the contribution of individual aa residues was studied. 

This approach may be applied to any epitope, of any protein of a known sequence, identified by 

a monoclonal antibody or polyclonal antibodies.  

Limitations 

Since the modifications of aa residues of an epitope is done in groups, it is not possible to 

determine the contribution of individual residues to the specificity or affinity of mAb binding. 

Our approach does not provide a comprehensive view of individual aa residue contribution to 

binding like site-directed mutagenesis, combinatorial or quantitative saturation mutagenesis[101-

104]. Our approach is directed towards developing a comparatively less labor-intensive strategy 

that can provide with a domain level functional mapping of the epitope. In case an epitope 
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exclusively consists of multiple zones of weak interactions this approach may provide only 

limited information about the contribution of the individual domains of the epitopes. Our 

approach requires a prior knowledge of the complete sequence of the target protein and may 

have limited utility when working with mimotopes and conformational epitopes involving 

tertiary and/or quaternary structure of the antigen. However, tools like MIMOP, SAROTUP and 

MimoDB may be useful to trace epitopes from mimotope sequences[117-119].  
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