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INDIVIDUAL MOBILITY ACROSS CLUSTERS: THE IMPACT OF IGNORING 

CROSS-CLASSIFIED DATA STRUCTURES IN DISCRETE-TIME SURVIVAL 

ANALYSIS 

 
 

by 

 

CHRISTOPHER J. CAPPELLI 

 

 

Under the Direction of Dr. Audrey Leroux 

 

 

ABSTRACT 

In the social and behavioral sciences, it is common for event-history data to have a 

multilevel structure, such that individuals (e.g., students) in a lower-level are clustered into some 

higher-level context (e.g., schools). However, little work has explored the common situation that 

such data are not purely clustered, as in the situation where some students may have attended 

more than one school during the course of a study. In those cases, the use of a cross-classified 

discrete-time survival model may be needed to appropriately account for individual mobility 

across clusters. The purpose of this research was to understand the impact of ignoring a cross-

classified data structure due to individual mobility across clusters in a discrete-time survival 

analysis and to examine how the baseline hazard function, variability of the cluster random 

effect, mobility rate, and within- and between-cluster sample size impact the performance of a 



  

cross-classified discrete-time survival model. A Monte Carlo simulation study was used to 

specifically examine the performance of a discrete-time survival model, a multilevel discrete-

time survival model, and a cross-classified discrete-time survival model. Simulation factors 

included the value of the between-clusters variance, cluster size, within-cluster size, Weibull 

scale parameter, and mobility rate. The generating parameters for the simulation study were 

based on a review of the applied literature. The results indicated that substantial relative 

parameter bias and unacceptable coverage of the 95% confidence intervals is possible for all 

model parameters when a discrete-time survival model is used that does not account for either 

clustering or individual mobility across clusters, and to a lesser extent, when using a multilevel 

discrete-time survival model that does not account for mobility. Across nearly all simulation 

conditions and for all parameters, use of the cross-classified discrete-time survival model 

resulted in little to no relative parameter bias and acceptable coverage of the 95% confidence 

intervals. These findings will be useful for methodologists and practitioners in educational 

research, public health, and other social sciences where discrete-time survival analysis is a 

common methodological technique for the analysis of event-history data. 

 

INDEX WORDS: Multilevel modeling, Discrete-time survival analysis, Cross-classified random 
effects model, Monte Carlo simulation, Mobility 
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CHAPTER 1 

INTRODUCTION 

Background 

In many fields within the social and behavioral sciences, it is common for researchers to 

ask questions regarding the timing of an event occurrence. For example, educational researchers 

may be interested in if and when student dropout occurs, and the factors that influence the timing 

and occurrence of dropout. Epidemiologists may be interested in the factors that contribute to the 

timing and occurrence of the first asthma attack among urban youth, or in the timing and 

occurrence of some environmental exposure following a natural disaster. In these types of 

research, it is often the case that data are collected during measurement occasions separated by 

specified periods of time, and therefore, data on an event is typically measured such that the 

researcher only knows that an event did or did not occur during the period of time defined by a 

gap between measurement occasions. Such data collection methods result in discrete-time data, 

also referred to as grouped-time data, and are typically analyzed using discrete-time survival 

analysis. While discrete-time survival methods were statistically formulated decades ago and 

extensively described by Allison (1982), it was not until Singer and Willett (1993) provided a 

tutorial on discrete-time survival analysis for applied researchers that use of the method became 

commonplace in the applied literature.  

However, the discrete-time survival analysis described by Singer and Willett (1993) may 

not be appropriate in situations where the data are clustered, such that individuals are nested into 

some larger contextual space. For example, students can be nested into classrooms, patients can 

be nested in nurses, and individuals can be nested in clinics. In such cases, when lower-level 

units are clustered into some higher-level context, the lower-level units may no longer be 
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assumed to be independent of their associated clusters; instead, their contextual space is likely to 

create an environment in which, for example, students clustered into the same school are more 

alike to each other than students clustered into a different school. The use of a conventional 

discrete-time survival analysis in the presence of clustered data structures leads to a violation of 

the assumption of independence of observations (Raudenbush & Bryk, 2002). Additionally, 

traditional discrete-time survival analysis carries an assumption of no unobserved heterogeneity, 

which is violated if it is known that individuals are clustered into higher-level units, and that the 

individuals in one cluster are more alike than individuals in another cluster. Such violations 

result in biased estimates of the baseline risk for event occurrence, and therefore, misplaced 

inferences (Barber et al., 2000). Therefore, an important extension of conventional discrete-time 

survival analysis is multilevel discrete-time survival analysis, adding a random effect to the 

model and accounting for the unobserved heterogeneity present due to clustering.  

Multilevel discrete-time survival analysis represents an important contribution to survival 

analysis, combining the benefits of using discrete-time survival methods to understand event-

history data within the multilevel modeling framework. In recent decades, such models are 

proving more common in the applied literature. For example, in educational research, Ma and 

Willms (1999) present one of the earliest empirical studies that integrate multilevel modeling 

techniques with discrete-time survival analysis, accounting for the clustering of students within 

schools to explore the factors that contribute to the timing and occurrence of student drop-out 

from advanced mathematics. Davoudzadeh et al. (2015) used a multilevel discrete-time survival 

analysis to examine the hazard of grade retention among students in kindergarten through eighth 

grade within the context of school-readiness predictors at both the student and school levels. 

Multilevel discrete-time survival analysis is also common in other behavioral science disciplines, 
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such as sociology (e.g., Henry et al., 2004), social network analysis (e.g., de Nooy, 2011), and 

public health (e.g., Reardon et al., 2002). These studies represent just a small sample of the use 

of multilevel discrete-time survival methods in the applied literature, but illustrate the extensive 

use of this modeling approach throughout the social and behavioral sciences.  

While each of these studies accounted for clustered data structures, they also assumed 

that the lower-level units were purely clustered into some higher-level unit. For example, 

students are members of one and only one school throughout the duration of study, or patients 

are members of one and only one hospital during the course of their treatment. However, in the 

social and behavioral sciences, applied researchers may not encounter such simple multilevel 

data structures. Instead, data often contain complexities that mirror the real world and result in an 

impure nesting of lower-level units into higher-level clusters. For example, in the case of 

educational research, student mobility has been shown to be quite common in the U.S., where 

about 12%-38.5% of students switched schools or moved between 2005 and 2010 (e.g., Ihrke & 

Faber, 2012; U.S. Government Accounting Office, 2010). This mobility of individuals across 

clusters can also be found in other social and behavioral science disciplines, such as public 

health, psychology, or criminology. For example, individual mobility may result in individuals 

who are residents of more than one city, patients who visit more than one hospital, or prisoners 

who are held in more than one jail. In datasets that contain mobility, the data structure can be 

said to be cross-classified. Alternatively, data containing mobility can also be thought of as a 

special case of a cross-classified data structure, termed a multiple membership data structure. In 

cases where cross-classified or multiple membership data structures exist, conventional 

multilevel modeling approaches are inappropriate. Indeed, the methodological literature is 

increasingly demonstrating the adverse effects of incorrect model specification in the presence of 
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such complex data structures, and has shown that incorrectly modeling this complexity has a 

negative impact on parameter estimates (e.g., Cappelli et al., 2020; Luo & Kwok, 2009; Luo & 

Kwok, 2012; Leroux & Beretvas, 2018b; Leroux et al., 2020; Meyers & Beretvas, 2006). 

Therefore, in the conventional multilevel modeling framework, cross-classified random effects 

models (CCREMs) and multiple membership random effects models (MMREMs) have been 

developed to appropriately model hierarchical complexity. 

Research Questions 

As complex data structures are common across the social and behavioral sciences, 

methodological research that aims to examine the efficacy of the CCREM or the MMREM for 

appropriately modeling complex data structures has increased. Most commonly, methodological 

research using the CCREM or the MMREM has focused on their use for modeling continuous 

outcomes, such as academic achievement scores. However, some work has also examined the 

performance of the CCREM and MMREM with binary outcome data, and to a lesser extent, 

event-history outcome data.  

Previous simulation studies that examine the performance of CCREMs and MMREMs 

with continuous outcomes have indicated that ignoring the mobility of individuals across 

clustering units negatively impacts parameter estimates, especially in regards to estimates of the 

coefficients for the cluster-level (e.g., school) covariates and their standard errors, as well as 

cluster-level variance component estimates (Cappelli et al., 2020; Chung & Beretvas, 2012; 

Leroux & Beretvas, 2018b; Leroux et al., 2020; Luo & Kwok, 2009, 2012; Meyers & Beretvas, 

2006; Wolff Smith & Beretvas, 2014a, 2017). Vassallo et al., (2017) and Ren (2011) specifically 

examined the use of a CCREM with a binary outcome. Vassallo et al. (2017) only examined the 

intercept parameter and variance components, and similar to findings in the continuous-outcome 
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literature, found that the fixed effect representing the intercept is unaffected by sample size, 

while higher sample sizes are necessary to estimate variance components without bias. Ren 

(2011) compared a Hierarchical Generalized Linear Model (HGLM) to a CCREM with a binary 

outcome, and similar to the continuous-outcome literature, found that inappropriately modeling a 

cross-classified data structure results in biased parameter estimates, especially for the cluster-

level covariates, their standard errors, and estimates of the variance components. Methodological 

work in the measurement literature with complex multilevel data structures and longitudinal item 

response data has resulted in similar findings, indicating that misspecifying the model such that 

mobility is not correctly modeled does not greatly affect the fixed effect estimates, but does 

result in bias of the cluster-level variance component estimates (Choi & Wilson, 2016). While 

there has been little methodological work that has expanded upon these findings for event-

history outcome data, work by Cafri and Fan (2018) and Elghafghuf et al. (2014) has suggested 

that continuous-time survival models that account for complex nesting perform better than 

models that ignore such structures. Only one methodological study has investigated the use of a 

discrete-time survival analysis in the presence of individual mobility across clusters. Lamote et 

al. (2013) applied both a cross-classified and a multiple membership discrete-time survival 

model to data with impure clustering due to student mobility. The authors found that the cross-

classified discrete-time survival model and the multiple membership discrete-time survival 

model resulted in different parameter estimates, both in terms of the fixed effects and variance 

components, than the models that ignored or deleted mobile students from the dataset; however, 

they also found that the cross-classified discrete-time model better fit the data than all alternative 

models.  
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Given the wealth of research that suggests that using an ad hoc approach to ignore 

mobility across clusters negatively impacts model estimates, it is important that researchers are 

able to correctly model mobility in discrete-time survival models. Therefore, this dissertation 

aimed to address the following research questions: (1) What is the impact of ignoring a cross-

classified data structure due to individual mobility in a discrete-time survival analysis and (2) 

How does the baseline hazard function, variability of the cluster random effect, mobility rate, 

and within- and between-cluster sample size impact the performance of a cross-classified 

discrete-time survival model?  

Statement of Purpose 

To address these research questions, this dissertation used a simulation study. The 

simulation study manipulated five conditions that may be encountered by applied researchers, 

including the within-cluster sample size, cluster sample size, variance at the cluster-level, 

Weibull scale parameter, and overall mobility rate. The simulation study used the parameter 

estimates obtained from the previous empirical and methodological literature to inform the 

generating parameter values. Relative parameter bias, root mean square error, and coverage of 

the 95% confidence intervals were used to evaluate the estimation of model parameters under the 

various manipulated conditions for a conditional single-level discrete-time survival model, a 

conditional purely clustered multilevel discrete-time survival model, and a conditional cross-

classified discrete-time survival model. 

This study provides an important contribution to the literature for the social and 

behavioral sciences. Multilevel discrete-time survival models are increasingly found in the 

literature, but only one prior study has accounted for impure nesting in discrete-time survival 

analysis, and no previous work has been conducted to explore how a discrete-time survival 
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model performs in such circumstances. Therefore, this study was necessary to understand the 

effects of ignoring data that contains clustering and/or mobility for empirical researchers 

conducting a discrete-time survival analysis.   
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CHAPTER 2 

REVIEW OF THE LITERATURE 

 In this chapter, survival analysis is presented. The discussion specifically focuses on the 

use of discrete-time survival analysis, with an emphasis on multilevel discrete-time survival 

analysis. Additionally, complex multilevel data structures are described and a review of the 

literature is presented for both cross-classified and multiple membership random effects 

modeling. Subsequent sections examine the confluence of these complex data structures and 

survival data, concluding with a presentation of cross-classified discrete-time survival modeling. 

Introduction to Survival Analysis 

 In the social and behavioral sciences, researchers are often interested in knowing if an 

event occurs, and if so, when the event occurs. For example, educational researchers may be 

interested in the dynamics of teacher retention, such as the timing and occurrence of teachers 

leaving their profession, and the factors that contribute to the risk of leaving. In the behavioral 

sciences, a researcher may be interested in the timing and occurrence of the first drink of an 

alcoholic beverage in adolescence. In criminology, researchers might be interested in the hazard 

of recidivism among previously jailed individuals. In each of these examples, the research 

interest centers on whether and when events occur, as well as the factors that influence the 

timing of an event occurrence (Singer & Willett, 2003). Survival analysis refers to the general set 

of techniques that are used to model the timing of an event occurrence. 

Survival analysis, also known as event history analysis or hazard analysis, was developed 

in response to an ongoing interest in studying life-history, specifically in understanding the 

factors that contribute to the occurrence and timing of mortality (Masyn, 2014). Traditionally, 

researchers utilized conventional logistic regression techniques to model event occurrence, but 
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such models do not provide information regarding the timing of events. Furthermore, two 

methodological challenges arise when modeling event history using traditional logistic 

regression methods. First, event data are typically replete with missing data (Masyn, 2014; 

Singer & Willett, 2003). In studies of event history, missing data occurs for a number of reasons, 

some of which are typical of longitudinal studies, such as participant drop-out or loss to follow-

up. More specific to event history data, some participants simply may not experience the event 

during the study. A number of ad hoc approaches have historically been used to resolve missing 

data challenges, for example, by restricting data collection to include only those participants who 

have experienced the event, retrospectively removing participants from the dataset who have not 

experienced the event, imputing unknown event times (e.g., assigning “event” to all participants 

at the end of the study), or dichotomizing the outcome such that the event either occurred or did 

not occur by a specific point in time (Allison, 1982; Singer & Willett, 1993, 2003). However, 

such ad hoc strategies result in a loss of important information, a distortion of event times, and 

ultimately, substantial biases and misplaced inferences (Allison, 1982). The second 

methodological challenge is that researchers may often be interested in the use of time-varying 

covariates, or covariates that change during each measurement occasion, to explain the timing 

and occurrence of the event under study (Allison, 1982). Traditional linear regression techniques 

are not able to handle explanatory variables that change during the course of a study, and 

therefore, create unrealistic restrictions for model specification. 

Given these methodological challenges, statisticians developed modeling techniques that 

are better able to model event history data. Continuous-time survival analysis was developed to 

alleviate these challenges, where it is assumed that the timing of an event is known exactly and 

can occur at any point in time. In the development of continuous-time survival methods, 
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numerous approaches for parameter estimation were developed that impose strict assumptions 

often untenable in applied research (Masyn, 2003). In his seminal paper, Cox (1972) alleviated 

such issues by proposing a model that utilizes a partial likelihood estimation method, where the 

covariates in the model are estimated without placing strict distributional restrictions on the part 

of the model that estimates the probability of event occurrence when all predictors equal zero, 

otherwise referred to as the part of the model that estimates the baseline hazard (Allison, 1982). 

Cox’s model has been transformative in event history analysis, and has readily been extended to 

accommodate single and repeated event histories, time-varying covariates, and also non-

proportionality, broadening the modeling potential for survival data (Allison, 1982; Singer & 

Willett, 2003).  

While influential, Cox’s model treats time as continuous, which is often not appropriate 

for research in the social and behavioral sciences. A continuous-time model is useful for 

situations in which the event occurrence is measured precisely, such that few individuals will 

have the same event time (Allison, 1982). In contrast, in the social and behavioral sciences, 

longitudinal data are typically collected at measurement occasions separated by specified periods 

of time, and therefore, data on an event is typically measured such that the researcher only knows 

that an event did or did not occur during the period of time defined by a gap between 

measurement occasions. For example, a behavioral scientist examining the timing and 

occurrence of substance abuse relapse might collect data at the end of each month, on March 31 

and April 31. Some participants might relapse on April 2, while others relapse on April 30, but 

the researcher will only know that relapse occurred sometime between March 31 and April 31 

when data are collected on the April 31 measurement occasion. In other words, although study 

participants may experience the event at many different times, the event history data are recorded 
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such that the event occurs for all participants at a single point in time, which here is recorded as 

April 31. The result is that many participants in the study are documented as experiencing the 

event at the same time, which is referred to as an overlapping event time or tied event histories. 

Such data, where a large proportion of individuals in the population are recorded as having 

experienced the event at the same time, is referred to as discrete-time data. As continuous-time 

survival methods assume that event occurrence happens at a unique, precise point in time that 

differs for each individual, the use of such methods for discrete-time data are incorrect (Ducrocq, 

1999). As such, discrete-time survival analysis is often preferred in the social and behavioral 

sciences due to an inability to document precise event timing.  

The following sections describe discrete-time survival analysis in the context of the social 

and behavioral sciences. The methodological features of the models are presented, followed by a 

description of a common data format used to conduct a discrete-time survival analysis and the 

parameterization of the model. The chapter then discusses the extension of survival analysis to 

the multilevel modeling framework, including situations that assume pure clustering of data, as 

well as more complex nesting of individuals within clusters.  

Methodological Features of Discrete-Time Survival Models 

While longitudinal studies can accommodate numerous types of outcome variables, the 

interest in studies of event history are specifically in event occurrence outcome data. There are 

three common methodological features necessary for any survival analysis, including the 

identification of a target event, the beginning of time, and a scale for time (Masyn, 2009; Singer 

& Willett, 2003). In order to conduct a survival analysis, an event occurrence must be identified 

that clearly defines the transition of an individual from one state of being to another (Singer & 

Willett, 2003). For example, non-smoker to smoker or high school attendee to high school drop-
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out. Those who are at risk of experiencing the identified event during each time period are 

termed the risk set (Masyn, 2009). Second, the beginning of time must be identified, or the time 

that all individuals in the population under study become eligible to experience the event (Singer 

& Willett, 2003). For example, in a study of teacher retention, the beginning of employment 

might represent the beginning of time for a cohort of teachers, because they cannot leave 

teaching before the point at which they were employed as teachers. Lastly, there must be a clear 

measure for how time is recorded, which can consist of either actual event times or measured 

event times (Masyn, 2009). In some studies, time is recorded continuously, such that the 

researcher knows the precise moment in time that the event occurred. In other studies, the event 

time may be recorded discretely, such that it is only known that the event occurred between 

measurement occasions. For example, it is common in studies of student grade retention that 

time is recorded by school year because it is only known that a student is held back following the 

end of the school year.  

 There are three types of discrete-time survival data, which occur either by study design or 

due to the nature of the event of interest (Safarkhani & Moerbeek, 2013). First, some events may 

be of a continuous-time nature but are recorded in discrete time. For example, in their study of 

risk for early initiation of sex among American Indian youths, Mitchell et al. (2007) discretized 

an event, sexual initiation, that has an underlying continuous nature. In other words, sexual 

initiation can occur at any precise point in time, but for the purposes of this study, was 

discretized. The authors argued that the timing of sexual initiation is typically measured in a 

much more discrete metric, generally by age in years as opposed to the precise moment of the 

event, and therefore, a discrete-time model was more appropriate for the data. Second, some 

events can only occur at discrete intervals of time. For example, Davoudzadeh et al. (2015) used 
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a multilevel discrete-time survival analysis to examine when grade retention was most likely, as 

well as whether school readiness predictors influenced grade retention at the child- and school-

levels. Grade retention typically only occurs once per academic year, and therefore, the event 

itself is of a discrete-time nature. Lastly, in some cases, data collection methods may require that 

the researcher provide participants with large periods of time to indicate event occurrence. This 

is especially true in retrospective studies where research subjects are asked to recall the timing of 

an event that happened in the past (Safarkhani & Moerbeek, 2013). For example, it is unlikely 

that a participant will be able to recall the exact day that they stopped smoking if they are asked 

about their smoking history at a later point in time. In such cases, the researcher may choose to 

ask participants to select a range of time that coincides with when they stopped smoking, such as 

1-2 years ago, 3-4 years ago, etc. In each of these cases, even when the underlying nature of the 

event may be continuous, the event is recorded in discrete intervals. Therefore, this necessitates 

the use of discrete-time survival analysis.  

Censoring  

As previously described, one of the primary challenges of survival data, like any 

longitudinal study, is related to the amount of missing data. In survival jargon, missing data are 

most broadly referred to as “censored” data, and refers to any individual in the sample with an 

unknown event time (Singer & Willett, 2003). Censored data can be either noninformative or 

informative and is most commonly distinguished as being either left- or right-censored (Singer & 

Willett, 2003).  

 The distinction between noninformative and informative censoring is of vital importance 

in survival analyses, as this distinction has critical implications for the validity of the inferences 

made from the analysis. Noninformative censoring describes the situation in which the censored 
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data are independent of both the risk of event occurrence and actual event occurrence (Allison, 

1982; Singer & Willett, 1993, 2003). Censoring that occurs due to the study design, where event 

occurrence is missing simply because data collection has ended at the conclusion of the study 

and the event of interest did not occur for a portion of the sample population is clearly 

noninformative censoring. However, noninformative censoring can also occur when there is a 

loss to follow-up due to reasons unrelated to the study. When censoring is noninformative, it 

corresponds most closely to the missing at random (MAR) assumption (Masyn, 2009). In studies 

of event-history, this means that given the measured covariates and the participant’s responses 

during past measurement occasions, the chance that the participant misses the current assessment 

does not depend on the timing of the first occurrence of the event (Bacik et al., 1998). In 

contrast, censoring can also be informative. Informative censoring occurs when individuals are 

lost to follow-up, but have experienced the event or are likely to experience the event in the 

future (Singer & Willett, 2003). In such cases, the censored event is related to the study interest, 

so the non-censored individuals are systematically different from censored individuals, which 

can lead to false inferences. Therefore, all survival models assume that censoring is 

noninformative, as any informative censoring will produce biased parameter estimates (Singer & 

Willett, 2003). 

 Additionally, censoring can be categorized by how it occurs in the data, most commonly 

referred to as left- or right-censoring. In left-censoring, the event time is unknown because it 

occurred prior to the study period (Singer & Willett, 2003). If the beginning of time is incorrectly 

defined for a study of event-history, then some members of the population will have experienced 

the event before the study commenced. In other words, the study participants experienced the 

event sometime between the true beginning of time and the start of data collection, and the event 
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time is therefore left-censored. In contrast, right censoring occurs when the event time is 

unknown because the event occurrence is not observed and occurs sometime after the final 

known observation point (Masyn, 2014; Singer & Willett, 2003). In the case of right-censoring, 

the event time is missing either by study design (i.e., the study ended prior to the event 

occurrence) or by loss to follow-up. As previously explained, it is vitally important that right-

censored event times are noninformative, as informative censoring will lead to biased inferences.  

Person-Period Data Format 

As with any statistical model, the first step in model building is to properly format the 

data. For many discrete-time survival analyses, the data are formatted in the person-period 

format. The person-period format is analogous to “long-format” data used for growth curve 

modeling in the multilevel modeling framework, where data are entered such that each row 

represents a different measurement occasion and therefore, each individual in the dataset will 

have multiple rows of data. For example, in a survival analysis, if the risk set consists of three 

individuals who are each measured on five occasions for which they are considered “at risk,” 

there will be 15 rows of data in total. In other words, for each of the three individuals, there are 

five rows of data representing each measurement occasion for which they remain at risk. This is 

in contrast to “wide” format data, which is most typically seen in cross-sectional studies or 

modeling within the structural equation modeling framework, where each individual is on a 

single row, such that all information related to that individual is spread across multiple columns.  

 An important distinction of the person-period dataset used for survival analysis from 

other statistical modeling approaches that use long-format data is that the number of rows for 

each individual is determined by their status as being “at risk” for the event to occur. In single-

event discrete-time survival analysis, this means that an individuals’ data are conditional on 
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whether or not they have experienced the event. If an individual has experienced the event, that 

person is no longer at risk for the event, and therefore will not have any further rows of data for 

ensuing measurement occasions, or discrete time periods. Table 1 provides an example of data in 

the person-period format, where the column “Time” represents the discrete time period, t, and 

event, eti, represents whether an individual, i, in the risk set has experienced the event (eti = 1) or 

has not experienced the event (eti = 0) during time period, t (Singer & Willett, 2003). In the 

example provided here, the study took place over five discrete time periods. The columns D1ti 

through D5ti represent dummy variables for time, which are coded as 1 for the time period it 

represents and 0 otherwise. For example, in Table 1, data were collected on Individual 100 

during each of the five discrete time periods, t, of study. Event occurrence for Individual 100 is 

coded as 0 for all time periods, indicating that this individual did not experience the event during 

any time period, and is therefore right-censored. This is in contrast to Persons 110 and 120, who 

each experienced the event during the study in time periods 2 and 3, respectively. Therefore, they 

have no data following event occurrence. In other words, once the individuals experienced the 

event, data were no longer collected because they were not considered at risk for the event in 

future time periods, and therefore, their data were limited to the number of rows equal to the 

number of periods that it took for them to experience the event. 

Importantly, the person-period dataset provides information about an individual’s event 

processes even if the exact event times are unknown, as is represented by Individual 130 (Masyn, 

2009). By including these right-censored individuals in the dataset, their information can still be 

included in the model. This represents an important advantage in discrete-time survival modeling 

as opposed to using other modeling approaches, where data for right-censored individuals are 

excluded from the model, resulting in biased estimates and incorrect inferences (Allison, 1982). 
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Table 1 

Person-Period Event Data 
 
Individual 

i 
Time 

t 
Event 

eti 
Dummy 1 

D1ti 

Dummy 2 
D2ti 

Dummy 3 
D3ti 

Dummy 4 
D4ti 

Dummy 5 
D5ti 

100 1 0 1 0 0 0 0 

100 2 0 0 1 0 0 0 

100 3 0 0 0 1 0 0 

100 4 0 0 0 0 1 0 

100 5 0 0 0 0 0 1 

110 1 0 1 0 0 0 0 

110 2 1 0 1 0 0 0 

120 1 0 1 0 0 0 0 

120 2 0 0 1 0 0 0 

120 3 1 0 0 1 0 0 

130 1 0 1 0 0 0 0 

130 2 0 0 1 0 0 0 

130 3 0 0 0 1 0 0 
 

The Hazard and Survival Probabilities 

The survival function and the hazard function are two of the basic functions for any 

discrete-time survival analysis, as they describe the patterns of event occurrence among the 

population. Using notation from Singer and Willet (2003), the hazard probability (ℎ'() can be 

expressed as: 

 ℎ'( = Pr[*( = +	|	*( ≥ +], (1) 

where *( represents the time period, +, when individual i experiences the event (eti = 1). For 

example, when an individual experiences the event in time period 2, *( = 2. Therefore, Equation 

1 represents the hazard probability, which as a conditional probability states that an individual, i, 

will experience the event in time period t, given that the individual did not experience the event 
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in any previous time period. As this probability contains information regarding the timing of 

event occurrence for all individuals, including those who are right-censored, it is the primary 

quantity of interest in survival analysis (Masyn, 2014; Singer & Willett, 2003). The set of hazard 

probabilities, one for each time period, is known as the hazard function (Masyn, 2014).  

Unlike the hazard probability, the survival probability does not provide information 

regarding the unique risk of event occurrence in each time period. Rather, the survival 

probability is cumulative, and represents the proportion of the population that has not 

experienced the event by a given time period (Singer & Willett, 2003). In other words, it implies 

that an individual remains event free, or survives beyond a time period, such that the time period 

that an event occurs for an individual, *(, is greater than time period +. Therefore, the survival 

probability, /'(, is the probability that an individual, i, will remain event free beyond a time 

period, t, and is given by, 

 /'( = Pr[*( > +]. (2) 

As a set, one for each discrete-time period, the survival probabilities are known as the survival 

function. Prior to estimating a discrete-time survival model, it is often useful to plot the sample 

hazard probabilities and survival probabilities to descriptively examine the data, as represented 

by Figure 1 (Singer & Willett, 2003). Plotting the hazard probabilities provides the researcher 

with useful information, including the ability to identify periods of high risk for event occurrence 

and providing information regarding the pattern of risk over time (Singer & Willett, 2003). For 

example, in Figure 1, it is apparent that subjects are at especially high risk for event occurrence 

during discrete time period 1 as compared to periods during the rest of the study. Additionally, it 

appears that the risk of event occurrence, overall, decreases with time.  
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Figure 1 

Sample Hazard and Survival Functions 

 
 

 Although they represent different aspects of event history, the hazard and survival 

functions are related (Singer & Willett, 2003). The survival function is inversely related to the 

hazard function, such that as hazard increases, survival decreases. In other words, if a large 

proportion of the risk set experiences the event in a given discrete time period, the rate of 

survival will decrease sharply during that time period. Conversely, if the risk of event occurrence 

in a given discrete time period is low such that a small number of individuals experience the 

event, the survivor function will decrease less rapidly. When no events occur in a time period, 

the survival function remains level during that time. As opposed to the hazard function, the 

survival function is a cumulative representation of remaining event free. Therefore, it can never 

increase during the course of a study; rather, it will always remain stable or decrease (Singer & 

Willett, 2003). Figure 1 illustrates the relationship between the hazard function and the survival 

function. Note, for example, that between Periods 1 and 2, as the hazard probability decreases 

significantly from .3 to .1, the survival function has only a slight decrease, reflecting the high 

survival rates among the population when hazard is low. In contrast, there is a large increase in 

hazard between Periods 2 and 3. During the same time periods, the survival function decreases 

rapidly, reflecting the low survival among the population when hazard is high. As the study 
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proceeds, the survival probabilities continually get lower as more individuals experience the 

event. 

Note that the hazard probabilities provide useful information regarding the unique risk of 

event occurrence during each discrete time period among those remaining in the risk set; 

therefore, it provides a summary of both the timing and occurrence of events (Masyn, 2009).  

Discrete-Time Survival Analysis 

In discrete-time survival analysis, a researcher is interested in the if and when of event 

occurrence. As the outcome can only take on one of two values, eti = 0 or 1, it has a binomial 

distribution. Therefore, the outcome can be considered to represent n trials of 1 and is a special 

case of the binomial distribution called the Bernoulli distribution. Given that the hazard 

probabilities, as represented by Equation 1, correspond to the probability of event occurrence for 

each time period, which are an observed binary outcome, the discrete-time survival model is 

easily specified as a conventional logistic regression (Masyn, 2014). As such, an unconditional 

discrete-time survival model can be formulated for 5 total time periods as: 

 log 4
)!"

!*)!"
5 = 6!71'( + 6"72'( + 6#73'( + 6$74'( + 6%75'(, (3) 

where log 4
)!"

!*)!"
5 is the log of the odds (i.e., logit) of the hazard probability for individual i in 

time period t, and 71'( through 75'( are dummy variables for individual i in time period t that 

are coded as one for the time period it represents and 0 otherwise. 6! through 6% are the 

estimated coefficients for the log hazard odds at each discrete-time period, otherwise known as 

the intercepts, which as a set represent the estimated logit hazard function.  

Note that the hazard is preceded by a link function, here the logit link, which is a 

transformation of the expected outcome and links the predictors to the outcome. Although the 

logit link provides useful transformations of the outcome and predictor variables and is the most 
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commonly used link function in the social and behavioral sciences, the variables are most 

meaningfully interpreted in the form of probabilities or odds ratios (Masyn, 2003; Singer & 

Willett, 2003). Given that the interest in discrete-time survival analysis is the estimated hazard 

probabilities for each discrete-time period, once the model parameters are estimated in the logit 

scale, Equation 3 can be transformed for interpretation as the hazard probability using the 

following: 

 ℎ>'( =
!

!+	-#$%&'('!")%&*(*!")%&+(+!")%&,(,!")%&-(-!".
. (4) 

 A discrete-time survival model can also be specified with the inclusion of covariates, 

which can be either time-varying or time-invariant. A conditional discrete-time survival model 

with one time-invariant predictor, ?(, at the individual level, such as gender, can be formulated 

as: 

 log 4
)!"

!*)!"
5 = [6!71'( + 6"72'( + 6#73'( + 6$74'( + 6%75'(] + @!?(, (5) 

where 6! through 6% are the intercept coefficients for their respective time periods and represent 

the estimated log hazard odds of event occurrence when the predictor is equal to zero. The 

brackets, [ ], serve to separate the intercept parameters from the predictors entered into the 

model. The brackets contain the intercept parameters, which as a set represent the baseline 

hazard function (i.e., the value of logit hazard when the predictor is equal to 0), whereas the 

parameters on the right that are not inside brackets represent the predictors. Additionally, the 

covariate’s effect on the likelihood of event occurrence is often described in terms of the hazard 

odds ratio (Petras et al., 2011), which represents the ratio of the odds of event occurrence for two 

groups. The fitted odds ratio is found by antilogging the coefficient for the predictor, ?(, such 

that, 

 A/+BCD+EF	GFF/	HD+BG = 	 E./'.  (6) 
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Therefore, the coefficient @! represents the log hazard odds ratio (log hOR) of event occurrence 

per one-unit difference in its predictor, ?(.  

Given that the discrete-time survival model is specified as a generalized linear model, 

they employ many of the same assumptions. For example, the model carries the linearity 

additivity assumption, which states that the effect of a predictor does not depend on the value of 

another predictor in the model and that the effect is linear. Importantly, the model also carries the 

assumption of no unobserved heterogeneity, which states that there is no underlying variability in 

individuals’ baseline risk for an event that is not measured by the covariates in the model. In 

other words, the variation in the hazard profiles across individuals in the population is modeled 

as depending only on the observed variation in the covariates entered into the model (Singer & 

Willett, 1993, 2003). Lastly, note that in Equation 5, the covariate ?( is modeled such that its 

effect on the estimate of the logit hazard remains constant in each time period. This implies a 

common assumption in survival analysis, known as the proportionality assumption. In other 

words, the model is a proportional model because the change in the logit hazard per unit change 

in the covariate is assumed to be identical in each discrete time period. However, given that any 

covariate, time-variant and time-invariant alike, can result in time-varying effects, it may be 

necessary to specify a model that relaxes this assumption (Singer & Willett, 2003). To do so, 

Equation 5 can be reformulated such that, 

 log 4
)!"

!*)!"
5 = [6!71'( + 6"72'( + 6#73'( + 6$74'( + 6%75'(] 

+@!?(71'( + @"?(72'( + @#?(73'( + @$?(74'( + @%?(75'(, (7) 

where the terms @!?( from Equation 5 is replaced with the terms @!?(71'( through @%?(75'(, 

allowing for a different change in the logit of the hazard probability in each discrete-time period 

due to the covariate, ?(. Given that the predictor is no longer assumed to result in the same 
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change in the intercept at each period, Equation 7 relaxes the proportionality assumption, and is a 

nonproportional model.  

As is typical of a conventional logistic regression, the discrete-time survival models 

presented so far additionally assume that observations, or individuals, are independent of each 

other. However, it is more likely that individuals who are in the same contextual space are more 

alike to each other, or behave in a similar way, than individuals who are in different contextual 

spaces; therefore, it is necessary to account for such clustering using a multilevel model.  

Multilevel Discrete-Time Survival Analysis 

Multilevel discrete-time survival (ML-DTS) models have become common in the applied 

social and behavioral sciences literature. For example, in educational research, it may be 

necessary to use a multilevel discrete-time survival analysis (ML-DTSA) to account for the 

clustering of students into schools when the research interest is in the timing of an event 

occurrence (for applied examples, Anderson, Howland, & McCoach, 2015; Davoudzadeh et al., 

2015; Ma & Willms, 1999; Petras et al., 2011). ML-DTS models are also common in other 

behavioral science disciplines, such as sociology (e.g., Henry et al., 2003), social network 

analysis (e.g., de Nooy, 2011), and public health (e.g., Reardon et al., 2002). Just as the discrete-

time survival models presented in Equations 3 and 5 are specified as a logistic regression model, 

a ML-DTSA can be estimated in the hierarchical generalized linear modeling (HGLM) 

framework. Therefore, across each of these applied studies, the use of a traditional discrete-time 

survival model that ignores clustering, as presented in Equations 3 and 5, can lead to a violation 

of the assumption of independence of observations and result in biased estimates of the standard 

errors, likely resulting in more frequent Type I errors and therefore misplaced inferences 

(Moerbeek, 2004; Raudenbush & Bryk, 2002; Steele, 2008; Steenbergen & Jones, 2002).  
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However, an important difference between a traditional multilevel model and a ML-DTS 

model is the additional assumption of no unobserved heterogeneity implicit in a conventional 

discrete-time survival analysis (DTSA). Importantly, one source of unobserved heterogeneity in 

DTSA may result from the clustering of data. For example, in the structural equation modeling 

framework, some methodological studies have specified an outcome of a discrete-time survival 

model as a latent continuous variable, and with the addition of a random effect, have examined 

the effects of ignoring unobserved heterogeneity in model estimates (e.g., Baker & Melino, 

2000; Kang et al., 2015; Nicoletti & Rondinelli, 2006). In each of these studies, results suggest 

that ignoring unobserved heterogeneity by excluding a random effect from the model results in 

biased estimates of the hazard function. Masyn (2003), Muthén and Masyn (2005), and 

Moerbeek (2014) have similarly explored this issue using discrete-time survival mixture 

modeling, using latent classes to account for unobserved heterogeneity in DTSA.  

Other studies have examined clustering beyond the individual level, where individuals 

are clustered into some other higher-level context. For example, if it is known that students are 

clustered into schools, unobserved heterogeneity may be introduced because it is likely that the 

students in one school are more alike to each other than they are to students in another school. 

Given the introduction of unobserved heterogeneity due to clustering, the consequences of 

ignoring a level of nesting differ in a DTSA as compared to a conventional logistic regression. 

Specifically, while ignoring a level of nesting will likely result in an underestimation of the 

standard errors, it is also expected that bias will be introduced into the point estimates of the 

fixed effects that represent the hazard function in a DTSA. In other words, the baseline logit 

hazard probability estimated using a traditional discrete-time survival model will represent the 

average logit hazard of students calculated over all schools without accounting for between-
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school differences, and is likely to result in an underestimation of the baseline hazard probability 

(Barber et al., 2000; Steele, 2003; Vaupel et al., 1979). Therefore, an important extension of a 

single-level discrete-time survival model is a ML-DTS model, adding a random effect to the 

clustering-level and controlling for one likely source of unobserved heterogeneity present due to 

the nested data structure.  

A conventional ML-DTS model assumes purely clustered data. For data to be considered 

purely clustered, all lower-level units must be clustered within a single higher-level unit 

(Raudenbush & Bryk, 2002). The following sections present unconditional and conditional 

multilevel discrete-time survival models, and are followed by extensions of this model when 

presented with more complex data structures. 

Unconditional Multilevel Discrete-Time Survival Models 

As with any multilevel model, a multilevel discrete-time survival model can be specified 

where there are no covariates included in the model. An unconditional ML-DTS model can be 

expressed for 5 time periods as: 

 log I
)!"/

!*)!"/
J = [6!71'(0 + 6"72'(0 + 6#73'(0 + 6$74'(0 + 6%75'(0] + K0, (8) 

where log I
)!"/

!*)!"/
J represents the logit of the hazard probability for individual i in cluster j during 

time period t. 71'(0 through 75'(0 are dummy variables for individual i in cluster j that are coded 

as 1 for the time period it represents and 0 for all other time periods. 6! through 6% are the 

corresponding intercept parameters across all level-1 and level-2 units during the respective 

discrete-time period. The random effect, K0, represents the random variation in level-2 clusters 

across all discrete-time periods, or in other words, the effect of clustering, which is assumed to 

be normally distributed with a mean of 0 and variance, L1". For example, if students are clustered 
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into schools, L1" represents the variation in the student outcome between-schools across all 

discrete-time periods. Note that although this model includes a single overall random effect, it is 

also possible to instead include random effects for the coefficient representing each discrete-time 

period, 6! through 6%, which would be interpreted as the variation in logit hazard between-

clusters for the respective time period.  

Conditional Multilevel Discrete-Time Survival Models 

A conditional ML-DTS model can also be specified by including predictors at one or 

both levels of the model. For example, a researcher may hypothesize that an individual-level 

characteristic, Xij, is related to the outcome and that a cluster-level characteristic, Zj, may explain 

some of the variability in the outcome. A conditional model can be expressed as, 

log I
)!"/

!*)!"/
J = M6!71'(0 + 6"72'(0 + 6#73'(0 + 6$74'(0 + 6%75'(0N + @!?(0 + @"O0 + K0,  (9) 

where 6! through 6% are the intercept parameters for all individuals across clusters when the 

predictors are equal to 0. Together, 6! through 6% represent the baseline logit hazard function. @! 

represents the log hOR of event occurrence across clusters and across all discrete-time periods 

per unit change in ?(0 controlling for O0 . @" represents the average log hOR of event occurrence 

per unit change in the level-2 covariate, O0, controlling for ?(0. Note that as a proportional model, 

the effect of the covariates on the logit of the hazard probability is constant across all time 

periods. Additionally, the effect of the level-1 covariate is modeled as fixed, but could easily be 

modeled as random across clusters.  

Methodological Research  

Multilevel discrete-time survival models were developed to account for both the large 

number of ties resulting from grouped-time data and the effect of clustering on data analysis. 

Goldstein (1995) first theoretically described the integration of multilevel models with event 
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history data. Hedeker et al. (2000) derived a random-effects grouped-time survival analysis 

model to account for the effects of clustering in time-to-event data. The authors derive their 

model where survival time is represented as both an ordered outcome (resulting in a model that is 

comparable to the continuous-time Cox proportional hazards model) and as a set of dichotomous 

predictors. Similarly, Barber et al. (2000) developed and demonstrated the use of a discrete-time 

multilevel hazard model, extending previous work by demonstrating how software programs 

capable of using maximum-likelihood estimation for HGLMs can be used to conduct a 

multilevel discrete-time survival analysis that incorporates time-varying covariates for two-level 

models. Steele (2003) extended single-level discrete time survival mixture models to clustered 

data by specifying a multilevel discrete-time mixture model. As opposed to previously presented 

multilevel discrete-time hazard models, the integration of a multilevel discrete-time survival 

model with mixture modeling allows for the effects of an unobserved variable at the clustering 

level on the probability of event occurrence at the lower-level and on the timing of event-

occurrence for the at-risk population during each discrete time period. Stemming from the 

models proposed in this work, the methodological literature concerning discrete-time survival 

modeling was subsequently extended to further assess the use of such models. 

Moerbeek (2012) explored the performance of a model that incorporates a random effect 

at the cluster level, conducting a simulation within the context of a cluster randomized trial 

where families were nested within caseworkers. Here, the random effect in the ML-DTSA was 

placed at the clustering level to account for variability in hazard due to the clustering of families 

within caseworkers. The simulation varied four factors, including the number of clusters (30, 50, 

and 100), the within cluster sample size (5, 30, and 50), variance at the cluster level (0.25, 0.5, 

and 1), and survival pattern (increasing, decreasing, and constant). For all patterns, survival in 
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the control group at the end of the study was 50%. The coefficient for the cluster-level predictor, 

here representing a treatment effect, was fixed to	.5 on the logit scale, and 5 time periods were 

used for all conditions. The simulation results indicated that, on average, there was no bias 

associated with the fixed effect estimates or their standard errors for any of the 81 combinations 

of simulation conditions. However, on average, more severe negative bias was observed for the 

variance component estimates for conditions where there were 30 clusters with a within-cluster 

sample size of 5.  

Impure Nesting in Multilevel Discrete-Time Survival Models 

All of the studies utilizing a ML-DTSA described so far have assumed purely clustered 

data. In such cases, the use of an ML-DTS model accounts for the dependency that exists within 

the nested data structure by separating out the effects at each of the nested levels (Fielding & 

Goldstein, 2006). Such a pure hierarchy, where level-1 units are nested into level-2 clusters, can 

be depicted using a network diagram. For example, Figure 2 is a network diagram depicting a 

two-level purely clustered data structure where students (level-1) are nested in schools (level-2). 

Figure 2 

A Two-Level Pure Hierarchy Depicted as a Network Graph 
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However, in the social and behavioral sciences, applied researchers rarely encounter such simple 

multilevel data structures. Instead, data often contain complexities that mirror the real world and 

result in impure nesting of level-1 units into higher-level clusters. 

 There are many types of situations that result in multilevel data that are not purely nested. 

For example, one commonly referenced scenario in educational research is when students are 

nested within neighborhoods and within schools. If neighborhoods were nested within schools 

such that students within one neighborhood went to one and only one school, the data are purely 

clustered and can be analyzed using a conventional three-level hierarchical linear model 

(Raudenbush, 1993). However, in reality, it is more likely that one school consists of students 

from multiple neighborhoods, and a neighborhood will contain students who go to multiple 

schools (Raudenbush, 1993). Instead, students (level-1) are said to be cross-classified by 

neighborhoods (Factor A, level-2) and schools (Factor B, level-2) (Fielding & Goldstein, 2006; 

Meyers & Beretvas, 2006).  

In educational research, student mobility also results in complex data structures. Student 

mobility is common in the U.S., where about 12%-38.5% of students switched schools or moved 

between 2005 and 2010 (e.g., Ihrke & Faber, 2012; U.S. Government Accounting Office, 2010). 

As such, it is often the case that large datasets have high levels of student mobility. For example, 

in their analysis of student drop-out between 7th and 12th grade using the Flemish ‘LOSO’-

project (Van Damme et al., 2002), Lamote et al. (2013) found that 27.6% of students moved 

schools at least one time during the course of the study.  

Indeed, previous methodological studies using conventional multilevel models have 

demonstrated the adverse effects of incorrect model specification in the presence of such 

complex data structures, and show that incorrectly modeling this complexity can have a negative 
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impact on estimates of the standard errors for the fixed effects and variance component estimates 

(e.g., Cappelli et al., 2020; Chung & Beretvas, 2012; Leroux & Beretvas, 2018b; Leroux et al., 

2020; Luo & Kwok, 2009, 2012; Meyers & Beretvas, 2006). Additionally, within the context of 

discrete-time survival analysis, just as ignoring a level of clustering tends to result in unobserved 

heterogeneity (Barber et al., 2000; Steele, 2003), such complex data structures may also result in 

another source of unobserved heterogeneity. Therefore, when mobility is ignored and omitted 

from the model, a possible outcome is that there will be variation in the hazard function that 

remains unexplained due to the resulting unobserved heterogeneity; however, no prior study has 

explicitly examined this. As such, in contrast to conventional multilevel models that ignore 

complex data structures, ignoring individual mobility across clusters in a ML-DTSA may also 

introduce bias into the point estimates of the fixed effects representing the hazard function. It 

should be expected that as the data structure becomes more complex (i.e., student mobility 

increases), the observed bias in the parameters representing the hazard function would become 

more severe.  

Given the negative effects on parameter estimates when such data structures are not 

appropriately modeled, cross-classified random effects models (CCREMs) and multiple 

membership random effects models (MMREMs) have been developed and can further be 

extended for use in a ML-DTSA. 

Cross-Classified Random Effects Modeling  

When higher-level units are not purely clustered within one another, such as the previous 

example of students cross-classified by both neighborhoods and schools, the interest may be in 

assessing the effect of both higher-level clusters on the outcome of interest. Figure 3 represents 

such a cross-classification.  
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Figure 3 

A Cross-Classified Network Diagram 

 

Note here that students A and C both attend School 1, but live in different neighborhoods. 

Therefore, students are nested in a cross-classification of neighborhoods and schools, as 

represented by the crossed lines in the network diagram. When data are cross-classified, the 

traditional multilevel modeling methods previously presented are insufficient. In fact, previous 

research has found that incorrectly specifying a multilevel model in the presence of cross-

classified data may result in bias in the variance component estimates and in the standard error 

estimates of the fixed effects (Luo & Kwok, 2009, 2012; Meyers & Beretvas, 2006).  

 Cross-classified data structures are also seen when the interest is in modeling a 

dichotomous outcome variable, such as those seen in survival analysis. For example, Nuño and 

Katz (2019) used a CCREM to investigate the likelihood of youth joining a gang in relation to 

school and community level factors. Here, youth (level-1) were nested simultaneously into 

schools and communities (level-2). The use of a cross-classified model allowed the authors to 

partition the effects of schools and communities on the likelihood of gang membership. Lamote 

et al. (2013) extended the use of cross-classified modeling to DTSA, examining the hazard of 

student dropout when students are mobile. In such cases, a measurement occasion (level-1) is 
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nested within a crossing of students (level-2, Factor A) and schools (level-2, Factor B), allowing 

the school indicator and corresponding school characteristics to change over time as a student 

moves schools.  

This approach to a discrete-time survival analysis, where impure nesting results in the 

situation that repeated measures are nested within a cross-classification of students and schools, 

closely resembles the methodological work presented by Raudenbush (1993), where a cross-

classified growth curve model was estimated for a continuous outcome variable. Table 2 presents 

a comparison of purely nested and impurely nested data structures using the illustrative data 

previously presented in Table 1. For example, in a purely nested data structure, student 100 is a 

member of school 1 for all five measurement occasions and is right-censored, and student 110 is 

a member of school 2 for two measurement occasions, at which time the student experienced the 

event. Such a data structure, where students are purely nested into schools across all 

measurement occasions, is conducive to the use of a purely clustered ML-DTSA. In contrast, the 

data structure may be considered to be cross-classified if students change schools across 

measurement occasions. For example, student 100 may be mobile, such that the student is a 

member of school 1 for 2 measurement occasions and a member of school 2 for the following 3 

measurement occasions. Similarly, student 120 was a member of school 2 during the first two 

measurement occasions and a member of school 3 during the third measurement occasion, at 

which point the student was no longer a member of the risk set due to event occurrence. In this 

situation, where some students are mobile across clusters during the study period, the data 

contains an impure hierarchy and can be considered cross-classified, where measurement 

occasions are nested within a cross-classification of students (Factor A) and schools (Factor B).  
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Table 2 

A Comparison of Purely Clustered Data and Cross-Classified data for a Discrete-Time Survival 

Analysis 

 Purely Clustered DTSA Cross-Classified DTSA 
 Clusters (Schools) Clusters (Schools) 

Individuals 
(Students) 

 
1 

 
2 

 
3 

 
1 

 
2 

 
3 

100 5   2 3  
110 2   2   
120  3   2 1 
130  3   1 2 

Note. The numbers inside the cells represent the number of repeated measures. For example, in 
the purely clustered dataset, student 100 was a member of school 1 for 5 repeated measures. 

 

As previously presented, a cross-classified discrete-time survival analysis requires that the data 

be formulated in the person-period format. Table 3 extends the person-period dataset depicted in 

Table 1 to present the illustrative cross-classified data set from Table 2. As seen in Table 3, 

School j changes for mobile students. For example, Student 100 moves from School 1 to School 

2 between measurement occasions 2 and 3, while Student 110 remains in School 1 for 

measurement occasions 1 and 2, at which point that student is no longer in the dataset due to 

event occurrence. As such, this person-period dataset can be used to appropriately model student 

mobility across schools using a cross-classified discrete-time survival analysis where 

measurement occasions are nested within a crossing of students and schools. Adapting Lamote et 

al.’s (2013) model specification, the parameterization of a cross-classified discrete-time survival 

(CC-DTS) model follows. 
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Table 3 

Example Person-Period Dataset in the Presence of Student Mobility 
 
Student 

i 
Time 

t 
Event 

etij 
Dummy 1 

D1tij 

Dummy 2 
D2tij 

Dummy 3 
D3tij 

Dummy 4 
D4tij 

Dummy 5 
D5tij 

School 
j 

100 1 0 1 0 0 0 0 1 

100 2 0 0 1 0 0 0 1 

100 3 0 0 0 1 0 0 2 

100 4 0 0 0 0 1 0 2 

100 5 0 0 0 0 0 1 2 

110 1 0 1 0 0 0 0 1 

110 2 1 0 1 0 0 0 1 

120 1 0 1 0 0 0 0 2 

120 2 0 0 1 0 0 0 2 

120 3 1 0 0 1 0 0 3 

130 1 0 1 0 0 0 0 2 

130 2 0 0 1 0 0 0 3 

130 3 0 0 0 1 0 0 3 
 

Unconditional Cross-Classified Discrete-Time Survival Model. A CC-DTS model can 

be presented using notation from Lamote et al. (2013). To facilitate model interpretation, it will 

be assumed here that measurement occasions are nested within a crossing of students and 

schools. The unconditional CC-DTS model can be presented for 5 total time periods as: 

 log I
)!("/)

!*)!("/)
J = [6!71'((0) + 6"72'((0) + 6#73'((0) + 6$74'((0) + 6%75'((0)] + K(0), (10) 

where log I
)!("/)

!*)!("/)
J represents the logit of the hazard probability at time t when student i is in 

school j. The subscript, (BR), indexes the cross-classified factors, students (Factor A, i) and 

schools (Factor B,  j), where the parentheses signify cross-classification, as is commonly done in 

the CCREM literature (e.g., Luo & Kwok, 2009, 2012; Meyers & Beretvas, 2006). 71'((0) 
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through 75'((0) are dummy variables for individual i in a school, R,	that are coded as 1 for the 

period it represents and 0 for all other time periods. 6! through 6% are the intercept parameters 

and represent the average estimated log hazard odds across individuals and schools during the 

respective discrete-time period. The random effect, K(0), represents the random variation in the 

level-2 effect of clustering across all discrete-time periods while accounting for the school(s) 

attended by student i, and is assumed to be normally distributed with a mean of 0 and 

variance,	L1". L1" represents the variation in the student outcome between-schools across all 

discrete-time periods.  

 Note that in a typical cross-classified model, it would be expected that each of the 

crossed-factors is given its own random effect; or in this example, a random student effect and a 

random school effect would be estimated. However, in this single-event discrete-time survival 

analysis, the event can occur for a student only once and the variance between students is 

accounted for by the Bernoulli distribution at level-1; therefore, only a random school effect is 

modeled (Lamote et al., 2013).  

 Conditional Cross-Classified Discrete-Time Survival Model. A conditional CC-DTS 

model can also be specified by including predictors at one or both levels of the model. For 

example, a researcher may hypothesize that a student-level characteristic, ?((0), is related to the 

outcome and that a school-level characteristic, O(0), may explain some of the variability in the 

outcome. A conditional CC-DTS model can be presented using notation from Lamote et al. 

(2013) as, 

log I
)!("/)

!*)!("/)
J = M6!71'((0) + 6"72'((0) + 6#73'((0) + 6$74'((0) + 6%75'((0)N + @!?((0) +

	@"O(0) + K(0),  (11) 
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where 6! through 6% represent the average log hazard odds for all individuals across schools 

when ?((0) is equal to 0 and O(0) is 0. @! represents the average log hOR of event occurrence 

across schools per unit change in ?((0) while holding constant other variables in the model. 

Additionally, @" represents the average log hOR of event occurrence per unit change in O(0), 

controlling for other variables in the model. Note that here, the covariate associated with school, 

O(0), can change for mobile students such that when a student changes schools, the school 

characteristic also changes accordingly. As a proportional model, it is assumed that the effect of 

the covariate is the same across all discrete-time periods.  

Student Mobility and the CC-DTS Model 

The primary difference between a ML-DTSA and a CC-DTSA lies in the way that the 

models, as presented here, handle the clustering of measurement occasions, students, and 

schools. Given the hypothetical example of Student 100 from Table 2, who switches schools 

once (i.e., attends schools 1 and 2) during the five measurement occasions for which the study 

took place, a CC-DTSA directly models the effects of school 1 and school 2, as well as their 

associated characteristics, on the logit of the hazard probability for the corresponding 

measurement occasion for that student. For example, the predicted logit of the hazard probability 

for Student 100 at each of the five measurement occasions, with a student- and school-level 

covariate included in the model, can be represented using notation from Luo & Kwok (2012) and 

Lamote et al. (2013), as  

 log I
)'('22,')

!*)'('22,')
J = 6!71!(!44,!) + @!?(!44,!) + @"O(!) + K(!) at Time 1,  (12) 

 log I
)*('22,')

!*)*('22,')
J = 6"72"(!44,!)	+	@!?(!44,!) + @"O(!) + K(!) at Time 2,  (13) 

 log I
)+('22,*)

!*)+('22,*)
J = 6#73#(!44,")	+	@!?(!44,") + @"O(") + K(") at Time 3,   (14) 
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 log I
),('22,*)

!*),('22,*)
J = 6$74$(!44,")	+	@!?(!44,") + @"O(") + K(") at Time 4, and   (15) 

 log I
)-('22,*)

!*)-('22,*)
J = 6%75%(!44,")	+	@!?(!44,") + @"O(") + K(") at Time 5.  (16) 

Here, log I
)'('22,')

!*)'('22,')
J through log I

)-('22,*)
!*)-('22,*)

J represent the logit of the hazard probability for 

each measurement occasion, one through five, for Student 100 who attends Schools 1 and 2. The 

hazard is conditional upon the value of ?((0) for Student 100, as well as the values of O(0) and 

K(0), which are allowed to change in each measurement occasion respective to school 

membership at that time. Therefore, it can be seen that during each measurement occasion, the 

predicted logit of the hazard probability for event occurrence is estimated for Student 100 using 

the school and its associated characteristics that was attended by the student during a given 

measurement occasion. Here, during periods 1 and 2, Student 100 was a member of school 1, and 

therefore, during each of these measurement occasions the effect of school 1 is represented by 

the random effect for that school, K!, and its associated school characteristic, O! (Equations 12 

through 13). When the student moves to school 2, the effect of school 2 on the predicted logit of 

the hazard probability for a given time period is estimated conditional on its associated school-

level predictor, O", and its random effect, K" (Equations 14 through 16). 

Multiple Membership Random Effects Modeling 

Mobility of individuals across clusters can also be modeled using a MMREM. The 

multiple membership data structure can be viewed as a special case of the cross-classified 

structure, where some lower level units are members of more than one higher-level unit of the 

same type (Fielding & Goldstein, 2006). For example, given a simple two-level data structure 

where students (level-1) are nested within schools (level-2), it is possible that the dataset 

contains some students who have attended multiple schools over time. In such cases, students 
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who do not stay in one school can be characterized as “mobile” and result in a multiple 

membership data structure. Figure 4 presents a multiple membership data structure, where some 

students are members of more than one school. Here, it can be seen that, for example, students a, 

d, g, and h attend more than one school, as represented by the dashed lines. In other words, these 

students can be considered mobile. This resulting data structure, where some individuals (e.g., 

students) belong to more than one cluster (e.g., schools) is called a multiple membership data 

structure. 

Figure 4 

A Multiple Membership Network Diagram 

 
 

As is the case with the previously presented CC-DTS model, multiple membership data 

structures can be accounted for in a multilevel discrete-time survival model. For example, in 

addition to specifying a cross-classified discrete-time survival model, Lamote et al. (2013) also 

specified a multiple membership discrete-time survival model to examine student dropout when 

some students attended multiple schools. Adapting Lamote et al.’s (2013) model specification, 

the parameterization of a multiple membership discrete-time survival model follows.  

Unconditional Multiple Membership Discrete-Time Survival Model. A multiple 

membership discrete-time survival model can be presented using notation from Lamote et al. 

(2013). To facilitate model interpretation, it will be assumed here that individuals (level-1) are 
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nested within schools (level-2). The unconditional multiple membership discrete-time survival 

model can be presented for 5 total time periods as: 

 log I
)!"{/}

!*)!"{/}
J = 	 M6!71'({0} + 6"72'({0} + 6#73'({0} + 6$74'({0} + 6%75'({0}N + 

                         ∑ V()K))∈{0}   (17) 

where log I
)!"{/}

!*)!"{/}
J is the logit of the hazard probability for individual i who is a member of a set 

of schools {R} during time period t. The subscript {R} indexes the set of schools associated with 

an individual over time. 71'({0} through 75'({0} are dummy variables for individual i in a set of 

schools, {R},	that are coded as 1 for the period it represents and 0 for all other time periods. 6!   

through 6% represent the average log hazard odds for all individuals and all schools at their 

respective time periods. The weights (wih) are assigned to the student’s association with each 

school, h, in the set of schools {j}, and for each student . A brief discussion of the 

assignment of weights will follow, but it is important to note that the specification of weights is 

done a priori by the researcher. The random effect, K4), represents the random variation in the 

level-2 effect of clustering across all discrete-time periods while accounting for the set of schools 

attended by student i, and is assumed to be normally distributed with a mean of 0 and variance, 

L1". For example, L1" represents the variation in the student outcome between-schools across all 

discrete-time periods.  

Conditional Multiple Membership Discrete-Time Survival Model. A conditional 

multiple membership discrete-time survival model can also be specified by including predictors 

at one or both levels of the model. For example, a researcher may hypothesize that an individual-

level characteristic, ?({0}, is related to the outcome and that a cluster-level characteristic, O), may 
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explain some of the variability in the outcome. A conditional multiple membership discrete-time 

survival model can be presented using notation from Lamote et al. (2013) as, 

 Log I
)!"{/}

!*)!"{/}
J = 	 M6!71'({0} + 6"72'({0} + 6#73'({0} + 6$74'({0} + 6%75'({0}N + @!?({0} +

																																			∑ V()(@"O) + K)))∈{0}    (18) 

where 6! through 6% represent the average log hazard odds for all individuals across schools 

when ?({0} is equal to 0 and the average contribution of the level-2 predictor O) across all 

schools in set {R} is 0. Note that here, the level-2 covariate, O), is also weighted in the same way 

as the level-2 random effect, such that it is the average contribution of the set of schools, {R}. @" 

represents the average log hOR of event occurrence per unit change in O), controlling for other 

variables in the model. Additionally, @! represents the average log hOR of event occurrence 

across schools per unit change in ?({0} while holding constant other values in the model. As a 

proportional model, it is assumed that the effect of the covariates on the logit scale is the same 

across all discrete-time periods. 

A Brief Comparison of the MM-DTS and the CC-DTS Models  

The MM-DTS and the CC-DTS models, as presented here, are similar in that they 

account for the mobility of students across schools. However, as opposed to the CC-DTS model, 

the MM-DTS model uses a weighting scheme where the weights (wih) are assigned to the 

student’s association with each school in the set of schools attended by a student. The choice of 

weights that will be assigned in the model are objective and determined by the researcher, but are 

important to accurately depict what is happening in reality (Fielding & Goldstein, 2006). For 

example, an applied researcher might assign a weight for each school in the set of schools 

attended by each student such that it is proportional to the amount of time that a student was 

enrolled at that school (Wolff Smith & Beretvas, 2014b). Again, this can be illustrated using the 
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person-period data for Student 100 from Table 3, who attended school 1 and school 2 for 2 

periods and 3 periods, respectively, across five measurement occasions. Using the MM-DTS 

model, the contribution of each of the two schools and their associated characteristics could be 

modeled such that, 

log $ !!"{$,&}
"#	!!"{$,&}

% = '61(1"%%{",(} + 62(2"%%{",(} +	63(3"%%{",(} +	64(4"%%{",(} +	65(5"%%{",(}0 +

@11"%%{",(} +	@2(
(
*3" +

+
*3() +

(
*5" +	

+
*5(.  (19) 

Therefore, the MM-DTS models the school(s) and their associated characteristics as a weighted 

set attended by a given student. This is in contrast to the CC-DTS model, where the school 

attended by a student is not assigned a weight, but rather, depends on the measurement occasion 

for which data are collected on a student. Therefore, the use of a CC-DTS model directly models 

the effect of changing schools and their associated characteristics, as represented by Equations 

12 through 16, while the MM-DTS model indirectly models the effect of schools on student 

outcomes by assigning weights a priori to the clustering units, as represented by Equation 19.  

 This direct and indirect modeling of the effect of school on the outcome has important 

implications for the interpretation of the model estimates. Specifically, a MM-DTSA models the 

effect of school as cumulative, while for the CC-DTS model, the effect of school is 

noncumulative. When the effect of school is modeled as cumulative, all schools in the set of 

schools contribute to the outcome according to their assigned weight; conversely, when the effect 

is modeled as noncumulative, the effect of previous schools attended disappears when students 

move schools. For the CC-DTS model, Equations 12-16 illustrate this noncumulative effect of 

school. Note that in each Equation, 12-16, the effect of school depends entirely on the school that 

a student is a member of during a respective time period, such that measurement occasions are 

nested within a cross-classification of students and schools. For example, Equation 15 models 
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the effect of School 2 attended by Student 100 on the logit of the hazard probability during time 

period 4. The effect of the previous school attended (i.e., School 1), does not factor into the logit 

of the hazard probability at Period 4. In contrast, a MM-DTSA models the effect of schools as 

cumulative, such that each school in the set of schools attended contributes to the associated 

current and subsequent logit of the hazard probability values. Note that this specification also 

means that schools attended at later time periods are modeled as impacting the hazard probability 

in earlier time periods, which may not accurately depict reality. In contrast, the non-cumulative 

effect of school modeled by a CC-DTSA may better represent reality in a given time period, but 

may not represent reality well at later time periods, where it is likely that previous schools 

attended contribute to proceeding student outcomes. 

Methodological Research for Complex Data Structures  

Methodological research for cross-classified and multiple membership data structures 

have been conducted using both cross-sectional and longitudinal data. In the case of cross-

sectional data, methodological research has indicated that inappropriately modeling impure 

clustering results in biased estimates of the variance components and standard errors of the fixed 

effects (Chung & Beretvas, 2012; Chung et al., 2018; Dunn et al., 2015; Luo & Kwok, 2009; 

Meyers & Beretvas, 2006; Ren, 2011; Wolff Smith & Beretvas, 2014a, 2017). Luo and Kwok 

(2009) found that the direction and magnitude of bias in these estimates is influenced by the 

structure of cross-classification and the degree to which the data are cross-classified. In other 

words, as individual mobility across clusters increases in the dataset, the bias associated with the 

variance components and standard errors of the fixed effects will also increase. The variance 

redistribution observed by Luo and Kwok (2009) partly explains contrasting findings in the 

methodological literature for MMREMs; for example, while Chung and Beretvas (2012) and 
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Wolff-Smith and Beretvas (2014a) observed bias in both the individual- and cluster-level 

variance component estimates, Wolff Smith and Beretvas (2017) did not observe any bias in the 

estimate of the level-1 variance component across any model. In the case of longitudinal data, 

methodological studies have resulted in similar findings (Cappelli et al., 2020; Choi & Wilson, 

2016; Grady, 2010; Grady & Beretvas, 2010; Leroux, 2019; Leroux & Beretvas, 2018a, 2018b; 

Leroux et al., 2020; Luo & Kwok, 2012). Studies using real data have found that model estimates 

differ between misspecified models and models that correctly account for mobility for both 

linear and nonlinear growth curve models (Grady & Beretvas, 2010; Leroux, 2019; Leroux & 

Beretvas, 2018a). Simulation studies have further examined these differences to describe the 

direction and magnitude of bias in both correctly specified and misspecified models, and indicate 

that inappropriately modeling individual-level mobility across clusters results in substantial bias 

in model estimates at the cluster-level, specifically in the variance components and in the impact 

of the covariates on growth rates (Cappelli et al., 2020; Choi & Wilson, 2016; Grady, 2010; 

Leroux & Beretvas, 2018b; Leroux et al., 2020; Luo & Kwok, 2012).  

Importantly, this methodological research has provided insights regarding the study 

factors that may contribute to bias observed in model estimates when using CCREMs and 

MMREMs. For example, studies have indicated that cluster size is an important contributor of 

bias in MMREMs and CCREMS, where larger cluster sizes are more important than within-

cluster sample sizes to mitigate bias in parameter estimates (Chen & Leroux, 2018; Vassallo et 

al., 2017; Wolff Smith & Beretvas, 2017). Even larger cluster-level sample sizes may be needed 

when using longitudinal data, where some methodological work has suggested that appropriately 

modeling mobility using longitudinal models without bias may require 100 or more clustering 

units (Leroux & Beretvas, 2018b; Leroux et al., 2020). In addition to these methodological 



 

  44 
 

 

findings, Moerbeek and Safarkhani (2018) conducted an analytical study to provide formulas 

that can be used to calculate the necessary sample size to achieve the desired level of statistical 

power when using cross-classified designs.  

Additionally, other studies have examined the impact of the misspecification of weights 

used to represent the theoretical contribution of the cluster-level unit on mobile individuals when 

modeling mobility using an MMREM. While Wolff Smith and Beretvas (2014b) found that the 

MMREM is robust against the choice of weight patterns used to model the effect of multiple 

higher level units on a lower level unit, Galindo (2015) and Durrant et al. (2018) found that when 

mobility is generated more realistically, weight specification impacts the relative parameter bias 

of the cluster-level random effects’ variance component in some simulated conditions. 

Methodological Literature for Survival Analysis. Cross-classified and multiple 

membership modeling approaches can also be extended to incorporate both continuous-time and 

discrete-time survival outcomes. However, few methodological studies have been conducted in 

either continuous-time or discrete-time survival analysis with complex data structures.  

Cafri and Fan (2018) proposed and evaluated a continuous-time survival model for cross-

classified data against a model that ignored the complex data structure. Simulation results 

indicated that the model that accounted for the cross-classified data structure resulted in no bias 

in parameter estimates, while the modeling approach that ignored the complex data structure was 

found to result in substantial bias in estimates of the cluster-level variance component. 

Additionally, Elghafghuf et al. (2014) proposed and evaluated a Cox model with both cross-

classified and multiple membership frailties (CMM Cox Model). Overall, it was found that the 

CCM Cox Model performs better when mobility is higher and when variance components are 

larger. Additionally, the level-3 random effect for one crossed-factor was found to be biased, 
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although this is likely attributable to the small cluster-level sample size used in the simulation 

study. 

Only one study has investigated the use of a discrete-time survival model in the presence 

of individual mobility across clusters. Lamote et al. (2013) applied both a cross-classified and 

multiple membership discrete-time survival model to data with impure clustering. This study 

served two purposes, (1) an applied study of student drop-out and (2) a methodological study of 

discrete-time survival modeling techniques. As an applied study, Lamote et al. (2013) examined 

the effect of student and school characteristics on dropout hazard among students over a six-year 

period, specifically interested in the timing and occurrence of student risk for dropout. As a 

methodological study, the authors considered the hierarchical structure of the dataset and 

examined the resulting estimates of different hierarchical discrete-time survival models, 

including models that ignore student mobility and both a MM-DTS and a CC-DTS model. 

Lamote et al. (2013) found that the unconditional MM-DTSA returned a higher Deviance 

Information Criterion value than both a model where student mobility was ignored and the CC-

DTSA, indicating that the MM-DTSA yielded a poorer model fit. Additionally, model estimates, 

including those for the fixed effects representing the baseline hazard probability and the cluster-

level variance component, differed in models that appropriately modeled mobility and alternative 

ad hoc approaches. While Lamote et al. (2013) integrated both multiple membership and cross-

classified models into discrete-time survival modeling, their work included only a real-data 

analysis. As such, while differences were seen between models that accounted for student 

mobility and models that assumed a pure hierarchical data structure, it is not known which model 

estimates were estimated without bias, or if bias was present, the magnitude of that bias.  
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The purpose of this study was to build upon the work of Lamote et al. (2013) in discrete-

time survival analysis in the presence of student mobility. Given the authors’ findings that the 

CC-DTSA better fit the data containing student mobility than the MM-DTSA, this dissertation 

focused on the use of the CC-DTS model to appropriately model individual mobility across 

clusters. The following chapter presents the methods used to conduct a simulation study. The 

simulation study assessed the performance of a cross-classified discrete-time survival model 

under a variety of research contexts, and describes bias seen in the model estimates as compared 

to models that ignore individual mobility across clusters. 
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CHAPTER 3 

METHODOLOGY 

The primary purpose of this dissertation was to assess the impact of ignoring a cross-

classified data structure due to individual mobility across clusters in a discrete-time survival 

analysis, and further, to investigate how the baseline hazard function, variability of the cluster 

random effect, mobility rate, and within- and between-cluster sample size impact the 

performance of a cross-classified discrete-time survival model. The research questions that were 

addressed specifically examined the performance of a correctly specified CC-DTS model against 

a ML-DTS model that modeled only the first cluster (i.e., school) of the set of clusters that 

mobile individuals were associated with during the course of the study. Under the approach that 

ignored individual mobility across clusters, the effects of multiple clusters were not modeled for 

mobile individuals who were exposed to multiple contexts. Essentially, to conduct a 

conventional multilevel discrete-time survival analysis (ML-DSTA), researchers modify the 

complex data structure to a purely hierarchical data structure by ignoring mobility. Additionally, 

a single-level discrete-time survival analysis (DTSA), which also ignored the hierarchical 

structure of the data, was compared to the multilevel and cross-classified analyses.  

This chapter continues with a discussion of the simulation study procedures. First, the 

simulation study design, including the manipulated conditions proposed, is discussed. Following 

the proposed data generation procedures, the model estimation procedures are described, and 

finally, the analyses for examining parameter recovery are presented. 

Simulation Study 

 Lamote et al.’s (2013) study illustrated that there were differences in parameter estimates 

in the model that ignored the hierarchical data structure, the single-level discrete-time survival 
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(DTS) model; the model that ignored mobility, the ML-DTS model; and the model that 

incorporated mobility, the CC-DTS model. However, while differences were observed, it is 

unknown which model provided estimates closest to the true values, or the magnitude and 

direction of bias that may exist. Therefore, a simulation study was designed to examine the 

magnitude and direction of bias in each model under conditions common in applied research 

settings. This study evaluated bias in estimates of the fixed effects for all models and in the 

variance component for multilevel discrete-time survival approaches that either ignored mobility 

or incorporated mobility. The following sections describe the design of the simulation study, 

including generating conditions, data generation, and model estimation procedures.  

A Preparatory Step – A Review of the Literature 

To ensure that the generating values chosen for this simulation study were representative 

of those commonly found in educational research, a review of the applied literature was 

conducted. Prior to beginning the literature review, it was necessary to set guidelines for the 

types of studies to be included; therefore, inclusion criteria were established to guide this 

literature review, as follows: 

• Manuscript must be an applied educational research study 

• Study must be related to educational research in a K-12 setting 

• The primary focus of the study is related to student outcomes 

• Study must use one of the following models for the analysis of binary outcome data:  

(1) HGLM, (2) MMREM, (3) CCREM, (4) DTS model, (5) MM-DTS model, (6) CC-

DTS model 

 To search for this literature, multiple databases were used, such as Academic Search 

Complete, Education Source, PsychInfo, and ERIC (EBSCO). The databases were broadly 
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searched, and studies that appeared to meet the inclusion criteria presented above were further 

reviewed. The search was not constrained by any fields (i.e., dates of publication, authors, etc.). 

While numerous search terms were used, the first search term used was “Discrete-time survival 

analysis AND Education”. This search term produced limited literature from each of the 

databases. For example, at the time of this writing, using this search term in the ERIC (EBSCO) 

database yielded 34 publications that were broadly related to education and utilized a discrete-

time survival analysis, but either may not be considered educational research or did not meet the 

inclusion criteria for educational research defined above (i.e., student outcomes in K-12 

education). For example, studies that did not meet the inclusion criteria but appeared in the 

search included those with primary research questions related to public health (i.e., emergence of 

depression, first time consuming alcohol, first time using cigarettes, etc.) rather than educational 

research specifically, but the research was conducted using school-based data sources. Other 

studies that appeared in the initial search, but were excluded, included educational research 

studies that took place outside of a K-12 setting, such as those in the university context. 

Consequently, more broad search terms were used in an attempt to capture studies that used 

binary outcome variables, but were not necessarily conducted using a discrete-time survival 

analysis. For example, the search terms included, but were not limited to, “Discrete-Time 

Survival Models AND Education”, “Discrete-Time Survival Analysis AND Education”, 

“Discrete-Time Survival Analysis AND Schools”, “Discrete-Time Survival Analysis AND 

Students”, “Binary Outcome AND Education”, “Dichotomous Outcome AND Education”, 

“Hierarchical Generalized Linear Model AND Schools”, “Hierarchical Generalized Linear 

Model AND Students”, “Event history model of student dropout”. Search terms also included 

binary outcome variables commonly seen in educational research, such as, “Discrete-Time 
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Survival Analysis AND Student Retention”, “HGLM AND Graduation”, “Discrete-Time 

Survival Analysis AND Dropout”.  

 In conducting this search, abstracts were first reviewed to ensure that the study met the 

inclusion criteria. While many studies were found through this process, subsequent reviews of 

the manuscripts revealed that they did not always contain the information necessary to produce 

generating values. For example, in some studies, descriptive statistics for the overall sample were 

not included in the manuscript and could not be calculated given the provided information. In 

other studies, a discrete-time survival analysis was conducted, but time was constrained such that 

a hazard probability was not estimated for each measurement occasion, and therefore, the study 

could not be used to inform the generating values for hazard probabilities in this study. 

Therefore, a total of 14 studies were identified that met the inclusion criteria and were 

specifically used to choose generating values for this simulation study, which included values for 

level-1 and level-2 covariates, as well as values for the hazard probabilities. A summary of these 

studies is provided in Appendices A, B, and C. Specifically, Appendix A presents a summary of 

the studies used to inform generating values for the hazard probabilities on the logit scale, 

Appendix B provides a summary of estimated level-1 coefficient values for dichotomous 

covariates, and Appendix C provides a summary of studies from which the coefficient values for 

dichotomous level-2 covariates were culled. Further explanations for the chosen generating 

values resulting from this review of the literature are provided below. 

Generating Conditions 

In the present study, five factors were manipulated: cluster-level sample size (i.e., the 

number of schools), within-cluster sample size (i.e., the number of students per school), variance 

at the cluster-level, the overall mobility rate, and the Weibull scale parameter.  
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Cluster-Level Sample Size 

Prior simulation studies examining models that appropriately accounted for mobility 

across clusters have found that the cluster-level sample size can have an important impact on 

bias observed in the model estimates. The methodological literature has explored the effects of 

cluster sizes of between 20 and 150 on model estimates for CCREMs and MMREMs. In the 

continuous-outcome cross-sectional literature, it has been found that smaller cluster sizes of 20-

40 have resulted in biased estimates of cluster-level variance components (Chen & Leroux, 2018; 

Chung & Beretvas, 2012; Chung et al., 2018; Wheelis, 2017; Wolff Smith & Beretvas, 2017). 

Luo and Kwok (2012) used a longitudinal CCREM to model student mobility across clusters 

using cluster-level sample sizes of 25 and 50, and found that higher cluster sizes resulted in less 

bias when mobility was present in the data. While no simulation studies have been conducted to 

examine the effect of the cluster-level sample size on model estimates for a CC-DTS model, 

Lamote et al. (2013) used the CC-DTS model with a dataset that consisted of 55 schools at the 

cluster-level. Given previous findings in the literature for longitudinal data where individual 

mobility across clusters was present, it is important to examine the effect of the cluster-level 

sample size on model estimates for the CC-DTS model. Therefore, the cluster-level sample sizes 

in this study were set to 30, 50, and 100 to investigate model performance. 

Within-Cluster Sample Size 

In educational research, it is typical for the number of students per school to be about 30 

(Maas & Hox, 2005). However, the range of the within-cluster sample size typically falls 

between 5 and 61 (Chung & Beretvas, 2012). Additionally, previous simulation research using 

models that accounted for individual mobility across clusters have explored the effects of within-

cluster sample sizes between 10 (Chung et al., 2018; Wheelis, 2017) and 100 (Luo & Kwok, 
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2012). Commonly, it was found that the cluster-level sample size had a greater influence on 

parameter recovery than the individual-level sample size, although increases in the within-cluster 

sample size generally resulted in moderate gains in parameter precision (Chen & Leroux, 2018; 

Chung & Beretvas, 2012; Luo & Kwok, 2009, 2012; Meyers & Beretvas, 2006; Vassallo et al., 

2017; Wolff Smith & Beretvas, 2014a, 2017). Additionally, Chung et al. (2018) found that 

increasing the within-cluster sample size significantly increased the coverage rate of the 95% 

credible intervals. Therefore, the number of students per school in this study was set to 25 and 75 

at the first time period. However, note that due to the nature of the person-period dataset, the 

specified within-cluster sample sizes were only applicable to the first time-period. Beyond the 

first time-period, the within-cluster sample size in some clusters decreased as members of that 

cluster experienced the event.  

Variance at the Cluster-Level 

In educational research using multilevel discrete-time survival analysis, methodological 

studies have manipulated the estimated residual variance at the cluster-level, L1", to examine the 

impacts of the between-cluster variance on parameter estimates. The variance at the cluster-level 

is more interpretable when redefined as an intraclass correlation coefficient (ICC). Formally, the 

ICC is defined as the proportion of the total variance in the outcome that is attributable to 

variability among the cluster-level units. Previous methodological research using ML-DTS 

analysis has manipulated the variance between-clusters, and therefore, the ICC. For example, 

Moerbeek (2012) and Elghafghud et al. (2014) conducted simulation studies to explore the 

performance of survival models in the presence of clustered data structures. Findings suggested 

that when the ICC increases, under certain combinations of conditions fixed effect estimates may 
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be negatively impacted, but the cluster-level variance component may be better estimated in 

conditions that include a larger ICC.  

Although there are few applied studies that have utilized a multilevel discrete-time 

survival analysis approach in educational research, those that exist have reported a wide range of 

values for the variance between-clusters in conditional models, and therefore, a wide range of 

residual ICC values. For example, Davoudzadeh et al. (2015) reported ICC values that ranged 

from .003 to .13 and Petras et al. (2011) reported a residual ICC of .01. In the only study utilizing 

a CC-DTS model, Lamote et al. (2013) reported residual ICCs that ranged from .042 to .28. 

Therefore, in this study, the between-cluster variance component value was manipulated to be 

equal to 0.32 or 1.09, which are equivalent to residual ICC values of .10 and .25, defined here as 

small and large ICCs. Refer to Technical Appendix A for further information regarding the 

calculation of the residual ICC used in this dissertation, given between-cluster variance 

component values of 0.32 and 1.09.  

Overall Mobility Rate 

The interest in this study was to explore the effect of the overall mobility rate in the 

dataset on model estimates. Studies from the applied educational research literature that 

specifically examined student mobility have reported varying rates of mobility in their study 

samples, typically ranging from 15% to 50% mobility (Gruman et al, 2008; Nelson et al., 1996; 

Taniguchi, 2017). Additionally, Lash and Kirkpatrick (1990) reported that, in the United States, 

19% of students move in any given year, with younger students experiencing even higher rates of 

mobility. For example, Kerbow (1996) stated that in studies of Chicago’s Public Schools, 

upwards of 62% of elementary school students switched schools during their elementary school 

years. These mobility rates are also supported by more recent government statistics, which 



 

  54 
 

 

suggest that in the United States, about 12%-38.5% of students switched schools or moved 

between 2005 and 2010 (Ihrke & Faber, 2012; U.S. Government Accounting Office, 2010). In 

the methodological literature, the majority of simulation studies have examined the impact of 

mobility rates between 10% and 35% (e.g., Cappelli et al., 2020; Chen & Leroux, 2018; Chung 

& Beretvas, 2012; Galindo, 2015; Leroux & Beretvas, 2018b; Leroux et al., 2020; Luo & Kwok, 

2012). Additionally, Wheelis (2017) and Luo and Kwok (2012) explored the impact of mobility 

rates as low as 5% on bias in model estimates when complex data structures were inappropriately 

modeled. These studies found that mobility rates exceeding 10% typically result in bias in the 

estimate of the cluster-level predictor coefficient and the cluster-level variance component of the 

model that does not correctly account for mobility. Therefore, for this study, individual mobility 

rates of 10%, 20%, and 30% were explored.  

Weibull Scale Parameter 

In educational research utilizing discrete-time survival analysis, it is usually seen that 

survival at the end of the study remains relatively high; in other words, the overall rate of event 

occurrence among the sample is low. For example, in a study by Davoudazadeh et al. (2015) that 

examined the first occurrence of grade retention, 13% of the sample experienced the event by the 

end of the study. In a study of student dropout by Lamote et al. (2013), about 11% of the sample 

experienced the event, while higher occurrences of dropout of between 20% and 30% of the 

overall sample were seen in other studies (Bowers, 2010; Orozco, 2016). A summary of the 

findings from this literature can be found in Appendix A. In methodological research that varied 

the proportion of event occurrence, it was found that in some cases, especially when sample sizes 

were small, low rates event occurrence (25%) resulted in greater amounts of bias in some model 

parameters than higher rates of event occurrence among the sample (Moerbeek & Hesen, 2018; 
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Moerbeek & Schormans, 2015). Therefore, this study manipulated the survival patterns among 

individuals in the generated datasets using the Weibull survival function. A Weibull survival 

function was used to calculate the hazard probabilities at each of the five time periods generated 

in each dataset. As such, the hazard probability at each time period, h(t), was calculated as, 

ℎ(+) = 6Z+(>*!), where 6 is the Weibull shape parameter, Z is a Weibull scale parameter, and + 

represents the time period, 1 through 5. For the purposes of this dissertation, the shape 

parameter, 6, was always equal to 1.5. However, the scale parameter, Z, had two levels, .05 and 

0.025. When the scale parameter was equal to 0.05, the survival at the end of the five time 

periods was equal to 51%, and when the scale parameter was equal to 0.025, the survival at the 

end of the five time periods was equal to 73%. The hazard probabilities can be calculated using 

the equation previously presented and providing the values of the shape (i.e., 1.5) and scale 

parameters (i.e., 0.05 or 0.025). For example, when the scale parameter was equal to 0.05, the 

hazard probability at the first time period was calculated as, ℎ(+) = (1.5)(.05)(1)(!.%*!), which 

is equal to .075, or a logit hazard value of −2.51. This procedure was also conducted for each 

time period by changing the value of t to be equal to the time period, 1 through 5, resulting in 

hazard probabilities of .075, .106, .130, .150, and .168, which are equivalent to logit hazard 

values of −2.51, −2.13, −1.90, −1.74, and −1.60. Following the same procedures, but changing 

the scale parameter to 0.025, the hazard probabilities are equal to .038, .053, .065, .075, and .084, 

which are equivalent to logit hazard values of −3.25, −2.88, −2.67, −2.51, and −2.39. A further 

discussion of event occurrence, hazard functions, the number of time periods, and the survival 

pattern for the generated dataset is provided below. 

In summary, the performance of the DTS model, the ML-DTS model, and the CC-DTS 

model were assessed using 72 simulation conditions from the combination of 5 factors in a fully 
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crossed design (Table 4). As the aim of this study was to provide both methodological and 

applied researchers with insights regarding the performance of each model in the presence of 

individual mobility across clusters, the factors and their associated levels chosen for 

manipulation represent those that were common in applied research, and as described, have been 

commonly found to have substantial effects in models that ignore complex data structures when 

they are present. Additionally, although Lamote et al. (2013) conducted a real-data study that 

compared the CC-DTS model to other DTS models, this was the first simulation study to model 

a DTSA in the presence of a cross-classified data structure, and therefore, it is important to 

describe parameter recovery using the CC-DTS model when these factors are manipulated. 

Table 4 

Summary of Manipulated Simulation Conditions and Associated Levels 

Manipulated Factor Study Condition 
Within-cluster sample size 25 

75 
Cluster-level sample size 30 

50 
100 

Mobility rate 10% 
20% 
30% 

Variance at the cluster-level (ICC) 0.32 (.10) 
1.09 (.25) 

Weibull scale parameter  0.050 
0.025 

 

Data Generation 

For each of the 72 simulation conditions, 1,000 cross-classified datasets were generated, 

resulting in a total of 72,000 simulated datasets that were estimated using a conditional DTS 

model, a conditional ML-DTS model, and a conditional CC-DTS model. Previous 

methodological and applied studies in DTSA and ML-DTSA have commonly used DTSA for 
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longitudinal studies with between four and six discrete-time periods (e.g., Bowers, 2010; 

Davoudzadeh et al., 2015; Jolani & Safarkhani, 2017; Lamote et al., 2013; Moerbeek, 2012). 

Therefore, this study examined discrete-time survival models in the context of a study with 5 

discrete-time periods. Additionally, while the pattern of the hazard probability (i.e., increasing, 

decreasing, or constant) varied in each of these studies, previous simulation research has 

indicated that the survival pattern does not have an effect on bias in the estimates of the 

parameters when using a ML-DTSA (Moerbeek, 2012). Given that in the types of outcomes 

often examined in educational research (e.g., student dropout), hazard commonly increases over 

time, this dissertation utilized an increasing hazard function. Therefore, for each of the levels of 

the Weibull scale parameter condition, the resulting hazard function was generated such that 

there were five discrete-time periods with hazard probabilities that increased over time, where 

the greatest hazard probability for event occurrence occurred in later time periods.  

Mobility Generation  

Student mobility was generated according to the level of the mobility condition for the 

sample size in the simulated dataset, as determined by the cluster sample size and within-cluster 

sample size conditions. For example, for the level of the mobility condition where 10% of 

students were mobile for a dataset generated using 100 clusters (i.e., schools) and a within-

cluster sample size of 50 (i.e., 50 students per school), the total sample size in the simulated 

dataset was 5,000 students. Therefore, 500 students were randomly selected to be mobile. 

Mobility was generated such that the level of the mobility condition was applied identically in 

each generated dataset. In other words, the mobility rate was the rate of individual mobility in the 

sample generated in each of the 1,000 datasets generated per unique combination of conditions. 

For example, when a combination of conditions included 10% of students to be mobile, all 1,000 
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generated datasets were generated to randomly select 10% of students to be mobile. This 

procedure for mobility generation has been used in previous methodological studies (Cappelli et 

al., 2020; Choi & Wilson, 2016; Chung & Beretvas, 2012; Luo & Kwok, 2012; Meyers & 

Beretvas, 2006; Wolff Smith & Beretvas, 2017). For those students chosen to be mobile, 

subsequent schools attended were determined by their current School ID + 1. For example, for a 

dataset with 100 clusters, a mobile student in School 1 was assigned to School 2, but a mobile 

student in School 100 was assigned to School 1.  

Additionally, given the longitudinal nature of discrete-time survival analysis, it is 

probable that in reality, students may move more than once. Furthermore, students may move in 

different time periods. In regards to the maximum number of times that a student is able to move, 

the existing literature regarding student mobility indicated that it is most common for mobile 

students to move schools only once during a study period; however, mobile students may also 

move schools two times, with very few moving more than two times. For example, in applied 

educational research, Gruman et al. (2008) and Lamote et al. (2013) reported that the majority of 

mobile students in their study samples moved only once (66% and 88%, respectively), and a 

lesser majority moved twice (25% and 27.6%, respectively). Kerbow (1996) reported that only 

13% of elementary school students in Chicago’s public schools attended four or more schools 

during a six-year period. Additionally, existing methodological research that explored the 

impacts of student mobility has used a variety of mobility patterns. For example, in some 

methodological studies, mobile students changed schools only once, such that they attended a 

maximum of two schools (e.g., Cappelli et al., 2020; Choi & Wilson, 2016; Grady, 2010; Leroux 

et al., 2020; Wolff Smith & Beretvas, 2014a). However, in other methodological research, 

mobile students were allowed to change schools more than once (e.g., Chung & Beretvas, 2012; 
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Leroux & Beretvas, 2018a; Luo & Kwok, 2012; Wolff Smith & Beretvas, 2014b, 2017). For 

example, in a methodological study using real data, Leroux (2019) reported that 86.7% of the 

study sample moved schools only once, while the remaining mobile students moved more than 

once. Similarly, Leroux and Beretvas (2018b) generated data for a simulation study such that 

only 15.5% of mobile students moved twice, while the remaining students moved only once. 

Therefore, for this study, the majority of mobile students moved only once and some mobile 

students were allowed to move two times. Specifically, 80% of mobile students were assigned to 

move schools once (i.e., attend 2 schools), and the remaining 20% of mobile students were 

assigned to move schools twice (i.e., attend 3 schools), as described in Table 5. For example, 

following the previously described situation where a dataset with 5,000 students and a 10% 

mobility rate results in 500 students being randomly assigned to be mobile, 400 students (80%) 

were assigned to move schools once, and the remaining 100 students (20%) were assigned to 

move schools two times. 

As previously mentioned, due to the longitudinal nature of discrete-time survival 

analysis, it was also necessary to specify when those students who were randomly chosen to be 

mobile would move. Therefore, a set procedure was specified that was the same for each dataset, 

regardless of the level of the mobility condition, such that mobile students were assigned a time 

period in which to move. The proportion of mobile students assigned to move in each time 

period is outlined in Table 5. As illustrated in Table 5, the data generation procedure resulted in 

the majority of students being assigned to move in earlier time periods as opposed to later time 

periods. However, note that due to the discrete-nature of the measurement occasions, mobility 

was always 0% during period 1. As opposed to previous methodological research examining 

mobility, this CC-DTSA utilized the person-period dataset, as presented in Table 3. Therefore, as 
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students experienced the event, they were no longer included in the dataset for subsequent time 

periods. Thus, the student mobility procedure described in Table 5 was specifically designed to 

maximize the likelihood that a mobile student would both move and experience the event; in 

other words, a mobile student was less likely to be removed from the dataset due to event 

occurrence prior to the time period in which they were assigned to be mobile. 

Table 5 

Mobility Procedures Adopted for the Simulation Study 
 

Number of Times 
Mobile 

 
Time Period 

Percent of Mobile 
Students 

Mobile Once T2 40% 
Mobile Once T3 30% 
Mobile Once T4 10% 
Mobile Twice T2, T3 10% 
Mobile Twice T2, T4 10% 

 

As illustrated in Table 5, 90% of mobile students were assigned to move either once or 

twice by time period 3. Additionally, the percentage of mobile students assigned to move schools 

decreased across time, such that mobility was highest between time periods 1 and 2 with no 

mobility between time periods 4 and 5. Again drawing from the example of a generated dataset 

that contained 500 mobile students, 400 students were assigned to move only once, of whom 200 

were assigned to move during time period 2, 150 were assigned to move during time period 3, 

and 50 were assigned to move during time period 4. An additional 100 students were assigned to 

move twice, 50 of whom were assigned to move in both time periods 2 and 3, and the remaining 

50 in time periods 2 and 4. Again, regardless of the level of the mobility condition, the 

proportion of students assigned to move once or twice and the proportion of students assigned to 

move during each time period always remained the same. It is important to note that individual 

mobility was generated independent of event occurrence in each dataset. Therefore, while the 
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overall rates of mobility were specified to be equal to the level of the mobility conditions (10%, 

20%, or 30%), and mobility in each time period was specified to occur as described in Table 5, 

as students were removed from the risk set, the overall mobility and mobility per time period was 

not exactly equal to the described procedures. The actual rates of individual mobility across 

clusters across the generated datasets is provided later in this dissertation. 

Student mobility was not modeled using the conditional DTS or ML-DTS models; 

instead, the DTS model ignored the clustering of students into schools, while the ML-DTS model 

was estimated using only cluster-level characteristics from the first school attended by a student, 

resulting in a purely hierarchical data structure. However, for the CC-DTS model, mobility was 

modeled by structuring the data such that measurement occasions were nested within a crossing 

of students and schools. In other words, by modeling the cross-classified data structure with a 

CC-DTS model, the school identification and its corresponding characteristics were allowed to 

change at each measurement occasion as students moved schools.  

Generating CC-DTS Model  

 This simulation study examined differences in parameter estimates between the 

conditional models for the DTS model, the ML-DTS model, and the CC-DTS model. All of the 

simulated datasets were designed to have a cross-classified data structure where individuals were 

mobile across clusters, resulting in impure nesting where measurement occasions are nested 

within a cross-classification of students and schools. The data generating values presented here 

were culled from both real-data studies and methodological studies utilizing discrete-time 

survival models, hierarchical generalized linear models, and complex multilevel models in the 

existing educational research literature.  
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 The values for the coefficients for the student- and school-level predictors used in this 

simulation were also informed by the literature. The studies examined to establish realistic 

generating values for the student- and school-level predictors included those that utilized a 

multilevel discrete-time survival analysis, a single-level discrete-time survival analysis, and 

multilevel logistic regression, and are presented in Appendices B and C. For the student-level 

predictor, studies in educational research commonly used dichotomous variables or dummy-

coded variables in the model. For example, demographic variables such as race, gender, 

socioeconomic status, language spoken at home, among others have been found to be associated 

with educational outcomes (e.g., Carpenter & Ramirez, 2007; Schifter, 2016; Werblow & 

Duesbery, 2009). In other studies, gender has been identified as an important predictor, or has 

been used as a control variable in the model (Cha, 2015; Ma & Willms, 1999). Consistently, 

gender and race were examined in applied studies in relation to binary outcome variables. 

Therefore, in this study, the student-level predictor, ?((0), was a dichotomous variable, where 

50% of the sample were generated to have a value of 0 and the remaining 50% were generated to 

have a value of 1. This most closely resembles the proportions observed for the “Gender” 

variable in applied research. Additionally, as seen in the results of the studies summarized in 

Appendix B, the estimated coefficient on the logit scale most often indicated that males were 

more likely to experience the event than females. Therefore, the generating value for the 

coefficient of the student-level covariate used in this study was set to 0.50 on the logit scale. This 

corresponds to a hazard odds ratio (hOR) of 1.65, suggesting that, for example, the odds of event 

occurrence are greater for male students (coded 1) than they are for female students (coded 0).  

 Additionally, previous research was examined to generate a realistic cluster-level variable 

and its associated coefficient. In the educational research literature, student mobility was often 
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found to be associated with variables such as school location and school type. For example, some 

researchers have argued that student mobility is most prevalent in urban schools, as compared to 

suburban or rural schools (Kerbow, 1996; Lash & Kirkpatrick, 1990). Indeed, the applied 

literature has also examined various educational outcomes in relation to variables such as school 

type or school location (e.g., Carpenter & Ramirez, 2007; Cha, 2015; Werblow & Duesbery, 

2009). Given this research, it is likely that a study that accounts for both student mobility and has 

a discrete-time survival endpoint in the United States educational context will have a variable 

included in the model related to school type (i.e., public or private) or school location (i.e., 

urban, rural, suburban, etc.). In other words, a dichotomous variable at the clustering-level of the 

model is likely. Therefore, the cluster (i.e., school) predictor, O(0), used in this study was also a 

dichotomous variable, where 30% of schools were generated to have a value of 1 and the 

remaining 70% had a value of 0. These values are similar to those reported by Cha (2015) and 

Taniguchi (2017) in the applied literature, who both used dummy-coded variables representing 

school location, where rural or suburban schools were coded as the reference category at level 

two in their models. Furthermore, in educational research using HGLM or ML-DTS models, it is 

most common for the values of the coefficients for level-2 variables to range from about −0.50 to 

0.70 on the logit scale. Therefore, following Moerbeek (2012), this study utilized a value of 0.50 

on the logit scale for the level-2 coefficient. This corresponds to a hOR of 1.65, suggesting that 

students in schools coded as 1 have a greater likelihood of event occurrence across the study 

period than students in schools coded as 0. Note that although the coefficient and hOR are 

equivalent for the level-1 and level-2 covariate, given that the proportion of the covariates 

generated to equal 1 or 0 differ, the variance in the population differs. As a result, the effect of 

the covariate on the outcome differs. 
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 The random effect, K(0), was generated to be normally distributed with a mean of 0 and a 

variance, L1". Note that L1" changed according to the level of the manipulated condition for the 

cluster-level variance component value. The outcome, event occurrence, was assigned to each 

student by randomly drawing a 1 (event occurrence) or 0 (event does not occur) from a Bernoulli 

distribution, where the estimated hazard probability for each student was entered into the 

function as a probability, and n trials was equal to 1. For the data generation syntax in R, refer to 

Technical Appendix B. 

Estimating Models 

All generated data were estimated using a conditional DTS model, a conditional ML-

DTS model, and a conditional CC-DTS model as specified by Equations 5, 9, and 11, 

respectively. The conditional CC-DTS model accounted for individual mobility across clusters, 

while the DTS model ignored clustering and the ML-DTS model used only the first cluster (i.e., 

school) and its associated covariate in the model, ignoring subsequent schools attended by 

mobile students and their associated characteristics. Note that the data generating procedures 

differed from the estimation procedures here. Specifically, the baseline hazard function was 

generated according to the two levels of the Weibull scale parameter condition, which used a 

two-parameter Weibull function to generate hazard values for each time period. In contrast, the 

estimating models (i.e., the CC-DTS, the ML-DTS, and the DTS models) left the hazard function 

unstructured, estimating each logit hazard value from the generated data, as is common in 

applied research. For the DTS model, the cluster-level coefficient was estimated by 

disaggregating the cluster-level variable, such that all students from the same school were 

assigned the same value at the clustering-level.  
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Estimation Procedure 

All models were fit using R software using the lme4 package (version 1.1-21), which fits 

models utilizing a Laplace Approximation (Raudenbush et al., 2000). The Laplace 

Approximation is known to be an efficient and good quality estimator for approximating the 

maximum likelihood value (Snijders & Bosker, 2012). The maximum number of allowable 

function evaluations (i.e., number of iterations) was specified to be 250,000, which is an increase 

from the default value of 10,000 function evaluations. In order for the DTS model to be 

estimated using the same function as the other models, the between-clusters variance was 

constrained to 0, and therefore, no random effect was estimated. Estimates of the fixed effects for 

all models, as well as the variance components for multilevel models, were recorded and 

examined as described below. For the model estimation syntax in R, refer to Technical Appendix 

C. 

Analyses 

The analyses for the simulation study compared differences in the estimates of the fixed 

effects for all models, as well as estimates of the variance component from the conditional ML-

DTS model and the conditional CC-DTS model. Specifically, this simulation study examined the 

relative parameter bias (RPB), coverage of the 95% confidence intervals, and root mean square 

error (RMSE). Additionally, analysis of variance (ANOVA) was used to further understand the 

effects of the manipulated conditions on RPB, and logistic regression was used to further 

understand the effects of the manipulated conditions on coverage of the 95% confidence 

intervals. For all analysis syntax in R, refer to Technical Appendix D. 
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Relative Parameter Bias 

Relative parameter bias for the fixed effects (for all models) and the random effects’ 

variance component (for the ML-DTS and CC-DTS models) were calculated using the following 

formula: 

 \] >̂@_ =
A/B6*A6
A6

, (21) 

where ^@ is the generated true value of the kth parameter and >̅̂@ is the average of the estimates >̂@ 

for the kth parameter across the 1,000 simulated datasets per simulation condition. Parameter 

estimates with a relative parameter bias of a magnitude between 0.05 and 0.10 were considered 

moderately biased, and relative parameter bias that was greater than a magnitude of 0.10 was 

considered to be substantially biased (Chen & Leroux, 2018; Flora & Curran, 2004; Hoogsland 

& Boomsma, 1998; Kaplan, 1989). 

Coverage of the 95% Confidence Intervals 

Coverage rates of the 95% confidence intervals (CIs) were evaluated for each of the fixed 

effects in the DTS, ML-DTS, and CC-DTS models. Coverage rates of the 95% CIs were defined 

as the proportion of the 1,000 estimated confidence intervals that contained the generated 

parameter value. Coverage rates of between .925 and .975 were deemed to be acceptable 

(Bradley, 1978). 

Root Mean Square Error 

 RMSE was calculated for the fixed effects (for all models) and the random effects’ 

variance component (for the ML-DTS and CC-DTS models) using the following: 

 abcA = 	d4 >̅̂@ − ^@5
"
+ /F(^)f @

"
, (22) 
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where >̅̂@ is the average of the estimates for the kth parameter across the 1,000 simulated datasets 

per simulation condition, ^@ is the generated true value of the kth parameter, and /F(^)f @ is the 

standard deviation of the 1,000 estimates of the kth parameter per simulation condition. Smaller 

values of the RMSE suggest less biased and varied parameter estimates. 

Analysis of Variance 

ANOVA was performed to explore the effects of the five manipulated conditions used in 

this study on RPB. ANOVAs were conducted for each analysis approach (DTSA, ML-DTSA, 

and CC-DTSA) and model parameter separately, where the RPB was entered as the dependent 

variable and the manipulated conditions were the independent variables. Main effects and all 

possible interactions were included in the ANOVAs. An additional ANOVA was conducted per 

parameter where RPB was the outcome and the manipulated conditions and model type were 

included as independent variables. By including model type as an independent variable, the 

factorial ANOVA reveals model differences above and beyond differences observed for the other 

manipulated conditions, and therefore, may result in different practically important effects of the 

manipulated conditions on the observed RPB. Given that the purpose of using ANOVA here was 

descriptive due to large sample sizes, only the effect size was computed and interpreted. Cohen 

(1977) suggested that partial eta squared (gC") values of .01, .06, and .14 are equivalent to small, 

moderate, and large effect sizes. Therefore, for this study, gC" values of greater than .01 were 

considered to be practically significant.  

Logistic Regression  

Logistic regression was used to understand the practical impact of the manipulated 

conditions on the coverage of the 95% CIs. Logistic regression was necessary because the 

outcome used for this analysis was a binary variable where 1 indicated that the 95% CI included 
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the true value and 0 indicated that it did not. Regressions were conducted for each analysis 

approach (DTSA, ML-DTSA, and CC-DTSA) and model parameter separately, where coverage 

(1/0) was entered as the dependent variable and the manipulated conditions were the independent 

variables. Given that the purpose of using logistic regression here was primarily descriptive due 

to the large sample sizes, only an effect size was computed and interpreted. The What Works 

Clearinghouse (WWC) Procedures Handbook, Version 4 (2020) provides an effect size 

calculation for dichotomous outcome models, referred to as the Cox index, which is provided by:  

FDEF =	
GHI
!.J%

, where the LOR is the log odds ratio. Following the WWC guidelines for the Cox 

Index as a measure of effect size, a value of 0.25 was considered to be substantively important.  
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CHAPTER 4 

RESULTS 

 This chapter presents the results of the simulation study that investigated differences in 

the relative parameter bias (RPB), root mean square error (RMSE), and coverage of the 95% 

confidence intervals (CIs) for conditional model parameters estimated using a discrete-time 

survival model (DTS model), a multilevel discrete-time survival model (ML-DTS model), and a 

cross-classified discrete-time survival model (CC-DTS model). Additionally, the results of the 

one-way and factorial ANOVAs are presented for RPB, and the results of the logistic regressions 

are summarized for coverage of the 95% CIs. The CC-DTS model and ML-DTS model both 

accounted for the multilevel data structure where individuals are nested into clustering units, and 

the CC-DTS model additionally handled the mobility of individuals across clusters. The DTS 

model did not account for either the multilevel data structure or individual mobility across 

clusters.  

 The estimation procedure converged for all DTS, ML-DTS, and CC-DTS models using 

the 72,000 datasets simulated for this study. The following presentation of results is divided into 

summaries of the findings for the RPB and the associated ANOVAs, RMSE, and lastly, the 95% 

CIs and the associated results of the logistic regressions. 

Relative Parameter Bias 

 RPB was computed for estimates of the fixed effect and variance component parameters, 

including the coefficients associated with the intercept parameters that together represent the 

hazard function (a1, a2, a3, a4, and a5), the level-1 covariate (@!), and the level-2 covariate (@"), 

as well as for the between-clusters variance component, L1". In addition to the tables of results 

presented in this section, nested loop plots (Rücker & Schwarzer, 2014) that depict the RPB 
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estimates across all 72 combinations of conditions in one plot for each parameter can be found in 

Appendix F. Each nested loop plot provides a visual examination of model performance, in terms 

of RPB, such that patterns of RPB related to each simulation condition can be easily identified 

for each model used in this simulation study. 

 This section presents the relative parameter bias results for each of the 72 simulation 

conditions for each of the parameters estimated using the DTS model, the ML-DTS model, and 

the CC-DTS model. Additionally, the results of the ANOVAs are reported for each of the 

parameters with RPB as the outcome.  

Coefficient of the Intercept for Discrete-Time Period 1,	hK 

Table 6 presents the RPB for the parameter that represents discrete-time period 1 of the 

logit hazard function, a1, across 36 combinations of conditions where the Weibull scale 

parameter was 0.025 for the DTS model, the ML-DTS model, and the CC-DTS model. For the 

DTS model, moderate or substantial RPB was found for all 36 manipulated conditions. When 

holding all other manipulated conditions constant, RPB increased slightly as the rate of mobility 

increased. However, RPB increased substantially when the between-clusters variance component 

value increased from 0.32 to 1.09, suggesting that there was greater RPB associated with greater 

variation in the outcome between-clusters. When the between-clusters variance component value 

was 0.32, moderate negative bias was observed, while substantial negative bias was observed for 

all combinations of conditions when the between-clusters variance component was equal to 1.09. 

For the ML-DTS model, eleven of the 36 conditions resulted in RPB of between −0.05 and 

−0.10, indicating moderate negative bias of the parameter. All of the combinations that resulted 

in unacceptable RPB occurred when the variance between-clusters was 1.09, and the majority 

occurred in generated datasets that included the 30% mobility condition. When the CC-DTS 
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model was used to estimate the coefficient for discrete-time period 1, under all combinations of 

conditions RPB was close to zero, and therefore, no unacceptable RPB was observed.  
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Table 6 

Relative Parameter Bias of the Coefficient Estimate of the Intercept for Discrete-Time Period 1 

(6!= −3.25), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.050 −0.010 −0.001 

   75  −0.052 −0.011 0.000 
  50 25  −0.054 −0.012 0.000 
   75  −0.051 −0.009 0.003 
  100 25  −0.055 −0.013 −0.001 
   75  −0.055 −0.011 0.000 
 20 30 25  −0.056 −0.021 0.001 
   75  −0.054 −0.020 0.003 
  50 25  −0.054 −0.019 0.004 
   75  −0.057 −0.021 0.001 
  100 25  −0.058 −0.021 0.002 
   75  −0.059 −0.021 0.001 
 30 30 25  −0.056 −0.027 0.004 
   75  −0.062 −0.032 −0.001 
  50 25  −0.062 −0.030 0.000 
   75  −0.061 −0.030 0.001 
  100 25  −0.061 −0.029 0.003 
   75  −0.063 −0.030 0.000 

1.09 10 30 25  −0.147 −0.026 0.001 
   75  −0.150 −0.028 0.001 
  50 25  −0.156 −0.030 −0.001 
   75  −0.151 −0.026 0.004 
  100 25  −0.158 −0.031 −0.002 
   75  −0.158 −0.030 0.000 
 20 30 25  −0.155 −0.052 0.001 
   75  −0.152 −0.050 0.002 
  50 25  −0.154 −0.048 0.004 
   75  −0.157 −0.052 0.001 
  100 25  −0.160 −0.050 0.001 
   75  −0.160 −0.052 0.001 
 30 30 25  −0.153 −0.065 0.005 
   75  −0.161 −0.074 −0.004 
  50 25  −0.165 −0.072 −0.003 
   75  −0.158 −0.068 0.002 
  100 25  −0.161 −0.067 0.003 
   75  −0.164 −0.070 0.000 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to a baseline hazard probability in time period 
1 of .038. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. Italicized and bolded values indicate moderate or 
substantial relative parameter bias. 
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Table 7 presents the RPB for the coefficient of the intercept for discrete-time period 1, a1, 

across all 36 combinations of conditions where the Weibull scale parameter was 0.05. Using the 

DTS model, moderate or substantial negative bias was present across all combinations of 

conditions, ranging from −0.062 to −0.185. When controlling for the other manipulated 

conditions, RPB became more negative as the rate of mobility increased. More substantial RPB 

was observed when the variance component value increased from 0.32 to 1.09. Using the ML-

DTS model, ten of the 36 conditions resulted in a relative parameter bias of between −0.05 and 

−0.10, indicating moderate bias of the parameter. All of the combinations that resulted in 

moderate RPB occurred when the variance between-clusters was 1.09, and the majority occurred 

under the 30% mobility condition. Using the CC-DTS model, RPB was very close to zero.  
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Table 7 

Relative Parameter Bias of the Coefficient Estimate of the Intercept for Discrete-Time Period 1 

(6!= −2.51), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.062 −0.011 0.002 

   75  −0.062 −0.011 0.002 
  50 25  −0.065 −0.012 0.001 
   75  −0.063 −0.010 0.003 
  100 25  −0.067 −0.013 0.001 
   75  −0.067 −0.013 0.000 
 20 30 25  −0.068 −0.023 0.003 
   75  −0.066 −0.022 0.003 
  50 25  −0.066 −0.021 0.004 
   75  −0.069 −0.024 0.001 
  100 25  −0.070 −0.023 0.002 
   75  −0.072 −0.025 0.000 
 30 30 25  −0.071 −0.034 0.002 
   75  −0.076 −0.037 −0.002 
  50 25  −0.075 −0.035 0.000 
   75  −0.073 −0.034 0.001 
  100 25  −0.073 −0.032 0.003 
   75  −0.075 −0.035 0.000 

1.09 10 30 25  −0.168 −0.026 0.002 
   75  −0.171 −0.031 −0.001 
  50 25  −0.176 −0.030 0.000 
   75  −0.171 −0.026 0.005 
  100 25  −0.181 −0.032 −0.002 
   75  −0.179 −0.030 0.000 
 20 30 25  −0.177 −0.055 −0.001 
   75  −0.172 −0.052 0.002 
  50 25  −0.174 −0.050 0.005 
   75  −0.177 −0.054 0.001 
  100 25  −0.181 −0.052 0.002 
   75  −0.182 −0.055 0.001 
 30 30 25  −0.175 −0.070 0.005 
   75  −0.183 −0.079 −0.005 
  50 25  −0.185 −0.075 −0.001 
   75  −0.179 −0.072 0.003 
  100 25  −0.183 −0.071 0.003 
   75  −0.184 −0.074 0.001 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to a baseline hazard probability in time period 1 
of .075. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. Italicized and bolded values indicate moderate or 
substantial relative parameter bias. 
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To further explore the results presented in Tables 6 and 7, a factorial ANOVA was 

conducted for the coefficient, a1, where RPB was the dependent variable and the manipulated 

conditions were entered as independent variables for each model separately. Appendix D 

presents the partial eta-squared estimates for each model. For the DTS model, the ANOVA 

results indicated that the main effect of the Weibull scale parameter had a practically significant 

effect on the estimate of a1 [F(1, 71,928) = 1,428.54, p < .001, gC" 	= 0.019]. Specifically, when 

the Weibull scale parameter was equal to 0.05, the mean relative parameter bias was more 

negative than when the Weibull scale parameter was equal to 0.025 (M.025 = −0.11, M.05 = 

−0.12). Additionally, the main effect of the between-cluster variance component had a 

practically significant effect on the estimate of a1 [F(1, 71,928) = 56,340.86, p < .001, gC" 	= 

0.439], such that the mean RPB was more negative when the between-cluster variance 

component was equal to 1.09 (M0.32 = −0.06, M1.09 = −0.17). For the ML-DTS model, the 

ANOVA results indicated that the main effect of mobility had a practically significant effect on 

the estimate of a1 [F(2, 71,928) = 1,664.44, p < .001, gC" 	= 0.044], where the mean RPB became 

more negative as the mobility rate increased (M.10 = −0.02, M.20 = −0.04, M.30 = −0.05). 

Additionally, the main effect of the between-clusters variance had a practically significant effect 

on the estimate of a1 [F(1, 71,928) = 4,134.64, p < .001, gC" 	= 0.054], such that the mean RPB 

became more negative as the variance between-clusters increased from 0.32 to 1.09 (M0.32 = 

−0.02, M1.09 = −0.05). For the CC-DTS model, no main effect or interaction between 

manipulated conditions was identified as having a significant practical effect on RPB.  

Coefficient of the Intercept for Discrete-Time Period 2,	hL 

Table 8 presents the RPB for the coefficient of the intercept of discrete-time period 2 of 

the logit hazard function, a2, across 36 combinations of conditions where the Weibull scale 
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parameter was 0.025 for the DTS model, the ML-DTS model, and the CC-DTS model. For the 

DTS model, 33 out of 36 combinations of conditions resulted in moderate or substantial RPB. 

Moderate negative bias of −0.05 to −0.10 was observed when the variance between-clusters was 

0.32, with bias becoming more substantially negative when the variance between-clusters was 

1.09. For the ML-DTS model, eleven of 36 combinations of conditions resulted in moderate 

RPB. All of the combinations that resulted in moderate RPB occurred when the variance 

between-clusters was 1.09, and the majority occurred under the 30% mobility condition. For the 

CC-DTS model, RPB was close to 0 for all combinations of conditions. 
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Table 8 

Relative Parameter Bias of the Coefficient Estimate of the Intercept for Discrete-Time Period 2 

(6"= −2.88), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.043 −0.007 0.005 

   75  −0.052 −0.015 −0.002 
  50 25  −0.049 −0.011 0.002 
   75  −0.048 −0.010 0.003 
  100 25  −0.053 −0.015 −0.002 
   75  −0.051 −0.012 0.001 
 20 30 25  −0.051 −0.020 0.003 
   75  −0.052 −0.022 0.002 
  50 25  −0.051 −0.019 0.004 
   75  −0.055 −0.024 0.000 
  100 25  −0.055 −0.022 0.001 
   75  −0.056 −0.023 0.001 
 30 30 25  −0.052 −0.026 0.006 
   75  −0.061 −0.035 −0.003 
  50 25  −0.059 −0.031 0.001 
   75  −0.059 −0.032 0.001 
  100 25  −0.059 −0.031 0.002 
   75  −0.060 −0.032 0.001 

1.09 10 30 25  −0.123 −0.025 0.003 
   75  −0.131 −0.033 −0.002 
  50 25  −0.129 −0.028 0.002 
   75  −0.127 −0.026 0.004 
  100 25  −0.136 −0.033 −0.004 
   75  −0.133 −0.030 0.001 
 20 30 25  −0.132 −0.051 0.003 
   75  −0.132 −0.053 0.001 
  50 25  −0.131 −0.048 0.006 
   75  −0.135 −0.054 0.000 
  100 25  −0.139 −0.053 0.000 
   75  −0.138 −0.054 0.001 
 30 30 25  −0.133 −0.064 0.007 
   75  −0.144 −0.079 −0.006 
  50 25  −0.144 −0.073 −0.002 
   75  −0.139 −0.070 0.003 
  100 25  −0.142 −0.070 0.002 
   75  −0.143 −0.071 0.001 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to a baseline hazard probability in time period 
2 of .053. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. Italicized and bolded values indicate moderate or 
substantial relative parameter bias. 
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Table 9 presents the RPB for the coefficient of the intercept of discrete-time period 2 of 

the logit hazard function, a2, across 36 combinations of conditions where the Weibull scale 

parameter was 0.05 for the DTS model, the ML-DTS model, and the CC-DTS model. For the 

DTS model, 35 out of 36 combinations of conditions resulted in moderate or substantial RPB. 

Overall, RPB became more negative as the variance between-clusters increased, with substantial 

negative bias present under all conditions with a variance between-clusters equal to 1.09. For the 

ML-DTS model, twelve of 36 combinations of conditions resulted in moderate negative relative 

parameter bias. All of the combinations that resulted in moderate RPB occurred when the 

variance between-clusters was 1.09, and the majority occurred under the 30% mobility condition. 

Lastly, the CC-DTS model did not result in any moderate or substantial RPB, where all RPB 

estimates only had a non-zero digit in the thousands place.  
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Table 9 

Relative Parameter Bias of the Coefficient Estimate of the Intercept for Discrete-Time Period 2 

(6"= −2.13), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.048 −0.010 0.003 

   75  −0.053 −0.016 −0.002 
  50 25  −0.052 −0.013 0.001 
   75  −0.050 −0.011 0.003 
  100 25  −0.055 −0.015 −0.001 
   75  −0.053 −0.013 0.001 
 20 30 25  −0.056 −0.025 0.002 
   75  −0.058 −0.026 0.000 
  50 25  −0.055 −0.023 0.004 
   75  −0.058 −0.026 0.000 
  100 25  −0.060 −0.026 0.000 
   75  −0.060 −0.026 0.001 
 30 30 25  −0.061 −0.035 0.003 
   75  −0.069 −0.043 −0.006 
  50 25  −0.065 −0.037 0.000 
   75  −0.063 −0.035 0.002 
  100 25  −0.065 −0.036 0.001 
   75  −0.065 −0.037 0.000 

1.09 10 30 25  −0.115 −0.027 0.003 
   75  −0.120 −0.035 −0.002 
  50 25  −0.121 −0.032 −0.001 
   75  −0.115 −0.026 0.006 
  100 25  −0.125 −0.034 −0.004 
   75  −0.122 −0.031 0.001 
 20 30 25  −0.125 −0.055 0.001 
   75  −0.124 −0.056 0.001 
  50 25  −0.122 −0.051 0.007 
   75  −0.126 −0.057 0.001 
  100 25  −0.129 −0.056 0.001 
   75  −0.129 −0.057 0.002 
 30 30 25  −0.131 −0.074 0.005 
   75  −0.140 −0.086 −0.008 
  50 25  −0.138 −0.079 −0.002 
   75  −0.134 −0.076 0.002 
  100 25  −0.137 −0.076 0.001 
   75  −0.137 −0.078 0.001 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to a baseline hazard probability in time period 2 
of .106. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. Italicized and bolded values indicate moderate or 
substantial relative parameter bias. 
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To further explore the results presented in Tables 8 and 9, a factorial ANOVA was 

conducted for the coefficient, a2, where RPB was the dependent variable and the manipulated 

conditions were entered as independent variables for each model separately. Refer to Appendix 

D for tables that present the partial eta-squared estimates for each model. For the DTS model, the 

main effect of the between-cluster variance component had a practically significant effect on the 

estimate of a2, [F(1, 71,928) = 25,646.58, p < .001, gC" 	= 0.263], where the mean RPB was more 

negative when the between-cluster variance component was equal to 1.09 (M0.32 = −0.06, M1.09 

= −0.13). For the ML-DTS model, the ANOVA results indicated that the main effect of mobility 

had a practically significant effect on the estimate of a2,[F(2, 71,928) = 1,426.09, p < .001, gC" 	= 

0.038], where the mean RPB became more negative as the mobility rate increased (M.10 = −0.02, 

M.20 = −0.04, M.30 = −0.05). Additionally, the main effect of the between-clusters variance had 

a practically significant effect on the estimate of a2,[F(1, 71,928) = 3,362.80, p < .001, gC" 	= 

0.045], such that the mean RPB again became more negative as the variance between-clusters 

increased from 0.32 to 1.09 (M0.32 = −0.02, M1.09 = −0.05). No practically substantial impacts of 

the manipulated conditions on RPB were observed using the CC-DTS model. 

Coefficient of the Intercept for Discrete-Time Period 3,	hM 

Table 10 presents the RPB for the coefficient of the intercept of discrete-time period 3 of 

the logit hazard function, a3, across 36 combinations of conditions where the Weibull scale 

parameter was 0.025 for the DTS model, the ML-DTS model, and the CC-DTS model. For the 

DTS model, 23 combinations of conditions resulted in unacceptable levels of RPB. The RPB was 

moderate or substantial for all conditions when the variance component was equal to 1.09, but 

when the variance component was equal to 0.32, only combinations of conditions that included 

the 30% mobility condition were found to have unacceptable RPB. For the ML-DTS model, 
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moderate negative RPB was present for 8 out of 36 combinations of conditions, and only for 

conditions where the variance between-clusters was 1.09 and under the 30% mobility condition. 

For the CC-DTS model, no moderate or substantial RPB was observed for any combination of 

conditions.  
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Table 10 

Relative Parameter Bias of the Coefficient Estimate of the Intercept for Discrete-Time Period 3 

(6#= −2.67), When l = 0.025 

 Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.036 −0.008 0.003 

   75  −0.042 −0.013 −0.001 
  50 25  −0.042 −0.012 0.000 
   75  −0.039 −0.009 0.003 
  100 25  −0.043 −0.013 −0.001 
   75  −0.043 −0.012 0.000 
 20 30 25  −0.044 −0.020 0.002 
   75  −0.045 −0.021 0.002 
  50 25  −0.041 −0.016 0.007 
   75  −0.047 −0.023 0.000 
  100 25  −0.047 −0.021 0.002 
   75  −0.048 −0.022 0.001 
 30 30 25  −0.047 −0.026 0.006 
   75  −0.055 −0.035 −0.003 
  50 25  −0.051 −0.030 0.002 
   75  −0.052 −0.031 0.002 
  100 25  −0.052 −0.030 0.002 
   75  −0.054 −0.032 0.000 

1.09 10 30 25  −0.090 −0.022 0.004 
   75  −0.098 −0.031 −0.002 
  50 25  −0.099 −0.030 −0.002 
   75  −0.093 −0.024 0.005 
  100 25  −0.102 −0.031 −0.004 
   75  −0.099 −0.029 0.000 
 20 30 25  −0.103 −0.048 0.001 
   75  −0.102 −0.050 0.000 
  50 25  −0.098 −0.043 0.008 
   75  −0.103 −0.049 0.001 
  100 25  −0.106 −0.048 0.001 
   75  −0.106 −0.050 0.001 
 30 30 25  −0.107 −0.062 0.006 
   75  −0.117 −0.075 −0.007 
  50 25  −0.115 −0.069 −0.002 
   75  −0.111 −0.065 0.003 
  100 25  −0.113 −0.065 0.002 
   75  −0.116 −0.069 −0.001 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 3 
of .065. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. Italicized and bolded values indicate moderate or 
substantial relative parameter bias. 
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Table 11 presents the RPB for the coefficient of the intercept of discrete-time period 3 of 

the logit hazard function, a3, across 36 combinations of conditions where the Weibull scale 

parameter was 0.05 for the DTS model, the ML-DTS model, and the CC-DTS model. For the 

DTS model, moderate or substantial negative RPB was observed for 16 combinations of 

conditions, all of which had a variance component value equal to 1.09. Additionally, RPB tended 

to become more substantial as mobility increased. For the ML-DTS model, moderate RPB was 

observed for 7 combinations of conditions, all of which had a variance component value equal to 

1.09 and the majority of which occurred under the 30% mobility condition. In all cases, bias was 

negative. For the CC-DTS, no moderate or substantial RPB was observed for any combination of 

conditions.  
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Table 11 

Relative Parameter Bias of the Coefficient Estimate of the Intercept for Discrete-Time Period 3 

(6#= −1.90), When l = 0.05 

 Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.026 −0.009 0.003 

   75  −0.031 −0.015 −0.002 
  50 25  −0.031 −0.013 0.000 
   75  −0.027 −0.009 0.004 
  100 25  −0.033 −0.015 −0.003 
   75  −0.030 −0.012 0.001 
 20 30 25  −0.034 −0.021 0.004 
   75  −0.036 −0.023 0.001 
  50 25  −0.033 −0.019 0.006 
   75  −0.037 −0.024 0.001 
  100 25  −0.037 −0.023 0.001 
   75  −0.040 −0.026 −0.001 
 30 30 25  −0.044 −0.033 0.003 
   75  −0.048 −0.039 −0.004 
  50 25  −0.046 −0.035 −0.001 
   75  −0.043 −0.032 0.004 
  100 25  −0.045 −0.033 0.001 
   75  −0.047 −0.036 0.000 

1.09 10 30 25  −0.046 −0.023 0.002 
   75  −0.052 −0.032 −0.004 
  50 25  −0.052 −0.031 −0.004 
   75  −0.043 −0.021 0.007 
  100 25  −0.054 −0.032 −0.006 
   75  −0.049 −0.028 0.000 
 20 30 25  −0.057 −0.045 0.004 
   75  −0.058 −0.048 0.002 
  50 25  −0.054 −0.042 0.008 
   75  −0.059 −0.049 0.002 
  100 25  −0.061 −0.049 0.001 
   75  −0.061 −0.051 0.001 
 30 30 25  −0.073 −0.067 0.001 
   75  −0.078 −0.077 −0.008 
  50 25  −0.075 −0.070 −0.004 
   75  −0.070 −0.065 0.005 
  100 25  −0.073 −0.066 0.002 
   75  −0.074 −0.070 0.000 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 3 
of .130. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. Italicized and bolded values indicate moderate or 
substantial relative parameter bias. 
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To further explore the results presented in Tables 10 and 11, a factorial ANOVA was 

conducted for the coefficient, a3, where RPB was the dependent variable and the manipulated 

conditions were entered as independent variables for each model separately. Appendix D 

presents the partial eta-squared estimates for each model. For the DTS model, the main effect of 

the mobility rate had a practically significant effect on the estimate of a3 [F(2, 71,928) = 382.02, 

p < .001, gC" 	= 0.011], such that as the mobility rate increased, the mean RPB became more 

negative (M.10 = −0.05, M.20 = −0.06, M.30 = −0.07). Additionally, the interaction of the 

between-cluster variance component and the Weibull scale parameter had a practically 

significant effect on RPB for the estimate of a3 [F(1, 71,928) = 1,210, p < .001, gC" 	= 0.017]. 

Specifically, the interaction indicated that the mean relative parameter bias was more negative 

when the Weibull scale parameter was 0.025 and the between-clusters variance was equal to 

1.09, and the difference in the mean RPB between the Weibull scale parameters was greatest 

when the between-clusters variance was 1.09. For the ML-DTS model, the ANOVA results 

indicated that the main effect of mobility had a practically significant effect on the estimate of a3 

[F(2, 71,928) = 984.44, p < .001, gC" 	= 0.027], such that as the mobility rate increased, the RPB 

became more negative (M.10 = −0.02, M.20 = −0.03, M.30 = −0.05). Additionally, the main effect 

of the between-clusters variance had a practically significant effect on the estimate of a3 [F(1, 

71,928) = 2,118.58, p < .001, gC" 	= 0.029], where RPB became more negative as the variance 

between-clusters increased from 0.32 to 1.09 (M0.32 = −0.02, M1.09 = −0.05). For the CC-DTS, 

the ANOVA results indicated that no manipulated conditions had a practically important impact 

on RPB. 
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Coefficient of the Intercept for Discrete-Time Period 4,	hN 

Table 12 presents the RPB for the coefficient of the intercept of discrete-time period 4 of 

the logit hazard function, a4, across 36 combinations of conditions where the Weibull scale 

parameter was 0.025 for the DTS model, the ML-DTS model, and the CC-DTS model. For the 

DTS model, 18 combinations of conditions were found to have unacceptable RPB, all of which 

were associated with a variance component value of 1.09. The magnitude of RPB was less than 

0.10 in all cases where RPB was observed, but became more negative as mobility increased. For 

the ML-DTS model, moderate RPB was present for 5 out of 36 combinations of conditions, and 

only for conditions where the variance between-clusters was 1.09 and under the 30% mobility 

condition. For the CC-DTS, no moderate or substantial bias was observed, with all RPB 

estimates nearing 0.  
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Table 12 

Relative Parameter Bias of the Coefficient Estimate of the Intercept for Discrete-Time Period 4 

(6$= −2.51), When l = 0.025 

 Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.024 −0.005 0.005 

   75  −0.030 −0.011 0.000 
  50 25  −0.032 −0.012 −0.002 
   75  −0.028 −0.008 0.003 
  100 25  −0.033 −0.013 −0.002 
   75  −0.030 −0.010 0.001 
 20 30 25  −0.033 −0.018 0.002 
   75  −0.033 −0.018 0.002 
  50 25  −0.034 −0.018 0.003 
   75  −0.036 −0.021 0.000 
  100 25  −0.035 −0.018 0.002 
   75  −0.036 −0.019 0.001 
 30 30 25  −0.037 −0.023 0.006 
   75  −0.043 −0.031 −0.002 
  50 25  −0.044 −0.030 −0.002 
   75  −0.042 −0.028 0.001 
  100 25  −0.043 −0.029 0.000 
   75  −0.042 −0.028 0.002 

1.09 10 30 25  −0.055 −0.018 0.003 
   75  −0.060 −0.025 −0.001 
  50 25  −0.062 −0.025 −0.003 
   75  −0.055 −0.019 0.005 
  100 25  −0.063 −0.026 −0.003 
   75  −0.060 −0.023 0.000 
 20 30 25  −0.064 −0.037 0.003 
   75  −0.065 −0.039 0.002 
  50 25  −0.066 −0.037 0.004 
   75  −0.068 −0.041 0.001 
  100 25  −0.068 −0.039 0.001 
   75  −0.068 −0.040 0.002 
 30 30 25  −0.072 −0.049 0.007 
   75  −0.080 −0.061 −0.005 
  50 25  −0.082 −0.059 −0.005 
   75  −0.076 −0.054 0.002 
  100 25  −0.079 −0.055 0.000 
   75  −0.078 −0.055 0.001 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 4 
of .075. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. Italicized and bolded values indicate moderate or 
substantial relative parameter bias. 
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Table 13 presents the RPB for the coefficient of the intercept of discrete-time period 4 of 

the logit hazard function, a4, across 36 combinations of conditions where the Weibull scale 

parameter was 0.05 for the DTS model, the ML-DTS model, and the CC-DTS model. For the 

DTS model, no unacceptable RPB was observed for any combination of conditions. For the ML-

DTS model, moderate RPB was observed for only one combination of conditions, when the 

between-clusters variance component was 1.09, the mobility condition was 30%, the cluster size 

was 30, and the within-cluster sample size was 75. For the CC-DTS model, no moderate or 

substantial RPB was observed for any combination of conditions. 
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Table 13 

Relative Parameter Bias of the Coefficient Estimate of the Intercept for Discrete-Time Period 4 

(6$= −1.74), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.004 −0.004 0.004 

   75  −0.001 −0.011 −0.001 
  50 25  −0.003 −0.012 −0.002 
   75  0.003 −0.006 0.004 
  100 25  −0.003 −0.012 −0.003 
   75  0.001 −0.009 0.001 
 20 30 25  −0.007 −0.016 0.002 
   75  −0.007 −0.016 0.002 
  50 25  −0.009 −0.018 0.001 
   75  −0.008 −0.017 0.002 
  100 25  −0.008 −0.017 0.001 
   75  −0.009 −0.018 0.001 
 30 30 25  −0.016 −0.024 0.004 
   75  −0.021 −0.031 −0.004 
  50 25  −0.023 −0.033 −0.006 
   75  −0.017 −0.026 0.002 
  100 25  −0.017 −0.026 0.001 
   75  −0.017 −0.026 0.001 

1.09 10 30 25  0.034 −0.013 0.002 
   75  0.029 −0.021 −0.004 
  50 25  0.031 −0.020 −0.004 
   75  0.039 −0.010 0.007 
  100 25  0.029 −0.022 −0.006 
   75  0.035 −0.017 0.000 
 20 30 25  0.019 −0.029 0.001 
   75  0.018 −0.031 0.000 
  50 25  0.022 −0.026 0.006 
   75  0.019 −0.030 0.002 
  100 25  0.021 −0.029 0.002 
   75  0.020 −0.031 0.002 
 30 30 25  0.006 −0.039 0.005 
   75  −0.004 −0.053 −0.010 
  50 25  0.000 −0.048 −0.007 
   75  0.005 −0.042 0.003 
  100 25  0.003 −0.042 0.001 
   75  0.005 −0.043 0.001 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 4 
of .150. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. Italicized and bolded values indicate moderate or 
substantial relative parameter bias. 
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To further explore the practical implications of the results presented in Tables 12 and 13, 

a factorial ANOVA was conducted for the coefficient, a4, where RPB was the dependent variable 

and the manipulated conditions were entered as independent variables for each model separately. 

Appendix D presents the partial eta-squared estimates for each model. For the DTS model, the 

main effect of the mobility rate had a practically significant effect on the estimate of a4, [F(2, 

71,928) = 460.63, p < .001, gC" 	= 0.013], such that as the mobility rate increased, the mean RPB 

became more negative (M.10 = −0.01, M.20 = −0.02, M.30 = −0.03). Additionally, the interaction 

of the between-cluster variance component and the Weibull scale parameter had a practically 

significant effect on the estimate of a4 [F(2, 71,928) = 3,027.15, p < .001, gC" 	= 0.040]. When the 

between-clusters variance was 0.32, the mean RPB was more substantial when the Weibull scale 

parameter was 0.025 than when it was 0.05. In contrast, when the between-clusters variance was 

1.09, the mean RPB was more substantial when the Weibull scale parameter was 0.05 than when 

it was 0.025. Again, when the between-clusters variance was 1.09, the difference in mean RPB 

by the Weibull scale parameter values was much more substantial than when it is 0.32. For the 

ML-DTS model, the main effect of mobility had a practically significant effect on the estimate of 

a4 [F(2, 71,928) = 524.96, p < .001, gC" 	= 0.014], such that as the mobility rate increased, the 

mean RPB became more negative (M.10 = −0.01, M.20 = −0.03, M.30 = −0.04). Additionally, the 

main effect of the between-clusters variance had a practically significant effect on the estimate of 

a4 [F(1, 71,928) = 697.83, p < .001, gC" 	= 0.010], where the RPB became more negative as the 

variance between-clusters increased from 0.32 to 1.09 (M0.32 = −0.02, M1.09 = −0.03). For the 

CC-DTS model, no practically significant main effects or interactions were apparent. 
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Coefficient of the Intercept for Discrete-Time Period 5,	hO 

Table 14 presents the RPB for the coefficient of the intercept of discrete-time period 5 of 

the logit hazard function, a5, across 36 combinations of conditions where the Weibull scale 

parameter was 0.025 for the DTS model, the ML-DTS model, and the CC-DTS model. No 

moderate or substantial RPB was observed for any combination of conditions using any of the 

estimating models. Although no substantial RPB was observed, the CC-DTS model consistently 

performed better than the DTS and the ML-DTS models, with RPB close to 0 in all cases. 
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Table 14 

Relative Parameter Bias of the Coefficient Estimate of the Intercept for Discrete-Time Period 5 

(6%= −2.39), When l = 0.025 

 Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.012 −0.004 0.003 

   75  −0.018 −0.010 −0.002 
  50 25  −0.016 −0.008 −0.001 
   75  −0.012 −0.005 0.003 
  100 25  −0.016 −0.008 −0.001 
   75  −0.015 −0.007 0.001 
 20 30 25  −0.020 −0.014 0.001 
   75  −0.022 −0.016 −0.001 
  50 25  −0.019 −0.013 0.003 
   75  −0.021 −0.014 0.001 
  100 25  −0.021 −0.014 0.001 
   75  −0.021 −0.015 0.001 
 30 30 25  −0.022 −0.017 0.006 
   75  −0.030 −0.026 −0.004 
  50 25  −0.026 −0.021 0.000 
   75  −0.026 −0.021 0.002 
  100 25  −0.026 −0.020 0.002 
   75  −0.026 −0.021 0.001 

1.09 10 30 25  −0.014 −0.010 0.002 
   75  −0.019 −0.017 −0.003 
  50 25  −0.015 −0.012 0.001 
   75  −0.013 −0.010 0.005 
  100 25  −0.019 −0.016 −0.003 
   75  −0.016 −0.014 0.000 
 20 30 25  −0.023 −0.022 0.001 
   75  −0.024 −0.024 0.000 
  50 25  −0.019 −0.018 0.007 
   75  −0.023 −0.023 0.001 
  100 25  −0.023 −0.022 0.001 
   75  −0.023 −0.023 0.002 
 30 30 25  −0.029 −0.029 0.005 
   75  −0.037 −0.040 −0.008 
  50 25  −0.035 −0.036 −0.005 
   75  −0.031 −0.032 0.002 
  100 25  −0.030 −0.029 0.004 
   75  −0.031 −0.032 0.002 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 5 
of .084. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. Italicized and bolded values indicate moderate or 
substantial relative parameter bias. 
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Table 15 presents the RPB for the coefficient of the intercept of discrete-time period 5 of 

the logit hazard function, a5, across 36 combinations of conditions where the Weibull scale 

parameter was 0.05 for the DTS model, the ML-DTS model, and the CC-DTS model. For the 

DTS model, moderate or substantial RPB was observed for 16 combinations of conditions. 

Specifically, when all other conditions were held constant, moderate or substantial positive bias 

was observed when the between-clusters variance component was equal to 1.09, where the 

magnitude of the RPB ranged from 0.092 to 0.126. For the ML-DTS and CC-DTS model, no 

moderate or substantial RPB was observed for any combination of conditions. 
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Table 15 

Relative Parameter Bias of the Coefficient Estimate of the Intercept for Discrete-Time Period 5 

(6%= −1.60), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.040 0.002 0.005 

   75  0.035 −0.004 −0.002 
  50 25  0.037 −0.002 0.000 
   75  0.040 0.000 0.003 
  100 25  0.038 −0.003 0.000 
   75  0.039 −0.002 0.001 
 20 30 25  0.032 −0.002 0.005 
   75  0.030 −0.004 0.001 
  50 25  0.031 −0.003 0.004 
   75  0.031 −0.003 0.002 
  100 25  0.033 −0.003 0.003 
   75  0.030 −0.006 0.000 
 30 30 25  0.020 −0.010 0.002 
   75  0.013 −0.018 −0.008 
  50 25  0.020 −0.013 −0.003 
   75  0.024 −0.007 0.003 
  100 25  0.024 −0.008 0.003 
   75  0.022 −0.010 0.001 

1.09 10 30 25  0.126 0.007 0.004 
   75  0.123 0.000 −0.002 
  50 25  0.126 0.000 −0.003 
   75  0.131 0.009 0.007 
  100 25  0.126 −0.001 −0.004 
   75  0.130 0.003 0.000 
 20 30 25  0.116 0.009 0.004 
   75  0.114 0.006 0.001 
  50 25  0.117 0.008 0.006 
   75  0.116 0.006 0.003 
  100 25  0.120 0.007 0.003 
   75  0.117 0.004 0.001 
 30 30 25  0.102 0.006 0.004 
   75  0.092 −0.007 −0.012 
  50 25  0.103 0.002 −0.004 
   75  0.104 0.006 0.004 
  100 25  0.107 0.007 0.004 
   75  0.105 0.004 0.002 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 5 
of .168. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. Italicized and bolded values indicate moderate or 
substantial relative parameter bias. 
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To further explore the practical implications of the results presented in Tables 14 and 15, 

a factorial ANOVA was conducted for the coefficient, a5, where RPB was the dependent variable 

and the manipulated conditions were entered as independent variables for each model separately. 

The ANOVA results are presented in Appendix D. For the DTS model, the interaction of the 

between-cluster variance component and the Weibull scale parameter had a practically 

significant effect on the estimate of a5 [F(2, 71,928) = 5,604.57, p < .001, gC" 	= 0.072], where 

RPB was more negative when the Weibull scale parameter was 0.025 and the between-clusters 

variance was equal to 1.09. The difference in the mean RPB between the Weibull scale 

parameters was greatest when the between-clusters variance was 1.09. For the ML-DTS model, 

the partial Eta-Squared indicated a practically significant effect of the main effect of the Weibull 

scale parameter [F(1, 71,928) = 714.73, p < .001, gC" 	= 0.010]. The average RPB across all 

conditions when the Weibull scale parameter was 0.05 was estimated with virtually no bias, 

while some negative bias was observed when the Weibull scale parameter was 0.025 (M0.025 = 

−0.02, M0.05 = 0.00). There were no practically significant impacts of the manipulated conditions 

on the RPB for the CC-DTS model.  

Summarizing the Coefficient of the Intercepts of the Logit Hazard Function, 6! 

through 6%. The results suggest that for the coefficients representing the logit hazard function, 

a1 through a5, the most substantial RPB occurred for the DTS model, which did not account for 

either the multilevel data structure or individual mobility across clusters. Some moderate RPB 

was also apparent for the ML-DTS model, which accounted for the multilevel data structure but 

did not model mobility. For the ML-DTS model, moderate RPB was especially evident in the 

logit hazard function under the 30% mobility condition and with larger variation between-

clusters. The CC-DTS model accounted for both mobility in the dataset and the multilevel data 
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structure. When the CC-DTS model was used, no moderate or substantial relative parameter bias 

was found for any parameter representing the logit hazard function.  

Given the differences between models in RPB for the coefficients representing the logit 

hazard function, an additional factorial ANOVA was conducted where RPB was entered as the 

dependent variable and each of the manipulated conditions, in addition to model type (i.e., DTS, 

ML-DTS, and CC-DTS models), were entered as independent variables for each parameter in the 

hazard function. By including model type as an independent variable, the factorial ANOVA 

reveals model differences above and beyond differences observed for the other manipulated 

conditions, and therefore, may result in different practically important effects of the manipulated 

conditions on the observed RPB. Appendix E presents the results of all factorial ANOVAs when 

model type was included as a factor along with each of the manipulated conditions. The results 

indicated that for a1, the interaction of the between-cluster variance component and model type 

had a practically significant effect on the RPB [F(2, 215,784) = 13,905.54, p < .001, gC" 	= 0.114], 

where the mean RPB was more negative when the variance between-clusters was 1.09 for both 

the DTS and the ML-DTS models (MDTS = −0.17, MML-DTS = −0.05) than when it was 0.32 (MDTS 

= −0.06, MML-DTS = −0.02), but was identical for the CC-DTS model regardless of the variance-

between clusters condition (M0.32 = 0.00, M1.09= 0.00).  Similar results were observed for a2, 

where the interaction of the between-cluster variance component and model type had a 

practically significant effect on the RPB [F(2, 215,784) = 5,524.54, p < .001, gC" 	= 0.049], where 

the mean RPB was more negative when the variance between-clusters was 1.09 for both the DTS 

and the ML-DTS models (MDTS = −0.13, MML-DTS = −0.05) than when it was 0.32 (MDTS = −0.06, 

MML-DTS = −0.02), but was identical for the CC-DTS model regardless of the variance-between 

clusters condition (M0.32 = 0.00, M1.09= 0.00). Again, similar results were observed for a3. Here, 
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the interaction of the between-cluster variance component and model type had a practically 

significant effect on the RPB [F(2, 215,784) = 1,330.79, p < .001, gC" 	= 0.012], where the mean 

RPB was more negative when the variance between-clusters was 1.09 for both the DTS and the 

ML-DTS models (MDTS = −0.08, MML-DTS = −0.05) than when it was 0.32 (MDTS = −0.04, MML-

DTS = −0.02), but was identical for the CC-DTS model regardless of the variance-between 

clusters condition (M0.32 = 0.00, M1.09= 0.00). For a4, the interaction of the Weibull scale 

parameter and model type had a practically significant effect on the RPB [F(2, 215,784) = 

2,673.92, p < .001, gC" 	= 0.024], where the mean RPB was more negative when the Weibull scale 

parameter was equal to 0.025 than when it was equal to 0.05 for the DTS model (M.025 = −0.05, 

M.05 = 0.00), but was nearly identical regardless of the Weibull scale parameter for both the ML-

DTS (M.025 = −0.02, M.05 = −0.02) and CC-DTS models (M.025 = 0.00, M.05 = 0.00). For a5, a 

three-way interaction between model type, Weibull scale parameter, and variance between-

clusters was found to have a practically significant effect on the RPB [F(2, 215,784) = 1,242.52, 

p < .001, gC" 	= 0.011]. Table 16 presents the mean RPB values by condition and model for this 

three-way interaction effect. For the CC-DTS model, no RPB was observed regardless of the 

level of the variance between-clusters or the Weibull scale parameter condition. However, for the 

DTS model, the mean RPB was identical for each level of the variance between-clusters 

condition when the Weibull scale parameter was 0.025, but was much more positive when the 

variance between-clusters was equal to 1.09 than when it was 0.32 when the Weibull scale 

parameter was 0.05. For the ML-DTS model, slight differences in RPB were observed between 

levels of the variance between-clusters condition when the Weibull scale parameter was 0.025, 

but no RPB was observed regardless of the level of the variance between-clusters condition when 

the Weibull scale parameter was 0.05. 
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Table 16 

Mean Relative Parameter Bias for Each Combination of Conditions Represented by the Three-

Way Interaction Effect for a5  

Weibull 
Scale Parameter 

Variance 
Between-Clusters 

 Estimating Model 
 DTS ML-DTS CC-DTS 

0.025 0.32  −0.02 −0.01 0.00 
 1.09  −0.02 −0.02 0.00 

0.05 0.32  0.03 0.00 0.00 
 1.09  0.12 0.00 0.00 

Note. Italicized and bolded values indicate moderate or substantial relative parameter bias. 
 
Coefficient of the individual-level predictor,	iK 

Table 17 presents the relative parameter bias for the level-1 predictor’s coefficient, @!, 

for the DTS, ML-DTS, and CC-DTS models, respectively, for the 36 unique combinations of 

conditions that included a Weibull scale parameter that was equal to 0.025. Moderate or 

substantial bias was present under all combinations of conditions using the DTS model. When 

the between-clusters variance was 0.32, the coefficient was estimated with negative bias of a 

magnitude ranging from about 0.057 to as high as 0.074, indicating moderate bias. When the 

between-clusters variance was 1.09, substantial negative bias was observed, ranging from −0.182 

to −0.206. For the ML-DTS model, relative parameter bias was moderate for 6 out of 36 

combinations of conditions. In all cases, relative parameter bias was present when the variance 

between-clusters was 1.09 and the mobility rate condition was 30%. The coefficient for the level-

one predictor was estimated with negative bias of a magnitude from 0.053 to 0.068 for the ML-

DTS model. For the CC-DTS model, no moderate or substantial RPB was observed in any 

combination of conditions.  
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Table 17 

Relative Parameter Bias of the Coefficient Estimate of the Level-One Predictor (@! =	0.50), 

When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.057 0.002 0.011 

   75  −0.072 −0.013 −0.005 
  50 25  −0.073 −0.012 −0.003 
   75  −0.068 −0.006 0.002 
  100 25  −0.069 −0.007 0.002 
   75  −0.072 −0.009 0.000 
 20 30 25  −0.058 −0.008 0.011 
   75  −0.057 −0.007 0.009 
  50 25  −0.064 −0.014 0.005 
   75  −0.072 −0.021 −0.003 
  100 25  −0.071 −0.017 0.000 
   75  −0.070 −0.015 0.002 
 30 30 25  −0.057 −0.012 0.012 
   75  −0.060 −0.017 0.006 
  50 25  −0.066 −0.019 0.003 
   75  −0.074 −0.029 −0.006 
  100 25  −0.066 −0.018 0.005 
   75  −0.067 −0.020 0.002 

1.09 10 30 25  −0.182 −0.009 0.013 
   75  −0.195 −0.026 −0.001 
  50 25  −0.201 −0.023 0.003 
   75  −0.200 −0.024 −0.001 
  100 25  −0.205 −0.025 0.001 
   75  −0.206 −0.025 −0.001 
 20 30 25  −0.183 −0.035 0.016 
   75  −0.186 −0.040 0.003 
  50 25  −0.192 −0.043 0.006 
   75  −0.198 −0.049 −0.003 
  100 25  −0.204 −0.049 −0.004 
   75  −0.201 −0.045 0.000 
 30 30 25  −0.185 −0.056 0.007 
   75  −0.182 −0.053 0.006 
  50 25  −0.201 −0.068 −0.007 
   75  −0.195 −0.064 −0.003 
  100 25  −0.194 −0.056 0.006 
   75  −0.195 −0.058 0.001 

Note. l is the Weibull scale parameter, !! =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size. Italicized and bolded values indicate moderate or substantial relative parameter 
bias. 



 

  100 
 

 

Table 18 presents the relative parameter bias for the level-1 predictor’s coefficient, @!, 

for the DTS, ML-DTS, and CC-DTS models, respectively, for the 36 unique combinations of 

conditions that included a Weibull scale parameter that was equal to 0.05. Moderate or 

substantial bias was present under all combinations of conditions using the DTS model. When 

the between-clusters variance was 0.32, moderate negative bias was observed; however, when 

the between-clusters variance was 1.09, substantial negative bias was observed, ranging from 

about −0.22 to −0.25. For the ML-DTS model, relative parameter bias was moderate for 8 out of 

36 combinations of conditions. For the majority of conditions where RPB was present, moderate 

RPB was observed when the variance between-clusters was 1.09 and the mobility rate condition 

was 30%. In one instance, the mobility rate condition was 20% in combination with a variance 

between-clusters of 1.09, a cluster-size of 100, and a within-cluster size of 75. For the CC-DTS 

model, no moderate or substantial RPB was observed in any combination of conditions.  
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Table 18 

Relative Parameter Bias of the Coefficient Estimate of the Level-One Predictor (@! =	0.50), 

When l = 0.05 

 Manipulated Condition   Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.082 0.001 0.010 

   75  −0.091 −0.009 0.003 
  50 25  −0.100 −0.013 −0.002 
   75  −0.096 −0.010 0.000 
  100 25  −0.097 −0.009 0.003 
   75  −0.096 −0.007 0.004 
 20 30 25  −0.086 −0.014 0.010 
   75  −0.087 −0.016 0.004 
  50 25  −0.091 −0.018 0.004 
   75  −0.094 −0.021 0.000 
  100 25  −0.096 −0.020 0.001 
   75  −0.102 −0.025 −0.004 
 30 30 25  −0.093 −0.031 0.000 
   75  −0.087 −0.024 0.004 
  50 25  −0.095 −0.029 −0.001 
   75  −0.093 −0.028 0.001 
  100 25  −0.094 −0.025 0.003 
   75  −0.094 −0.026 0.001 

1.09 10 30 25  −0.223 −0.013 0.012 
   75  −0.237 −0.033 −0.005 
  50 25  −0.247 −0.030 −0.005 
   75  −0.238 −0.024 0.002 
  100 25  −0.248 −0.027 0.001 
   75  −0.245 −0.025 0.001 
 20 30 25  −0.225 −0.040 0.014 
   75  −0.225 −0.042 0.004 
  50 25  −0.229 −0.041 0.012 
   75  −0.236 −0.050 0.001 
  100 25  −0.244 −0.051 −0.001 
   75  −0.245 −0.054 −0.002 
 30 30 25  −0.227 −0.064 0.006 
   75  −0.223 −0.061 0.006 
  50 25  −0.234 −0.066 0.002 
   75  −0.234 −0.070 −0.002 
  100 25  −0.237 −0.065 0.002 
   75  −0.236 −0.065 0.001 

Note. l is the Weibull scale parameter, !! =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size. Italicized and bolded values indicate moderate or substantial relative parameter 
bias. 
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 To further explore the results presented in Tables 17 and 18, a factorial ANOVA was 

conducted for each model, the DTS, ML-DTS, and CC-DTS models, respectively, where RPB 

was the dependent variable. Appendix D presents the partial eta-squared estimates for each 

estimating model for the coefficient of the level-one predictor. The ANOVA results indicated 

that the main effect of the variance between-clusters had a practically significant effect on RPB 

for the coefficient of @! for the DTS model [F(1, 71,928) = 14,163.86, p < .001, gC" 	= 0.165]. For 

the DTS model, the mean of the RPB estimates was much more negative for conditions where 

the variance between-clusters was 1.09 than when the variance between-clusters was 0.32 (M0.32 

= −0.08, M1.09 = −0.21). For the DTS model, the main effect of the Weibull scale parameter was 

also found to be practically significant [F(1, 71,928) = 867.03, p < .001, gC" 	= 0.012]. When the 

Weibull scale parameter was 0.05, the average RPB across all conditions was more negative than 

when it was 0.025 (M.025 = −0.13, M.05 = −0.16). No practically significant differences in RPB 

based on the main effects or interactions between the five independent variables were found for 

either the ML-DTS or the CC-DTS for the coefficient of the level-1 predictor variable.  

 An additional factorial ANOVA was conducted where RPB was entered as the dependent 

variable and each of the manipulated conditions, as well as model type (i.e., DTS, ML-DTS, and 

CC-DTS models), were entered as independent variables. Appendix E presents the results of all 

factorial ANOVAs when model type is included as a factor along with each of the manipulated 

conditions. The results indicated that for the coefficient of the level-one predictor, the interaction 

of the between-cluster variance component and model type had a practically significant effect on 

the RPB [F(2, 215,784) = 3,816.38, p < .001, gC" 	= 0.034], where the mean RPB was much more 

negative when the variance between-clusters was 1.09 for the DTS model (M0.32 = −0.08, M1.09 = 

−0.21), with only a slight difference between levels of the variance between-clusters condition 
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for the ML-DTS model (M0.32 = −0.02, M1.09 = −0.04). In contrast, no difference was observed 

for the CC-DTS model regardless of the level of the variance-between clusters condition (M0.32 = 

0.00, M1.09= 0.00). 

Coefficient of the cluster-level predictor,	iL 

Table 19 presents the relative parameter bias for the level-2 predictor’s coefficient, @", 

for the DTS, ML-DTS, and CC-DTS models, respectively, for the 36 unique combinations of 

conditions that included a Weibull scale parameter that was equal to 0.025. For both the DTS 

model and the ML-DTS model, the coefficient for the level-2 predictor exhibited moderate or 

substantial RPB under all combinations of conditions. For the DTS model, substantial negative 

RPB was observed for all 36 combinations of conditions. When holding all other conditions 

constant, RPB became more negative as mobility increased in the dataset. Additionally, holding 

other conditions constant, RPB was greater when the variance between-clusters was 1.09 as 

compared to when it was 0.32. Specifically, when the variance between-clusters was 0.32, bias 

ranged from −0.12 to −0.29. When the variance between-clusters was 1.09, the coefficient 

estimate was more substantially negative, ranging from about −0.24 to as −0.40. For the ML-DTS, 

although both moderate and substantial RPB was observed, it was notably less substantial than 

for the DTS model. Holding all other conditions constant, RPB became more negative as 

mobility increased. However, RPB was not as greatly affected by the variance between-clusters 

for the ML-DTS model as it was using the DTS model. For the CC-DTS model, no substantial 

RPB was observed for any combination of conditions.  
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Table 19 

Relative Parameter Bias of the Coefficient Estimate of the Level-Two Predictor (@" =	0.50), 

When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.126 −0.068 0.010 

   75  −0.128 −0.067 0.016 
  50 25  −0.147 −0.087 −0.005 
   75  −0.140 −0.082 0.002 
  100 25  −0.163 −0.105 −0.024 
   75  −0.153 −0.094 −0.014 
 20 30 25  −0.221 −0.176 −0.020 
   75  −0.211 −0.167 −0.006 
  50 25  −0.198 −0.150 0.013 
   75  −0.209 −0.163 −0.003 
  100 25  −0.196 −0.146 0.014 
   75  −0.207 −0.160 0.004 
 30 30 25  −0.260 −0.223 0.020 
   75  −0.293 −0.258 −0.025 
  50 25  −0.268 −0.228 0.000 
   75  −0.273 −0.236 −0.001 
  100 25  −0.264 −0.224 0.015 
   75  −0.267 −0.229 0.008 

1.09 10 30 25  −0.246 −0.079 0.022 
   75  −0.246 −0.074 0.035 
  50 25  −0.279 −0.116 −0.012 
   75  −0.265 −0.101 0.007 
  100 25  −0.293 −0.134 −0.036 
   75  −0.290 −0.132 −0.027 
 20 30 25  −0.331 −0.203 −0.012 
   75  −0.321 −0.201 −0.012 
  50 25  −0.305 −0.170 0.021 
   75  −0.323 −0.194 0.000 
  100 25  −0.313 −0.176 0.012 
   75  −0.320 −0.191 0.008 
 30 30 25  −0.359 −0.253 0.025 
   75  −0.405 −0.310 −0.045 
  50 25  −0.382 −0.272 −0.014 
   75  −0.372 −0.270 −0.001 
  100 25  −0.360 −0.248 0.028 
   75  −0.370 −0.264 0.011 

Note. l is the Weibull scale parameter, !" =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size. Italicized and bolded values indicate moderate or substantial relative parameter 
bias. 
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Table 20 presents the relative parameter bias for the level-2 predictor’s coefficient, @", 

for the DTS, ML-DTS, and CC-DTS models, respectively, for the 36 unique combinations of 

conditions that included a Weibull scale parameter that was equal to 0.05. For both the DTS 

model and the ML-DTS model, the coefficient for the level-2 predictor exhibited moderate or 

substantial RPB for all 36 combinations of conditions. For the DTS model, when holding all 

other conditions constant, RPB became became more negative as mobility increased in the 

dataset. Additionally, holding other conditions constant, RPB was greater when the variance 

between-clusters was 1.09 as compared to when it was 0.32. Specifically, when the variance 

between-clusters was 0.32, bias ranged from −0.13 to −0.29. When the variance between-clusters 

was 1.09, the coefficient estimate was more substantially negative, ranging from about −0.25 to 

−0.40. For the ML-DTS model, although both moderate and substantial RPB was observed, it 

was notably less substantial than for the DTS model. Holding all other conditions constant, RPB 

became more negative as mobility increased. RPB of the estimate using the ML-DTS model 

ranged from −0.05 under the 10% mobility condition to as much as −0.27 under the 30% 

mobility condition. For the CC-DTS model, no substantial RPB was observed for any 

combination of conditions.  
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Table 20 

Relative Parameter Bias of the Coefficient Estimate of the Level-Two Predictor (@" =	0.50), 

When l = 0.05 

 Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  −0.145 −0.067 0.008 

   75  −0.133 −0.055 0.021 
  50 25  −0.157 −0.076 0.001 
   75  −0.155 −0.074 0.004 
  100 25  −0.171 −0.089 −0.014 
   75  −0.171 −0.090 −0.015 
 20 30 25  −0.225 −0.160 −0.006 
   75  −0.213 −0.150 −0.004 
  50 25  −0.208 −0.143 0.011 
   75  −0.213 −0.147 0.000 
  100 25  −0.211 −0.142 0.006 
   75  −0.220 −0.152 0.000 
 30 30 25  −0.266 −0.214 0.011 
   75  −0.295 −0.244 −0.025 
  50 25  −0.278 −0.221 −0.004 
   75  −0.272 −0.216 0.003 
  100 25  −0.269 −0.210 0.013 
   75  −0.273 −0.215 0.005 

1.09 10 30 25  −0.274 −0.074 0.017 
   75  −0.257 −0.060 0.038 
  50 25  −0.293 −0.095 −0.002 
   75  −0.289 −0.090 0.006 
  100 25  −0.317 −0.120 −0.031 
   75  −0.316 −0.123 −0.031 
 20 30 25  −0.346 −0.184 −0.013 
   75  −0.328 −0.173 −0.004 
  50 25  −0.320 −0.160 0.019 
   75  −0.333 −0.171 0.004 
  100 25  −0.331 −0.159 0.013 
   75  −0.340 −0.172 0.009 
 30 30 25  −0.364 −0.232 0.025 
   75  −0.402 −0.274 −0.037 
  50 25  −0.390 −0.246 −0.013 
   75  −0.382 −0.247 −0.002 
  100 25  −0.373 −0.229 0.022 
   75  −0.379 −0.236 0.011 

Note. l is the Weibull scale parameter, !" =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size. Italicized and bolded values indicate moderate or substantial relative parameter 
bias. 
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To further explore the results presented in Tables 19 and 20, a factorial ANOVA was 

conducted for each model, the DTS, ML-DTS, and CC-DTS models, respectively, where RPB 

was the dependent variable and the simulation conditions were entered as the independent 

variables. Appendix D presents the partial eta-squared estimates for each estimating model for 

the coefficient of the level-two predictor. The ANOVA results indicated that the main effect of 

the variance between-clusters had a practically significant effect on RPB for the coefficient of @" 

for the DTS model [F(1, 71,928) = 1,452.62, p < .001, gC" 	= 0.020]. Specifically, the mean of the 

RPB estimates was more negative for conditions where the variance between-clusters was 1.09 

than when the variance between-clusters was 0.32 (M0.32 = −0.21, M1.09 =  −0.33). The rate of 

mobility in the dataset also had a practically significant effect on the RPB of the parameter using 

the DTS model [F(2, 71,928) = 432.89, p < .001, gC" 	= 0.012]. When RPB was examined for 

datasets specific to each mobility rate, it was apparent that as the rate of mobility increased in the 

dataset, the mean RPB became increasingly more negative (M.10 = −.21, M.20=  −.27, M.30=  

−.33). For the ML-DTS model, the rate of mobility also had a practically significant effect on 

the RPB [F(2, 71,928) = 597.08, p < .001, gC" 	= 0.016]. As was observed for the DTS model, as 

the rate of mobility in the dataset increased, the RPB became more negative (M.10 = −.09, M.20=  

−.17, M.30=  −.24). There was no practically significant effect of simulation condition on the 

RPB observed for the CC-DTS model.  

Given the differences in RPB observed between models, an additional factorial ANOVA 

was conducted where RPB was entered as the dependent variable and each of the manipulated 

conditions, as well as model type (i.e., DTS, ML-DTS, and CC-DTS models), were entered as 

independent variables. Appendix E presents the results of all factorial ANOVAs when model 

type is included as a factor along with each of the manipulated conditions. The results indicate 
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that for the coefficient of the level-two predictor, only the main effect of model type had a 

practically significant effect on the RPB [F(2, 215,784) = 5,603.90, p < .001, gC" 	= 0.049], where, 

on average, the DTS model and the ML-DTS model resulted in substantial negative bias for the 

coefficient of the level-2 predictor (MDTS = −0.27, MML-DTS = −0.17).  In contrast, on average, the 

CC-DTS resulted in no substantial RPB for the coefficient of the level-2 predictor (MCC-DTS = 

0.00). 

Between-Clusters Variance, jPL   

Table 21 presents the relative parameter bias for the between-clusters variance 

component, L1", for the ML-DTS and CC-DTS models, respectively, for the 36 unique 

combinations of conditions that included a Weibull scale parameter that was equal to 0.025. For 

the ML-DTS model, the coefficient for the level-2 predictor exhibited substantial RPB in 

datasets generated using all 36 combinations of conditions presented. Holding all other 

conditions constant, RPB generally became less substantial as the cluster size increased. 

Additionally, when all other conditions were held constant, RPB became more substantial as the 

rate of mobility in the generated datasets increased. Therefore, in datasets generated with a small 

cluster size (i.e., 30) and high mobility (i.e., 30%), substantial negative bias was observed, 

ranging from −0.45 to −0.48. For datasets generated with a large cluster size (i.e., 100) and a low 

rate of mobility (i.e., 10%), bias was still negative, but to a lesser extent, ranging from about 

−0.18 to −0.22. For the CC-DTS model, moderate RPB was observed in 15 out of the 36 

conditions, while substantial RPB was observed in 2 out of the 36 conditions. RPB appeared to 

become more substantial as the cluster-level sample size decreased. Specifically, the RPB 

indicated that unacceptable negative bias was present in all combinations of conditions that 

included a cluster-level sample size of 30. In some combinations of conditions that included a 
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between-clusters variance of 0.32 and lower mobility rates, unacceptable RPB was also observed 

when the cluster size was 50. Although in these cases RPB was still considered to be outside of 

the acceptable range of −0.05 to 0.05, it was always less substantial than when using the ML-

DTS model. For those two cases that had substantial RPB beyond a magnitude of 0.10 for the 

CC-DTS model, both included a low cluster size and low within-cluster sample size, and the 

magnitude of the RPB was about 0.11.  
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Table 21 

Relative Parameter Bias of the Estimate of the Between-Clusters Variance, L1", When l = 0.025 

 Manipulated Condition  Estimating Model 
VC m% c n  ML-DTS CC-DTS 
0.32 10 30 25  −0.251 −0.118 

   75  −0.229 −0.079 
  50 25  −0.198 −0.054 
   75  −0.209 −0.053 
  100 25  −0.195 −0.039 
   75  −0.178 −0.021 
 20 30 25  −0.345 −0.077 
   75  −0.357 −0.087 
  50 25  −0.331 −0.061 
   75  −0.328 −0.050 
  100 25  −0.304 −0.029 
   75  −0.298 −0.019 
 30 30 25  −0.451 −0.110 
   75  −0.437 −0.069 
  50 25  −0.404 −0.044 
   75  −0.414 −0.045 
  100 25  −0.399 −0.036 
   75  −0.395 −0.024 

1.09 10 30 25  −0.261 −0.092 
   75  −0.262 −0.071 
  50 25  −0.227 −0.049 
   75  −0.240 −0.048 
  100 25  −0.218 −0.035 
   75  −0.213 −0.018 
 20 30 25  −0.377 −0.065 
   75  −0.391 −0.075 
  50 25  −0.364 −0.050 
   75  −0.371 −0.048 
  100 25  −0.338 −0.024 
   75  −0.347 −0.021 
 30 30 25  −0.472 −0.078 
   75  −0.477 −0.064 
  50 25  −0.439 −0.029 
   75  −0.458 −0.046 
  100 25  −0.438 −0.028 
   75  −0.440 −0.019 

Note. l is the Weibull scale parameter, $#" is the variance at the cluster-level, and was equal to either 0.32 or 
1.09. ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-time survival 
model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = within-cluster 
sample size; Italicized and bolded values indicate moderate or substantial relative parameter bias. 
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 Table 22 presents the relative parameter bias for the between-clusters variance 

component, L1", for the ML-DTS and CC-DTS models, respectively, for the 36 unique 

combinations of conditions that included a Weibull scale parameter that was equal to 0.05. 

Similar to results observed when the Weibull scale parameter was 0.025, substantial RPB was 

observed for all 36 combinations of conditions using the ML-DTS model. RPB was most 

substantial as cluster size decreased and the rate of mobility in the dataset increased. Substantial 

negative bias ranged from −0.16 when the cluster size was 100 under the 10% mobility rate 

condition to −0.45 when the cluster size was 30 under the 30% mobility rate condition. Similar to 

the results presented in Table 21, the use of the CC-DTS model resulted in moderate RPB for all 

combinations of conditions that included a cluster-level sample size of 30. When the between-

clusters variance was equal to 0.32 under the 20% mobility condition, there was also moderate 

RPB observed when the cluster size was 50. Although unacceptable RPB was observed, it was 

always less substantial than when the ML-DTS was used to estimate the between-clusters 

variance.  
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Table 22 

Relative Parameter Bias of the Estimate of the Between-Clusters Variance, L1", When l = 0.05 

 Manipulated Condition  Estimating Model 
VC m% c n  ML-DTS CC-DTS 
0.32 10 30 25  −0.222 −0.093 

   75  −0.218 −0.077 
  50 25  −0.189 −0.050 
   75  −0.193 −0.048 
  100 25  −0.176 −0.030 
   75  −0.164 −0.019 
 20 30 25  −0.319 −0.057 
   75  −0.335 −0.077 
  50 25  −0.315 −0.056 
   75  −0.313 −0.052 
  100 25  −0.289 −0.026 
   75  −0.283 −0.017 
 30 30 25  −0.427 −0.088 
   75  −0.419 −0.067 
  50 25  −0.386 −0.031 
   75  −0.401 −0.048 
  100 25  −0.381 −0.028 
   75  −0.381 −0.024 

1.09 10 30 25  −0.242 −0.083 
   75  −0.248 −0.076 
  50 25  −0.205 −0.041 
   75  −0.223 −0.048 
  100 25  −0.195 −0.025 
   75  −0.194 −0.017 
 20 30 25  −0.350 −0.061 
   75  −0.368 −0.073 
  50 25  −0.341 −0.044 
   75  −0.346 −0.044 
  100 25  −0.314 −0.017 
   75  −0.323 −0.015 
 30 30 25  −0.448 −0.064 
   75  −0.451 −0.058 
  50 25  −0.419 −0.022 
   75  −0.437 −0.044 
  100 25  −0.417 −0.021 
   75  −0.418 −0.018 

Note. l is the Weibull scale parameter, $#" is the variance at the cluster-level, and was equal to either 0.32 or 
1.09. ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-time survival 
model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = within-cluster 
sample size; Italicized and bolded values indicate moderate or substantial relative parameter bias. 
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 To further explore the results presented in Tables 21 and 22, a factorial ANOVA was 

conducted for each model, the ML-DTS and CC-DTS models, respectively, where RPB was the 

dependent variable and the simulation conditions were the independent variables. Appendix D 

presents the partial eta-squared estimates for each estimating model. The ANOVA results 

indicated that the main effect of the mobility rate in the dataset had a practically significant effect 

on RPB for L1" using the ML-DTS model [F(2, 71,928) = 8,217.77, p < .001, gC" 	= 0.186]. When 

the average RPB was calculated across all conditions for each mobility rate, it was apparent that 

RPB became consistently more negative as the rate of mobility in the dataset increased (M.10 = 

−.21, M.20 = −.34, M.30 = −.43). Additionally, there was a practically significant effect of the 

main effect of cluster size on the RPB using the ML-DTS model [F(2, 71,928) = 359.57, p < 

.001, gC" 	= 0.010]. Specifically, as cluster size increased, the average RPB decreased (M30 = 

−.35, M50 = −0.32, M100 = −.30). For the CC-DTS model, no simulation condition was found to 

have a practically significant effect on RPB. Although the results presented in Tables 21 and 22 

indicate moderate or substantial RPB when the cluster size was 30 and no RPB in any conditions 

that included a cluster size of 100, the relatively low magnitude of RPB (< 0.10) for the majority 

of combinations of conditions is likely why no practical effect was observed.  

 Given that unacceptable RPB was observed in both the ML-DTS and CC-DTS models 

for some or all combinations of conditions, an additional factorial ANOVA was conducted where 

RPB was entered as the dependent variable and each of the manipulated conditions, as well as 

model type (i.e., ML-DTS and CC-DTS models), were entered as independent variables. 

Appendix E presents the results of all factorial ANOVAs when model type is included as a factor 

along with each of the manipulated conditions. The results indicated that the interaction of 

mobility and model type had a practically significant effect on the RPB [F(2, 215,784) = 
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3,195.48, p < .001, gC" 	= 0.043].  Specifically, the ML-DTS model consistently resulted in 

substantial RPB that became more negative as mobility in the dataset increased (M.10 = −0.21, 

M.20 = −0.34, M.30 = −0.43). In contrast, when averaging across all other manipulated conditions, 

the CC-DTS model resulted in the same RPB regardless of the mobility condition (M.10 = −0.05, 

M.20 = −0.05, M.30 = −0.05). 

Root Mean Square Error 

 The RMSE was computed for estimates of the fixed effect and variance component 

parameters, including the coefficients associated with the intercept parameters that together 

represent the hazard function (a1, a2, a3, a4, and a5), the level-1 covariate (@!), and the level-2 

covariate (@"), as well as for the between-clusters variance component, L1". The RMSE was 

computed for all fixed effect parameters in each of the three models examined in this 

dissertation: the DTS model, the ML-DTS model, and the CC-DTS model. Given that the DTS 

model does not include a random effect, the RMSE for the between-clusters variance estimate 

was only computed for the ML-DTS and the CC-DTS models. Smaller values of the RMSE 

suggest that parameter estimates may have less bias and less variation in the parameter estimates. 

In addition to the tables of results presented in this section, nested loop plots (Rücker & 

Schwarzer, 2014) that depict the RMSE estimates across all 72 combinations of conditions in 

one plot for each parameter can be found in Appendix G.  

 This section presents the RMSE values for each of the 72 simulation conditions for each 

of the parameters estimated using the DTS model, the ML-DTS model, and the CC-DTS model.  

Coefficient for Discrete-Time Period 1 of the Logit Hazard Function, a1 

Table 23 presents the RMSE values of the coefficient for the first discrete-time period in 

the logit hazard function, a1, across 36 combinations of conditions where the Weibull scale 
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parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, respectively. For the DTS 

model, when all else was equal, the RMSE was substantially lower when the between-clusters 

variance was 0.32. To a lesser extent, RMSE appeared to be affected by both the cluster size and 

within-cluster sample size, such that in both cases, larger sample sizes resulted in lower RMSE 

values. Lastly, holding all other simulation conditions constant, the RMSE increased slightly as 

the rate of mobility in the dataset increased. For the ML-DTS model, the RMSE consistently 

decreased with increasing sample size, with larger cluster-level sample sizes resulting in notably 

lower values of the RMSE. Additionally, holding all other conditions constant, when the 

variance between clusters was 1.09, the RMSE was greater than when it was 0.32. Lastly, 

mobility had a small impact on RMSE, such that holding all other conditions constant, the 

RMSE tended to increase slightly as mobility increased. Similar results were observed for the 

CC-DTS model, where sample size and between-clusters variance impacted the magnitude of the 

RMSE. However, in contrast to the ML-DTS model, mobility did not have a notable impact on 

the RMSE values obtained using the CC-DTS model.  
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Table 23 

Root Mean Square Error of the Coefficient Estimate of the Intercept for Discrete-Time Period 1 

(6!= −3.25), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.270 0.223 0.226 

   75  0.232 0.160 0.160 
  50 25  0.241 0.171 0.170 
   75  0.208 0.126 0.126 
  100 25  0.216 0.128 0.125 
   75  0.200 0.097 0.091 
 20 30 25  0.279 0.225 0.221 
   75  0.238 0.175 0.172 
  50 25  0.243 0.180 0.178 
   75  0.219 0.135 0.121 
  100 25  0.221 0.137 0.125 
   75  0.210 0.109 0.088 
 30 30 25  0.282 0.233 0.220 
   75  0.257 0.189 0.168 
  50 25  0.257 0.187 0.166 
   75  0.230 0.152 0.125 
  100 25  0.229 0.149 0.122 
   75  0.222 0.132 0.092 

1.09 10 30 25  0.556 0.302 0.302 
   75  0.547 0.256 0.251 
  50 25  0.550 0.238 0.227 
   75  0.527 0.205 0.195 
  100 25  0.535 0.184 0.163 
   75  0.532 0.164 0.139 
 20 30 25  0.573 0.324 0.293 
   75  0.548 0.285 0.258 
  50 25  0.543 0.267 0.236 
   75  0.541 0.243 0.189 
  100 25  0.540 0.220 0.160 
   75  0.538 0.211 0.137 
 30 30 25  0.570 0.350 0.302 
   75  0.576 0.332 0.258 
  50 25  0.574 0.310 0.222 
   75  0.545 0.282 0.200 
  100 25  0.544 0.263 0.160 
   75  0.548 0.261 0.143 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 1 
of .038. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. 
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Table 24 presents the RMSE values of the coefficient for the first discrete-time period in 

the logit hazard function, a1, across 36 combinations of conditions where the Weibull scale 

parameter was 0.05 for the DTS, ML-DTS, and CC-DTS models, respectively. For the DTS 

model, the value of the between-clusters variance component had the largest impact on the 

RMSE, where RMSE values were much larger when the between-clusters variance component 

was 1.09. Additionally, fewer substantial differences were seen due to mobility rate and the 

cluster-level sample size. Holding all else constant, when the rate of mobility increased, the 

value of the RMSE also increased. In contrast, when the cluster size increased, the value of the 

RMSE tended to decrease. For the ML-DTS model, the RMSE consistently decreased with 

increasing sample size, with larger cluster level sample sizes resulting in notably lower values of 

the RMSE. Additionally, holding all other conditions constant, when the variance between 

clusters was 1.09, the RMSE was greater than when it was 0.32. Lastly, mobility had a small 

impact on RMSE, such that holding all other conditions constant, the RMSE tended to increase 

slightly as mobility increased. Similar results were observed for the CC-DTS model, where 

sample size and between-clusters variance impacted the magnitude of the RMSE. However, in 

contrast to the ML-DTS model, mobility did not have a significant impact on the RMSE values 

obtained using the CC-DTS model. Additionally, it was apparent that for both the ML-DTS 

model and the CC-DTS model, the RMSE values were much lower when the Weibull scale 

parameter was equal to 0.05 than when it was equal to 0.025, regardless of the other conditions 

present in the dataset.  
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Table 24 

Root Mean Square of the Coefficient Estimate of the Intercept for Discrete-Time Period 1 (6!= 

−2.51), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.236 0.185 0.187 

   75  0.212 0.145 0.145 
  50 25  0.216 0.147 0.147 
   75  0.193 0.115 0.115 
  100 25  0.194 0.107 0.104 
   75  0.186 0.085 0.081 
 20 30 25  0.244 0.187 0.185 
   75  0.217 0.153 0.153 
  50 25  0.217 0.152 0.150 
   75  0.202 0.120 0.108 
  100 25  0.199 0.112 0.099 
   75  0.197 0.100 0.082 
 30 30 25  0.252 0.200 0.190 
   75  0.236 0.169 0.153 
  50 25  0.232 0.162 0.143 
   75  0.213 0.138 0.118 
  100 25  0.207 0.127 0.104 
   75  0.205 0.117 0.084 

1.09 10 30 25  0.487 0.274 0.278 
   75  0.485 0.240 0.237 
  50 25  0.482 0.217 0.213 
   75  0.463 0.193 0.192 
  100 25  0.472 0.164 0.150 
   75  0.465 0.148 0.134 
 20 30 25  0.504 0.286 0.271 
   75  0.484 0.262 0.252 
  50 25  0.476 0.234 0.215 
   75  0.473 0.215 0.183 
  100 25  0.471 0.185 0.144 
   75  0.473 0.183 0.132 
 30 30 25  0.503 0.308 0.277 
   75  0.507 0.294 0.248 
  50 25  0.499 0.267 0.209 
   75  0.479 0.247 0.193 
  100 25  0.476 0.224 0.150 
   75  0.478 0.221 0.137 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 1 
of .038. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. 
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Coefficient for Discrete-Time Period 2 of the Logit Hazard Function, a2 

Table 25 presents the RMSE values of the coefficient for the second discrete-time period 

in the logit hazard function, a2 across 36 combinations of conditions where the Weibull scale 

parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, respectively. For the DTS 

model, the value of the between-clusters variance component had the largest impact on the 

RMSE, where RMSE values were much larger when the between-clusters variance component 

was 1.09. Although less notable, the RMSE was also affected by both the rate of mobility in the 

dataset, the cluster size, and the within-cluster sample size. Holding all other conditions constant, 

as mobility increased, the RMSE values increased. With few exceptions, for both the within-

cluster sample size and cluster size, as the sample size increased, the RMSE values decreased. 

For the ML-DTS model, the cluster level sample size had the most notable impact on the values 

of the RMSE, such that the RMSE consistently decreased with increasing sample size. Similar 

impacts of the within-cluster size on the value of the RMSE were also observed, such that 

smaller within-cluster sample size conditions resulted in larger values of the RMSE. 

Additionally, holding all other conditions constant, when the variance between clusters was 1.09, 

the RMSE was greater than when it was 0.32. Lastly, mobility had a small impact on RMSE, 

such that holding all other conditions constant, the RMSE tended to increase slightly as mobility 

increased. The impact of mobility on the RMSE was especially pronounced when the between 

cluster variance was 1.09. Similar results were observed for the CC-DTS model, where sample 

size and between-clusters variance impacted the magnitude of the RMSE. However, in contrast 

to the ML-DTS model, mobility did not have a significant impact on the RMSE values obtained 

using the CC-DTS model.  
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Table 25 

Root Mean Square Error of the Coefficient of the Intercept for Discrete-Time Period 2 (6"= 

−2.88), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.236 0.208 0.212 

   75  0.212 0.157 0.155 
  50 25  0.209 0.162 0.162 
   75  0.183 0.125 0.125 
  100 25  0.188 0.119 0.115 
   75  0.169 0.091 0.087 
 20 30 25  0.241 0.205 0.204 
   75  0.211 0.163 0.159 
  50 25  0.214 0.169 0.166 
   75  0.196 0.135 0.122 
  100 25  0.189 0.123 0.110 
   75  0.181 0.105 0.085 
 30 30 25  0.247 0.212 0.206 
   75  0.229 0.178 0.156 
  50 25  0.226 0.176 0.160 
   75  0.204 0.147 0.122 
  100 25  0.203 0.143 0.117 
   75  0.192 0.124 0.088 

1.09 10 30 25  0.438 0.290 0.293 
   75  0.439 0.256 0.248 
  50 25  0.423 0.235 0.229 
   75  0.404 0.201 0.196 
  100 25  0.413 0.177 0.156 
   75  0.401 0.158 0.138 
 20 30 25  0.454 0.305 0.284 
   75  0.440 0.278 0.255 
  50 25  0.425 0.251 0.226 
   75  0.422 0.233 0.188 
  100 25  0.419 0.206 0.150 
   75  0.415 0.199 0.134 
 30 30 25  0.456 0.322 0.286 
   75  0.469 0.320 0.254 
  50 25  0.454 0.289 0.218 
   75  0.432 0.265 0.194 
  100 25  0.431 0.248 0.159 
   75  0.428 0.243 0.140 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 2 
of .053. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. 
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Table 26 presents the RMSE values of the coefficient for the second discrete-time period 

in the logit hazard function, a2, across 36 combinations of conditions where the Weibull scale 

parameter was 0.05 for the DTS, ML-DTS, and CC-DTS models, respectively. For the DTS 

model, the value of the between-clusters variance component had the largest impact on the 

RMSE, where RMSE values were much larger when the between-clusters variance component 

was 1.09. RMSE was also affected by both the rate of mobility in the dataset, the cluster size, 

and the within-cluster sample size. Holding all other conditions constant, as mobility increased, 

the RMSE values increased. With few exceptions, for both the within-cluster sample size and 

cluster size, as the sample size increased, the RMSE values decreased. For the ML-DTS model, 

the cluster level sample size had the most notable impact on the values of the RMSE, such that 

the RMSE consistently decreased with increasing sample size. Similar impacts of the within-

cluster size on the value of the RMSE were also observed, such that smaller within-cluster 

sample size conditions resulted in larger values of the RMSE. Additionally, holding all other 

conditions constant, when the variance between clusters was 1.09, the RMSE was greater than 

when it was 0.32. Lastly, mobility had a small impact on RMSE, such that holding all other 

conditions constant, the RMSE tended to increase slightly as mobility increased. The impact of 

mobility on the RMSE was especially pronounced when the between cluster variance was 1.09. 

Similar results were observed for the CC-DTS model, where sample size and between-clusters 

variance impacted the magnitude of the RMSE. However, in contrast to the ML-DTS model, 

mobility did not have a significant impact on the RMSE values obtained using the CC-DTS 

model. Additionally, for the CC-DTS model, when the Weibull scale parameter was 0.05, the 

RMSE values were consistently lower than when it was 0.025. The difference in RMSE values 

due to the Weibull scale parameter decreased as cluster size increased. 
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Table 26 

Root Mean Square Error of the Coefficient Estimate of the Intercept for Discrete-Time Period 2 

(6" = −2.13), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.203 0.185 0.188 

   75  0.178 0.145 0.145 
  50 25  0.177 0.146 0.147 
   75  0.151 0.113 0.115 
  100 25  0.151 0.103 0.100 
   75  0.135 0.082 0.079 
 20 30 25  0.202 0.176 0.175 
   75  0.183 0.152 0.150 
  50 25  0.180 0.149 0.146 
   75  0.160 0.119 0.111 
  100 25  0.156 0.109 0.096 
   75  0.147 0.093 0.078 
 30 30 25  0.215 0.191 0.186 
   75  0.200 0.166 0.151 
  50 25  0.188 0.153 0.138 
   75  0.168 0.129 0.113 
  100 25  0.166 0.122 0.101 
   75  0.158 0.110 0.082 

1.09 10 30 25  0.333 0.270 0.275 
   75  0.324 0.241 0.239 
  50 25  0.315 0.220 0.217 
   75  0.291 0.192 0.194 
  100 25  0.292 0.158 0.147 
   75  0.281 0.145 0.135 
 20 30 25  0.338 0.266 0.259 
   75  0.328 0.252 0.246 
  50 25  0.311 0.225 0.214 
   75  0.306 0.209 0.185 
  100 25  0.298 0.176 0.140 
   75  0.295 0.171 0.130 
 30 30 25  0.358 0.296 0.275 
   75  0.356 0.285 0.245 
  50 25  0.335 0.248 0.202 
   75  0.320 0.232 0.187 
  100 25  0.314 0.210 0.146 
   75  0.311 0.207 0.138 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 2 
of .106. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. 
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Coefficient for Discrete-Time Period 3 of the Logit Hazard Function, a3  

Table 27 presents the RMSE values of the coefficient for the third discrete-time period in 

the logit hazard function, a3, across 36 combinations of conditions where the Weibull scale 

parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, respectively. For the DTS 

model, the value of the between-clusters variance component had the largest impact on the 

RMSE, where RMSE values were much larger when the between-clusters variance component 

was 1.09. Although less substantial, the RMSE was also affected by both the rate of mobility in 

the dataset, the cluster size, and the within-cluster sample size. Holding all other conditions 

constant, as mobility increased, the RMSE values increased. Additionally, for both the within-

cluster sample size and cluster size, as the sample size increased, the RMSE values decreased. 

For the ML-DTS model, the rate of mobility and the cluster size had a clear impact on the 

RMSE. When the rate of mobility increased, RMSE also increased. Conversely, as the cluster 

size increased, the RMSE tended to decrease. Additionally, RMSE values tended to be higher for 

the ML-DTS model when the variance between-clusters was 1.09. For the CC-DTS model, 

cluster size had a clear impact on RMSE, such that when cluster size increased, the RMSE values 

decreased. In contrast to the ML-DTS model, mobility did not appear to have any substantial 

effect on the RMSE values when the CC-DTS model was used.  
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Table 27 

Root Mean Square Error of the Coefficient Estimate of the Intercept for Discrete-Time Period 3 

(6#= −2.67), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.221 0.208 0.210 

   75  0.185 0.154 0.154 
  50 25  0.185 0.156 0.155 
   75  0.156 0.121 0.123 
  100 25  0.157 0.115 0.111 
   75  0.141 0.091 0.087 
 20 30 25  0.228 0.208 0.205 
   75  0.189 0.161 0.160 
  50 25  0.183 0.158 0.158 
   75  0.167 0.129 0.119 
  100 25  0.165 0.124 0.115 
   75  0.151 0.101 0.085 
 30 30 25  0.236 0.217 0.212 
   75  0.204 0.173 0.156 
  50 25  0.201 0.172 0.158 
   75  0.176 0.139 0.118 
  100 25  0.173 0.133 0.110 
   75  0.164 0.118 0.087 

1.09 10 30 25  0.348 0.292 0.296 
   75  0.335 0.250 0.248 
  50 25  0.324 0.227 0.222 
   75  0.299 0.196 0.195 
  100 25  0.300 0.168 0.152 
   75  0.287 0.151 0.137 
 20 30 25  0.365 0.299 0.285 
   75  0.342 0.265 0.253 
  50 25  0.320 0.234 0.221 
   75  0.318 0.219 0.190 
  100 25  0.309 0.191 0.153 
   75  0.305 0.184 0.136 
 30 30 25  0.377 0.316 0.293 
   75  0.372 0.300 0.251 
  50 25  0.355 0.271 0.218 
   75  0.333 0.244 0.191 
  100 25  0.327 0.224 0.153 
   75  0.328 0.223 0.138 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 3 
of .065. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. 
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Table 28 presents the RMSE values of the coefficient for the third discrete-time period in 

the logit hazard function, a3, across 36 combinations of conditions where the Weibull scale 

parameter was 0.05 for the DTS, ML-DTS, and CC-DTS models, respectively. When the 

Weibull scale parameter was 0.05, the value of the between-clusters variance component had the 

largest impact on the RMSE for the DTS model, where RMSE values were much larger when the 

between-clusters variance component was 1.09. Although less substantial, the RMSE was also 

affected by both the rate of mobility in the dataset, the cluster size, and the within-cluster sample 

size. Holding all other conditions constant, as mobility increased, the RMSE values increased. 

Additionally, for both the within-cluster sample size and cluster size, as the sample size 

increased, the RMSE values decreased. For the ML-DTS model, the rate of mobility and the 

cluster size had a clear impact on the RMSE. When the rate of mobility increased, RMSE tended 

to also increase, especially when the between clusters variance was 1.09. Conversely, as the 

cluster size increased, the RMSE tended to decrease. Additionally, RMSE values tended to be 

higher for the ML-DTS model when the variance between-clusters was 1.09. For the CC-DTS 

model, cluster size had a clear impact on RMSE, such that when cluster size increased, the 

RMSE values decreased. In contrast to the ML-DTS model, mobility did not appear to have any 

substantial effect on the RMSE values when the CC-DTS model was used.   



 

  126 
 

 

Table 28 

Root Mean Square Error of the Coefficient Estimate of the Intercept for Discrete-Time Period 3 

(6#= −1.90), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.184 0.189 0.191 

   75  0.143 0.141 0.142 
  50 25  0.146 0.144 0.145 
   75  0.118 0.114 0.116 
  100 25  0.110 0.100 0.097 
   75  0.092 0.081 0.080 
 20 30 25  0.185 0.185 0.187 
   75  0.149 0.146 0.148 
  50 25  0.142 0.139 0.141 
   75  0.123 0.116 0.112 
  100 25  0.116 0.105 0.099 
   75  0.104 0.090 0.079 
 30 30 25  0.193 0.191 0.189 
   75  0.160 0.155 0.148 
  50 25  0.154 0.149 0.139 
   75  0.127 0.119 0.110 
  100 25  0.127 0.116 0.101 
   75  0.114 0.101 0.080 

1.09 10 30 25  0.233 0.265 0.272 
   75  0.211 0.237 0.240 
  50 25  0.199 0.216 0.217 
   75  0.170 0.186 0.192 
  100 25  0.153 0.151 0.145 
   75  0.139 0.139 0.135 
 20 30 25  0.241 0.264 0.267 
   75  0.219 0.242 0.246 
  50 25  0.192 0.208 0.208 
   75  0.182 0.195 0.186 
  100 25  0.163 0.164 0.146 
   75  0.152 0.152 0.129 
 30 30 25  0.259 0.284 0.279 
   75  0.237 0.261 0.245 
  50 25  0.217 0.232 0.209 
   75  0.195 0.208 0.187 
  100 25  0.179 0.182 0.145 
   75  0.175 0.181 0.137 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 3 
of .130. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. 
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Coefficient for Discrete-Time Period 4 of the Logit Hazard Function, a4.  

Table 29 presents the RMSE values of the coefficient for the fourth discrete-time period 

in the logit hazard function, a4, across 36 combinations of conditions where the Weibull scale 

parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, respectively. When all other 

conditions were held constant, the between clusters variance had a clear impact on the RMSE for 

the DTS model, such that RMSE values were higher when the between cluster variance was 

1.09. Although less substantial, the RMSE was also affected by both the rate of mobility in the 

dataset, the cluster size, and the within-cluster sample size. Holding all other conditions constant, 

as mobility increased, the RMSE values increased. Additionally, for both the within-cluster 

sample size and cluster size, as the sample size increased, the RMSE values decreased. For the 

ML-DTS model, the rate of mobility in the dataset appeared to have the most substantial impact 

on RMSE values, where RMSE increased as mobility increased. In contrast, RMSE was not 

impacted by mobility using the CC-DTS model. For both the ML-DTS and CC-DTS models, 

overall sample size had a noticeable effect on RMSE values, such that as both cluster size and 

within-cluster sample size increased, RMSE consistently decreased. Additionally, variance 

between-clusters had a substantial affect on both the ML-DTS model and the CC-DTS model, 

such that when it was 1.09, RMSE values were generally larger than when it was 0.32.  
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Table 29 

Root Mean Square Error of the Coefficient Estimate of the Intercept for Discrete-Time Period 4 

(6$= −2.51), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.204 0.204 0.207 

   75  0.158 0.146 0.148 
  50 25  0.165 0.153 0.153 
   75  0.132 0.119 0.121 
  100 25  0.130 0.111 0.108 
   75  0.109 0.087 0.086 
 20 30 25  0.213 0.207 0.207 
   75  0.163 0.153 0.155 
  50 25  0.174 0.163 0.162 
   75  0.141 0.123 0.117 
  100 25  0.136 0.118 0.113 
   75  0.119 0.093 0.083 
 30 30 25  0.221 0.214 0.213 
   75  0.178 0.164 0.155 
  50 25  0.185 0.171 0.159 
   75  0.151 0.133 0.120 
  100 25  0.149 0.128 0.109 
   75  0.131 0.108 0.087 

1.09 10 30 25  0.282 0.289 0.296 
   75  0.246 0.236 0.240 
  50 25  0.242 0.223 0.223 
   75  0.210 0.189 0.193 
  100 25  0.199 0.157 0.150 
   75  0.186 0.144 0.139 
 20 30 25  0.287 0.283 0.284 
   75  0.256 0.246 0.250 
  50 25  0.249 0.232 0.229 
   75  0.226 0.201 0.189 
  100 25  0.211 0.173 0.154 
   75  0.201 0.159 0.134 
 30 30 25  0.304 0.300 0.298 
   75  0.281 0.270 0.254 
  50 25  0.270 0.249 0.218 
   75  0.245 0.221 0.197 
  100 25  0.233 0.195 0.149 
   75  0.223 0.186 0.138 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 4 
of .075. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. 
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 Table 30 presents the RMSE values of the coefficient for the fourth discrete-time period 

in the logit hazard function, a4, across 36 combinations of conditions where the Weibull scale 

parameter was 0.05 for the DTS, ML-DTS, and CC-DTS models, respectively. The RMSE 

values for all models were substantially impacted by overall sample size in the dataset, such that 

as sample size increased due to both increasing cluster size and increasing within-cluster sample 

size, the RMSE decreased. Additionally, the variance between-clusters affected all models, such 

that when the variance between-clusters was 0.32, the RMSE values were lower than when the 

variance between-clusters was 1.09. However, some differences in the pattern of the RMSE 

values between models were apparent due to mobility. When the variance between-clusters was 

0.32, the RMSE generally increased for the DTS model and the ML-DTS model as mobility 

increased. Conversely, for the CC-DTS model, the pattern for the RMSE values was either 

inconsistent or decreased as mobility increased. When the variance between-clusters was 1.09, 

there was no consistency in the pattern of increasing or decreasing RMSE with mobility across 

models.  
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Table 30 

Root Mean Square Error of the Coefficient Estimate of the Intercept for Discrete-Time Period 4 

(6$= −1.74), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.179 0.190 0.192 

   75  0.128 0.139 0.141 
  50 25  0.135 0.145 0.146 
   75  0.104 0.111 0.114 
  100 25  0.090 0.098 0.097 
   75  0.075 0.083 0.084 
 20 30 25  0.171 0.181 0.184 
   75  0.133 0.143 0.148 
  50 25  0.140 0.150 0.152 
   75  0.101 0.110 0.111 
  100 25  0.095 0.104 0.102 
   75  0.072 0.081 0.079 
 30 30 25  0.183 0.193 0.196 
   75  0.137 0.149 0.150 
  50 25  0.141 0.152 0.148 
   75  0.104 0.115 0.113 
  100 25  0.096 0.105 0.099 
   75  0.079 0.090 0.083 

1.09 10 30 25  0.232 0.271 0.279 
   75  0.187 0.230 0.238 
  50 25  0.180 0.212 0.218 
   75  0.161 0.183 0.192 
  100 25  0.125 0.145 0.145 
   75  0.120 0.134 0.137 
 20 30 25  0.215 0.255 0.269 
   75  0.189 0.229 0.246 
  50 25  0.176 0.210 0.221 
   75  0.144 0.178 0.187 
  100 25  0.121 0.148 0.149 
   75  0.103 0.131 0.132 
 30 30 25  0.224 0.270 0.287 
   75  0.182 0.236 0.247 
  50 25  0.166 0.214 0.216 
   75  0.142 0.184 0.191 
  100 25  0.114 0.154 0.147 
   75  0.102 0.144 0.138 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 4 
of .150. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. 
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Coefficient for Discrete-Time Period 5 of the Logit Hazard Function, a5 

Table 31 presents the RMSE values of the coefficient for the fifth discrete-time period in 

the logit hazard function, a5, across 36 combinations of conditions where the Weibull scale 

parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, respectively. For the DTS 

model, the variance between-clusters had a substantial impact on the RMSE values, such that 

when the variance between-clusters was equal to 1.09, the RMSE was much higher when it was 

1.09 as compared to when it was 0.32. Additionally, cluster size and within-cluster size had an 

impact on the RMSE for the DTS model, such that as sample sizes increased, RMSE decreased 

commensurably. For the ML-DTS model, cluster size had a substantial impact on the RMSE, 

such that as cluster size increased, RMSE decreased. Other conditions had smaller impacts on the 

RMSE for the ML-DTS model. For the CC-DTS model, both the cluster size and within-cluster 

sample size influenced the RMSE values, such that they were generally lowest as sample size 

increased. 
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Table 31 

Root Mean Square Error of the Coefficient Estimate of the Intercept for Discrete-Time Period 5 

(6%= −2.39), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.200 0.207 0.210 

   75  0.151 0.154 0.156 
  50 25  0.157 0.160 0.161 
   75  0.120 0.123 0.125 
  100 25  0.113 0.112 0.113 
   75  0.089 0.088 0.088 
 20 30 25  0.193 0.197 0.198 
   75  0.151 0.153 0.156 
  50 25  0.155 0.156 0.158 
   75  0.119 0.118 0.119 
  100 25  0.118 0.117 0.115 
   75  0.091 0.087 0.083 
 30 30 25  0.196 0.199 0.201 
   75  0.160 0.160 0.158 
  50 25  0.160 0.161 0.158 
   75  0.127 0.125 0.122 
  100 25  0.121 0.118 0.110 
   75  0.101 0.096 0.087 

1.09 10 30 25  0.249 0.287 0.298 
   75  0.204 0.241 0.252 
  50 25  0.193 0.220 0.226 
   75  0.161 0.189 0.198 
  100 25  0.133 0.152 0.153 
   75  0.116 0.138 0.141 
 20 30 25  0.237 0.266 0.278 
   75  0.201 0.231 0.248 
  50 25  0.185 0.209 0.222 
   75  0.157 0.180 0.189 
  100 25  0.140 0.158 0.159 
   75  0.116 0.132 0.132 
 30 30 25  0.249 0.277 0.295 
   75  0.214 0.243 0.256 
  50 25  0.197 0.221 0.221 
   75  0.167 0.188 0.195 
  100 25  0.144 0.158 0.154 
   75  0.131 0.146 0.140 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 5 
of .084. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. 
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Table 32 presents the RMSE values of the coefficient for the fifth discrete-time period in 

the logit hazard function, a5, across 36 combinations of conditions where the Weibull scale 

parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, respectively. For the DTS 

model, the variance between-clusters had a substantial impact on the RMSE values, such that 

when the variance between-clusters was equal to 1.09, the RMSE was much higher when it was 

1.09 as compared to when it was 0.32. Additionally, cluster size and within-cluster size had an 

impact on the RMSE for the DTS model, such that as sample sizes increased, RMSE decreased 

commensurably. For the ML-DTS model, cluster size had a substantial impact on the RMSE, 

such that as cluster size increased, RMSE decreased. Other conditions had smaller impacts on the 

RMSE for the ML-DTS model. For the CC-DTS model, both the cluster size and within-cluster 

sample size influenced the RMSE values, such that they were generally lowest as sample size 

increased. 
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Table 32 

Root Mean Square Error of the Coefficient Estimate of the Intercept for Discrete-Time Period 5 

(6%= −1.60), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.194 0.194 0.197 

   75  0.144 0.144 0.147 
  50 25  0.153 0.151 0.152 
   75  0.123 0.115 0.118 
  100 25  0.116 0.105 0.106 
   75  0.098 0.082 0.084 
 20 30 25  0.177 0.179 0.183 
   75  0.146 0.146 0.153 
  50 25  0.148 0.147 0.151 
   75  0.110 0.106 0.110 
  100 25  0.109 0.101 0.104 
   75  0.086 0.077 0.080 
 30 30 25  0.184 0.191 0.196 
   75  0.139 0.148 0.156 
  50 25  0.144 0.149 0.152 
   75  0.113 0.114 0.119 
  100 25  0.102 0.100 0.104 
   75  0.083 0.081 0.084 

1.09 10 30 25  0.308 0.279 0.288 
   75  0.269 0.234 0.245 
  50 25  0.265 0.209 0.217 
   75  0.256 0.187 0.196 
  100 25  0.235 0.148 0.153 
   75  0.232 0.131 0.138 
 20 30 25  0.285 0.250 0.269 
   75  0.262 0.227 0.250 
  50 25  0.255 0.205 0.221 
   75  0.233 0.172 0.187 
  100 25  0.227 0.146 0.156 
   75  0.210 0.120 0.133 
 30 30 25  0.281 0.268 0.293 
   75  0.241 0.226 0.256 
  50 25  0.239 0.202 0.222 
   75  0.223 0.176 0.197 
  100 25  0.208 0.138 0.150 
   75  0.198 0.126 0.140 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 5 
of .168. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size. 
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Coefficient for the level-one predictor, iK 

Table 33 presents the RMSE values of the coefficient of the level-one predictor,	@!, 

across the 36 combinations of conditions where the Weibull scale parameter was 0.025 for the 

DTS, ML-DTS, and CC-DTS models, respectively. The RMSE for the DTS model was clearly 

impacted by the variance between clusters, such that RMSE was higher when the variance 

between clusters was 1.09 than when it was 0.32. Additionally, sample size conditions had a 

notable impact on the RMSE for the DTS model, where larger sample sizes resulted in lower 

RMSE values. For both the ML-DTS and CC-DTS models, the cluster level and within-cluster 

sample size conditions had the largest impacts on the RMSE, such that as the sample size 

increased, RMSE decreased. No other simulation conditions appeared to have substantial 

impacts on the RMSE values for either the ML-DTS or CC-DTS models.  
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Table 33 

Root Mean Square Error of the Coefficient Estimate of the Level-One Predictor (@! =	0.50), 

When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.132 0.133 0.133 

   75  0.083 0.075 0.075 
  50 25  0.102 0.098 0.098 
   75  0.064 0.055 0.055 
  100 25  0.079 0.072 0.072 
   75  0.053 0.041 0.041 
 20 30 25  0.130 0.129 0.129 
   75  0.080 0.075 0.075 
  50 25  0.105 0.103 0.104 
   75  0.066 0.057 0.057 
  100 25  0.078 0.072 0.072 
   75  0.053 0.040 0.039 
 30 30 25  0.130 0.129 0.129 
   75  0.077 0.073 0.073 
  50 25  0.102 0.098 0.098 
   75  0.067 0.057 0.055 
  100 25  0.075 0.070 0.070 
   75  0.053 0.042 0.040 

1.09 10 30 25  0.157 0.133 0.134 
   75  0.122 0.074 0.074 
  50 25  0.138 0.101 0.101 
   75  0.115 0.059 0.058 
  100 25  0.123 0.074 0.073 
   75  0.110 0.042 0.040 
 20 30 25  0.157 0.133 0.132 
   75  0.121 0.078 0.075 
  50 25  0.137 0.104 0.103 
   75  0.114 0.062 0.058 
  100 25  0.123 0.076 0.072 
   75  0.109 0.046 0.040 
 30 30 25  0.156 0.131 0.127 
   75  0.116 0.076 0.072 
  50 25  0.138 0.103 0.097 
   75  0.113 0.066 0.058 
  100 25  0.118 0.074 0.069 
   75  0.106 0.051 0.042 

Note. l is the Weibull scale parameter, !! =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size. 
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Table 34 presents the RMSE values of the coefficient of the level-one predictor,	@!, 

across the 36 combinations of conditions where the Weibull scale parameter was 0.05 for the 

DTS, ML-DTS, and CC-DTS models, respectively. The RMSE for the DTS model was clearly 

impacted by the variance between clusters, such that RMSE was higher when the variance 

between clusters was 1.09 than when it was 0.32. Additionally, sample size conditions had a 

notable impact on the RMSE for the DTS model, where larger sample sizes resulted in lower 

RMSE values. For both the ML-DTS and CC-DTS models, the cluster level and within-cluster 

sample size conditions had the largest impacts on the RMSE, such that as the sample size 

increased, RMSE decreased. No other simulation conditions appeared to have substantial 

impacts on the RMSE values for either the ML-DTS or CC-DTS models.  
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Table 34 

Root Mean Square Error of the Coefficient Estimate of the Level-One Predictor (@! =	0.50), 

When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.113 0.107 0.107 

   75  0.078 0.064 0.064 
  50 25  0.097 0.085 0.086 
   75  0.067 0.047 0.047 
  100 25  0.075 0.059 0.059 
   75  0.058 0.034 0.034 
 20 30 25  0.112 0.106 0.106 
   75  0.076 0.063 0.063 
  50 25  0.095 0.086 0.086 
   75  0.066 0.049 0.049 
  100 25  0.075 0.061 0.060 
   75  0.061 0.036 0.034 
 30 30 25  0.119 0.112 0.112 
   75  0.075 0.062 0.061 
  50 25  0.095 0.086 0.084 
   75  0.065 0.048 0.046 
  100 25  0.075 0.061 0.060 
   75  0.058 0.036 0.034 

1.09 10 30 25  0.155 0.113 0.113 
   75  0.136 0.067 0.065 
  50 25  0.149 0.089 0.088 
   75  0.129 0.051 0.049 
  100 25  0.137 0.064 0.062 
   75  0.127 0.037 0.035 
 20 30 25  0.157 0.116 0.117 
   75  0.131 0.070 0.066 
  50 25  0.144 0.094 0.093 
   75  0.127 0.056 0.050 
  100 25  0.135 0.065 0.060 
   75  0.127 0.043 0.034 
 30 30 25  0.158 0.118 0.114 
   75  0.129 0.071 0.065 
  50 25  0.144 0.095 0.089 
   75  0.127 0.060 0.050 
  100 25  0.132 0.070 0.063 
   75  0.123 0.048 0.035 

Note. l is the Weibull scale parameter, !! =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size. 
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Coefficient for the level-two predictor, iL 

Table 35 presents the RMSE values of the coefficient of the level-two predictor,	@", 

across the 36 combinations of conditions where the Weibull scale parameter was 0.025 for the 

DTS, ML-DTS, and CC-DTS models, respectively. For all models, the variance between clusters 

had a clear impact on the RMSE value, such that the RMSE was lower when the variance 

between clusters was 0.32 than when it was 1.09. Similarly, cluster size, and less notably, within-

cluster sample size, had substantial impacts on the RMSE. Specifically, in all cases, RMSE 

became progressively lower as the sample size increased.  
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Table 35 

Root Mean Square Error of the Coefficient Estimate of the Level-Two Predictor (@" =	0.50), 

When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.239 0.248 0.261 

   75  0.214 0.219 0.230 
  50 25  0.192 0.195 0.200 
   75  0.178 0.178 0.186 
  100 25  0.148 0.143 0.142 
   75  0.140 0.134 0.135 
 20 30 25  0.242 0.243 0.257 
   75  0.231 0.233 0.251 
  50 25  0.199 0.197 0.205 
   75  0.187 0.183 0.187 
  100 25  0.157 0.149 0.145 
   75  0.149 0.138 0.130 
 30 30 25  0.252 0.253 0.263 
   75  0.239 0.236 0.242 
  50 25  0.209 0.204 0.200 
   75  0.199 0.193 0.185 
  100 25  0.173 0.163 0.139 
   75  0.170 0.159 0.132 

1.09 10 30 25  0.358 0.406 0.442 
   75  0.341 0.381 0.417 
  50 25  0.289 0.313 0.335 
   75  0.283 0.304 0.331 
  100 25  0.230 0.228 0.240 
   75  0.232 0.226 0.240 
 20 30 25  0.349 0.375 0.433 
   75  0.357 0.385 0.448 
  50 25  0.287 0.302 0.347 
   75  0.288 0.295 0.335 
  100 25  0.233 0.224 0.243 
   75  0.228 0.215 0.232 
 30 30 25  0.356 0.381 0.453 
   75  0.352 0.365 0.431 
  50 25  0.296 0.297 0.337 
   75  0.287 0.288 0.331 
  100 25  0.238 0.222 0.233 
   75  0.243 0.226 0.235 

Note. l is the Weibull scale parameter, !" =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size. 
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Table 36 presents the RMSE values of the coefficient of the level-two predictor,	@", 

across the 36 combinations of conditions where the Weibull scale parameter was 0.05 for the 

DTS, ML-DTS, and CC-DTS models, respectively. For all models, the variance between clusters 

had a clear impact on the RMSE value, such that the RMSE was lower when the variance 

between clusters was 0.32 than when it was 1.09. Similarly, cluster size, and less notably, within-

cluster sample size, had substantial impacts on the RMSE. Specifically, in all cases, RMSE 

became progressively lower as the sample size increased.   
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Table 36 

Root Mean Square Error of the Coefficient Estimate of the Level-Two Predictor (@" =	0.50), 

When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  0.231 0.242 0.254 

   75  0.206 0.213 0.226 
  50 25  0.185 0.187 0.194 
   75  0.174 0.174 0.182 
  100 25  0.145 0.136 0.136 
   75  0.143 0.133 0.135 
 20 30 25  0.235 0.237 0.253 
   75  0.227 0.229 0.248 
  50 25  0.193 0.190 0.200 
   75  0.183 0.178 0.185 
  100 25  0.155 0.142 0.137 
   75  0.150 0.134 0.127 
 30 30 25  0.245 0.246 0.259 
   75  0.235 0.232 0.237 
  50 25  0.203 0.194 0.190 
   75  0.194 0.184 0.183 
  100 25  0.170 0.154 0.134 
   75  0.168 0.152 0.128 

1.09 10 30 25  0.342 0.395 0.427 
   75  0.328 0.380 0.412 
  50 25  0.283 0.314 0.336 
   75  0.277 0.303 0.329 
  100 25  0.233 0.228 0.239 
   75  0.235 0.228 0.242 
 20 30 25  0.342 0.377 0.432 
   75  0.347 0.383 0.445 
  50 25  0.283 0.304 0.347 
   75  0.283 0.297 0.335 
  100 25  0.232 0.218 0.237 
   75  0.229 0.212 0.230 
 30 30 25  0.345 0.376 0.443 
   75  0.343 0.364 0.431 
  50 25  0.290 0.290 0.332 
   75  0.285 0.285 0.328 
  100 25  0.238 0.216 0.230 
   75  0.242 0.219 0.232 

Note. l is the Weibull scale parameter, !" =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size. 
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Between-Clusters Variance, jPL  

Table 37 presents the RMSE values of the coefficient of the between-clusters 

variance,	L1", across the 36 combinations of conditions where the Weibull scale parameter was 

0.025 for the ML-DTS and CC-DTS models. For both the ML-DTS and CC-DTS models, RMSE 

was greatly impacted by the variance between clusters, such that RMSE was substantially higher 

when the variance between clusters was 1.09 than when it was 0.32. The cluster level sample 

size also had substantial impacts on the RMSE value for both models, and was most pronounced 

when the variance between clusters was 1.09. Specifically, as the cluster level sample size 

increased, the RMSE value decreased. For the ML-DTS model, mobility also had a notable 

impact on the RMSE, such that as mobility increased, the RMSE increased. Again, this was most 

pronounced when the variance between clusters was 1.09, although also occurred to a lesser 

magnitude when the variance between clusters was 0.32. In contrast, mobility did not have a 

notable impact on the RMSE when using the CC-DTS model. 
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Table 37 

Root Mean Square Error of the Estimate of the Between-Clusters Variance, L1", When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  ML-DTS CC-DTS 
0.32 10 30 25  0.131 0.122 

   75  0.107 0.095 
  50 25  0.103 0.094 
   75  0.090 0.073 
  100 25  0.083 0.064 
   75  0.072 0.052 
 20 30 25  0.145 0.120 
   75  0.133 0.097 
  50 25  0.127 0.095 
   75  0.118 0.074 
  100 25  0.110 0.067 
   75  0.102 0.050 
 30 30 25  0.165 0.116 
   75  0.152 0.093 
  50 25  0.144 0.088 
   75  0.142 0.074 
  100 25  0.136 0.065 
   75  0.131 0.052 

1.09 10 30 25  0.397 0.355 
   75  0.368 0.310 
  50 25  0.323 0.260 
   75  0.316 0.233 
  100 25  0.281 0.188 
   75  0.267 0.166 
 20 30 25  0.475 0.349 
   75  0.471 0.310 
  50 25  0.435 0.269 
   75  0.432 0.239 
  100 25  0.390 0.192 
   75  0.393 0.159 
 30 30 25  0.552 0.336 
   75  0.546 0.297 
  50 25  0.503 0.247 
   75  0.519 0.238 
  100 25  0.491 0.186 
   75  0.490 0.165 

Note. l is the Weibull scale parameter, $#" is the variance at the cluster-level, and was equal to either 0.32 or 
1.09. ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-time survival 
model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = within-cluster 
sample size. 
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Table 38 presents the RMSE values of the coefficient of the between-clusters 

variance,	L1", across the 36 combinations of conditions where the Weibull scale parameter was 

0.05 for the ML-DTS and CC-DTS models. For both the ML-DTS and CC-DTS models, RMSE 

was greatly impacted by the variance between clusters, such that RMSE was substantially higher 

when the variance between clusters was 1.09 than when it was 0.32. The cluster level sample 

size also had substantial impacts on the RMSE value for both models, and was most pronounced 

when the variance between clusters was 1.09. Specifically, as the cluster level sample size 

increased, the RMSE value decreased. For the ML-DTS model, mobility also had a notable 

impact on the RMSE, such that as mobility increased, the RMSE increased. Again, this was most 

pronounced when the variance between clusters was 1.09, although also occurred to a lesser 

magnitude when the variance between clusters was 0.32. In contrast, mobility did not have a 

notable impact on the RMSE when using the CC-DTS model.  
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Table 38 

Root Mean Square Error of the Estimate of the Between-Clusters Variance, L1", When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  ML-DTS CC-DTS 
0.32 10 30 25  0.118 0.111 

   75  0.102 0.092 
  50 25  0.093 0.082 
   75  0.085 0.070 
  100 25  0.077 0.059 
   75  0.068 0.050 
 20 30 25  0.136 0.116 
   75  0.127 0.094 
  50 25  0.121 0.087 
   75  0.113 0.072 
  100 25  0.103 0.060 
   75  0.097 0.048 
 30 30 25  0.155 0.106 
   75  0.146 0.090 
  50 25  0.136 0.079 
   75  0.137 0.071 
  100 25  0.129 0.058 
   75  0.126 0.049 

1.09 10 30 25  0.371 0.330 
   75  0.356 0.302 
  50 25  0.301 0.248 
   75  0.302 0.227 
  100 25  0.257 0.175 
   75  0.249 0.163 
 20 30 25  0.453 0.344 
   75  0.449 0.299 
  50 25  0.414 0.262 
   75  0.408 0.232 
  100 25  0.366 0.185 
   75  0.368 0.156 
 30 30 25  0.526 0.322 
   75  0.520 0.291 
  50 25  0.481 0.234 
   75  0.497 0.225 
  100 25  0.468 0.174 
   75  0.467 0.161 

Note. l is the Weibull scale parameter, $#" is the variance at the cluster-level, and was equal to either 0.32 or 
1.09. ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-time survival 
model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = within-cluster 
sample size. 
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Coverage Rates of the 95% Confidence Intervals 

 The coverage rates of the 95% CIs were computed for estimates of the fixed effect 

parameters, including the coefficients associated with the intercept parameters that together 

represent the hazard function (a1, a2, a3, a4, and a5), the level-1 covariate (@!), and the level-2 

covariate (@"). Additionally, the results of the logistic regressions are reported for each of the 

fixed effects parameters for each model, where the outcome is binary and represents whether or 

not a CI included the true parameter value. In addition to the tables of results presented in this 

section, nested loop plots (Rücker & Schwarzer, 2014) that depict the coverage rates of the 95% 

CIs across all 72 combinations of conditions in one plot for each parameter of interest can be 

found in Appendix H.  

Coefficient for Discrete-Time Period 1 of the Logit Hazard Function, a1 

Table 39 presents the coverage of the 95% CIs for the intercept for the first discrete-time 

period in the logit hazard function, a1, across 36 combinations of conditions where the Weibull 

scale parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, respectively. For the 

DTS model, the coverage rates were substantially below .925 for all 36 combinations of 

conditions that included a Weibull scale parameter of 0.025. Coverage rates were especially poor 

when the variance between-clusters was 1.09, where the lowest coverage rate was .001. For the 

DTS model, when the variance between-clusters was 0.32, coverage rates ranged from .142 to 

.762. For the ML-DTS model, coverage rates were outside the acceptable .925 to .975 range for 

the majority of combinations of conditions, with only four combinations of conditions resulting 

in acceptable coverage rates. Specifically, acceptable coverage rates occurred when the variance 

between-clusters was 0.32, the mobility rate condition was 10%, and the cluster size was either 

30 or 50. Otherwise, coverage rates were outside of the acceptable range, with values between 
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.446 and .910. For the ML-DTS model, coverage rates became consistently worse with 

increasing rates of mobility in the dataset, such that coverage was lowest for any combination of 

conditions under the 30% mobility condition. Conversely, the CC-DTS model resulted in 

acceptable coverage rates for all but two of the 36 combinations of conditions presented in Table 

39. For the two coverage rates found to be unacceptable, they were only very slightly below 

.925.  
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Table 39 

Coverage Rates of the Coefficient Estimate of the Intercept for Discrete-Time Period 1 (6!= 

−3.25), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .762 .937 .938 

   75  .541 .930 .939 
  50 25  .681 .925 .945 
   75  .442 .933 .944 
  100 25  .518 .910 .935 
   75  .211 .907 .943 
 20 30 25  .758 .918 .936 
   75  .542 .881 .922 
  50 25  .691 .906 .938 
   75  .367 .894 .949 
  100 25  .463 .888 .936 
   75  .179 .837 .957 
 30 30 25  .744 .897 .951 
   75  .461 .828 .928 
  50 25  .630 .890 .950 
   75  .356 .828 .949 
  100 25  .476 .838 .955 
   75  .142 .693 .936 

1.09 10 30 25  .280 .895 .934 
   75  .114 .898 .925 
  50 25  .114 .898 .941 
   75  .044 .902 .935 
  100 25  .016 .877 .941 
   75  .002 .850 .943 
 20 30 25  .254 .854 .945 
   75  .116 .822 .917 
  50 25  .117 .825 .941 
   75  .024 .784 .946 
  100 25  .015 .757 .943 
   75  .001 .670 .952 
 30 30 25  .257 .787 .930 
   75  .094 .718 .930 
  50 25  .089 .726 .954 
   75  .029 .650 .936 
  100 25  .008 .597 .950 
   75  .001 .446 .931 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 1 
of .038. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size; Bolded and italicized values represent unacceptable 
coverage of the 95% confidence intervals. 
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Table 40 presents the coverage of the 95% confidence intervals for the intercept for the 

first discrete-time period in the logit hazard function, a1, across 36 combinations of conditions 

where the Weibull scale parameter was 0.05 for the DTS, ML-DTS, and CC-DTS models, 

respectively. For the DTS model, the coverage rates were substantially below .925 for all 36 

combinations of conditions that included a Weibull scale parameter of 0.05. Coverage rates were 

especially poor when the variance between-clusters was 1.09, where the lowest coverage rate 

was .000. For the DTS model, when the variance between-clusters was 0.32, coverage rates 

ranged from .081 to .693. For the ML-DTS model, coverage rates were outside the acceptable 

.925 to .975 range for the majority of combinations of conditions, with only four combinations of 

conditions resulting in acceptable coverage rates. Specifically, coverage rates were within or 

very close to the acceptable range when the mobility condition was 10%, and in some cases, 

when the mobility condition was 20%. Otherwise, coverage rates were outside of the acceptable 

range, with values overall falling between .557 and .921. For the ML-DTS model, coverage rates 

became consistently worse with increasing rates of mobility and cluster size, such that coverage 

was lowest for any combination of conditions that included the 30% mobility condition and a 

cluster size of 100. Conversely, the CC-DTS model resulted in acceptable coverage rates for all 

but one of the 36 combinations of conditions presented in Table 40. For the one coverage rate 

found to be unacceptable, coverage was .916, only slightly below .925. 
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Table 40 

Coverage Rates of the Coefficient Estimate of the Intercept for Discrete-Time Period 1 (6!= 

−2.51), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .693 .935 .948 

   75  .459 .916 .934 
  50 25  .598 .929 .945 
   75  .363 .927 .940 
  100 25  .418 .927 .947 
   75  .149 .921 .953 
 20 30 25  .680 .920 .952 
   75  .443 .886 .926 
  50 25  .597 .915 .944 
   75  .276 .901 .945 
  100 25  .361 .887 .957 
   75  .109 .827 .946 
 30 30 25  .665 .879 .951 
   75  .398 .831 .926 
  50 25  .527 .888 .953 
   75  .268 .832 .935 
  100 25  .365 .818 .950 
   75  .081 .711 .933 

1.09 10 30 25  .263 .918 .928 
   75  .097 .911 .930 
  50 25  .114 .913 .944 
   75  .043 .908 .930 
  100 25  .009 .891 .938 
   75  .000 .877 .948 
 20 30 25  .215 .877 .941 
   75  .103 .843 .916 
  50 25  .111 .868 .937 
   75  .027 .841 .943 
  100 25  .011 .812 .962 
   75  .001 .737 .949 
 30 30 25  .216 .824 .932 
   75  .094 .767 .931 
  50 25  .076 .774 .938 
   75  .028 .727 .925 
  100 25  .006 .656 .948 
   75  .002 .557 .937 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 1 
of .075. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size; Bolded and italicized values represent unacceptable 
coverage of the 95% confidence intervals. 
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  To further explore the results presented in Tables 39 and 40, a logistic regression was 

conducted for the DTS, ML-DTS, and CC-DTS models, where the dependent variable was 

binary and represented whether or not the confidence interval included the true value of the 

parameter and the simulation conditions were entered as the independent variables. The Cox 

effect was recorded and is presented in tabular form in Appendix I. For the DTS model, multiple 

nested logistic regression models were conducted to assess model fit, and it was determined that 

compared to a model with higher-order interactions, the model with third-order interactions 

produced the best model fit, [k"(16) =	8.44, p = 0.93]. The results indicated that there was a 

practically significant interaction between the mobility rate (dummy variable contrasting a 

mobility rate of 20% and a mobility rate of 10%), cluster size (dummy variable contrasting a 

cluster size of 50 to a cluster size of 30), and the within-cluster sample size [k"(71,948) = −4.15, 

p < .05, FDEF= −0.29]. When the cluster size was 30, the coverage rate was always greater than 

when it was 50 when examined in combination with the mobility rate conditions (10% or 20%) 

and within-cluster sample size. For example, when the cluster size was 30, the mobility rate 

condition was 10%, and the within-cluster size was 25, the coverage rate was greater than when 

the cluster size was 50, the mobility rate condition was 10%, and the within-cluster size was 75 

(mGnaD+Eooooooooooo#4,!4%,"% = .500, mGnaD+Eooooooooooo50,10%,75 = .377). Additionally, an interaction was observed 

between cluster size (dummy variable contrasting a cluster size of 50 to a cluster size of 30) and 

variance between clusters [k"(71,948) = −5.92, p < .05, FDEF= −0.40]. When the variance 

between-clusters was 0.32, the coverage rate was greater when the cluster size was 30 as 

compared to when it was 50 (mGnaD+Eooooooooooo30 = .600, mGnaD+Eooooooooooo50 = .483). When the variance 

between-clusters was 1.09, the coverage rate was substantially lower than when it was 0.32 

regardless of cluster size, but followed the same pattern, such that the coverage was greater when 
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the cluster size was 30 than when it was 50 (mGnaD+Eooooooooooo30 = .175, mGnaD+Eooooooooooo50 = .068). Similarly, an 

interaction was observed between cluster size (dummy variable contrasting a cluster size of 100 

to a cluster size of 30) and variance between clusters [k"(71,948) = −9.20, p < .05, FDEF= 

−1.33]. When the variance between-clusters was 0.32, the coverage rate was greater when the 

cluster size was 30 as compared to when it was 100 (mGnaD+Eooooooooooo30 = .600, mGnaD+Eooooooooooo100 = .289). 

When the variance between-clusters was 1.09, the coverage rate was substantially lower than 

when it was 0.32 regardless of cluster size, but followed the same pattern, such that the coverage 

was greater when the cluster size was 30 than when it was 100 (mGnaD+Eooooooooooo30 = .175, mGnaD+Eooooooooooo100 = 

.006). For the ML-DTS model, multiple nested logistic regression models were conducted to 

assess model fit, and it was determined that compared to a model with higher-order interactions, 

the model with second-order interactions produced the best model fit, [k"(25) =	21.34, p = 

0.67]. A practically significant interaction was observed between mobility rate (dummy variable 

contrasting the 30% mobility rate condition with the 10% mobility rate condition) and variance 

between clusters, [k"(71,973) = −9.20, p < .05, FDEF= −0.27]. When the variance between 

clusters was 0.32, the coverage rate was greater when the mobility rate condition was 10% than 

when it was 30% (mGnaD+Eooooooooooo10% = .925, mGnaD+Eooooooooooo30% = .828). When the variance between clusters 

was 1.09, a similar pattern was observed, such that the coverage rate was greater when the 

mobility rate condition was 10% than when it was 30% (mGnaD+Eooooooooooo10% = .895, mGnaD+Eooooooooooo30% = 

.686). An interaction was also observed between mobility rate (dummy variable contrasting the 

30% mobility rate condition with the 10% mobility rate condition) and cluster size (dummy 

variable contrasting a cluster size of 100 to a cluster size of 30), [k"(71,973) = −8.48, p < .05, 

FDEF= −0.34]. When the mobility rate condition was 10%, the coverage rate was nearly identical 

regardless of cluster size (mGnaD+Eooooooooooo30 = .918, mGnaD+Eooooooooooo100 = .917). Conversely, when the mobility 
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rate condition was 30%, coverage was greater when the cluster size was 30 than when it was 100 

(mGnaD+Eooooooooooo30 = .816, mGnaD+Eooooooooooo100 = .665). For the CC-DTS model, no main effect or interaction 

between the independent variables was found to have a practically significant effect on the 

coverage of the 95% confidence intervals.  

Coefficient for Discrete-Time Period 2 of the Logit Hazard Function, a2 

Table 41 presents the coverage of the 95% confidence intervals for the intercept for the 

second discrete-time period in the logit hazard function, a2, across 36 combinations of conditions 

where the Weibull scale parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, 

respectively. For the DTS model, the coverage rates were substantially below .925 for all 36 

combinations of conditions that included a Weibull scale parameter of 0.025. Coverage rates 

were especially poor when the variance between-clusters was 1.09, where the lowest coverage 

rate was .005. For the DTS model, when the variance between-clusters was 0.32, coverage rates 

ranged from .175 to .798. For the ML-DTS model, coverage rates were outside the acceptable 

.925 to .975 range for the majority of combinations of conditions, with only four combinations of 

conditions resulting in acceptable coverage rates. Specifically, coverage rates were within or 

very close to the acceptable range when the mobility condition was 10%, and in some cases, 

when the mobility condition was 20%. Otherwise, coverage rates were outside of the acceptable 

range, with unacceptable coverage values ranging from .489 and .924. For the ML-DTS model, 

coverage rates became consistently worse when both mobility and sample size (both within-

cluster and cluster sizes) increased. Conversely, the CC-DTS model resulted in acceptable 

coverage rates for all but one of the 36 combinations of conditions. However, for the 

combination of conditions that resulted in unacceptable coverage, the coverage rate was only 

very slightly below the acceptable .925 minimum, at .915.  
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Table 41 

Coverage Rates of the Coefficient Estimate of the Intercept for Discrete-Time Period 2 (6"= 

−2.88), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .798 .932 .943 

   75  .564 .927 .938 
  50 25  .719 .928 .941 
   75  .496 .924 .926 
  100 25  .573 .915 .938 
   75  .279 .910 .938 
 20 30 25  .774 .932 .956 
   75  .567 .897 .930 
  50 25  .720 .903 .948 
   75  .424 .880 .937 
  100 25  .536 .894 .959 
   75  .218 .845 .944 
 30 30 25  .786 .903 .950 
   75  .504 .836 .935 
  50 25  .663 .891 .952 
   75  .376 .808 .948 
  100 25  .495 .825 .939 
   75  .175 .727 .938 

1.09 10 30 25  .392 .910 .930 
   75  .166 .904 .933 
  50 25  .239 .904 .935 
   75  .107 .901 .936 
  100 25  .051 .880 .938 
   75  .015 .862 .941 
 20 30 25  .365 .847 .939 
   75  .178 .834 .915 
  50 25  .236 .836 .940 
   75  .065 .804 .947 
  100 25  .035 .772 .961 
   75  .005 .688 .947 
 30 30 25  .362 .815 .933 
   75  .148 .715 .932 
  50 25  .160 .750 .944 
   75  .057 .688 .946 
  100 25  .033 .622 .942 
   75  .006 .489 .934 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 2 
of .053. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size; Bolded and italicized values represent unacceptable 
coverage of the 95% confidence intervals. 
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Table 42 presents the coverage of the 95% confidence intervals for the intercept for the 

second discrete-time period in the logit hazard function, a2, across 36 combinations of conditions 

where the Weibull scale parameter was 0.05 for the DTS, ML-DTS, and CC-DTS models, 

respectively. For the DTS model, the coverage rates were substantially below .925 for all 36 

combinations of conditions that included a Weibull scale parameter of 0.05. Coverage rates were 

especially poor when the variance between-clusters was 1.09, where the lowest coverage rate 

was .033. For the DTS model, when the variance between-clusters was 0.32, coverage rates 

ranged from .203 to .771. For the ML-DTS model, coverage rates were outside the acceptable 

.925 to .975 range for the majority of combinations of conditions, with only two combinations of 

conditions resulting in acceptable coverage rates. Specifically, coverage rates were within or 

very close to the acceptable range when the mobility condition was 10%. Otherwise, coverage 

rates were outside of the acceptable range, with values overall falling between .600 and .924. For 

the ML-DTS model, coverage rates became consistently worse with increasing rates of mobility 

and overall sample size, such that coverage was lowest for any combination of conditions that 

included the 30% mobility condition and increasing sample sizes in the generated datasets. 

Conversely, the CC-DTS model resulted in acceptable coverage rates for all but two of the 36 

combinations of conditions. However, for the two combinations of conditions that resulted in 

unacceptable coverage, the coverage rates were only very slightly below the .925 threshold, with 

both resulting in coverage rates greater than .910.  
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Table 42 

Coverage Rates of the Coefficient Estimate of the Intercept for Discrete-Time Period 2 (6" = 

−2.13), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .771 .924 .934 

   75  .557 .915 .935 
  50 25  .713 .918 .934 
   75  .508 .926 .928 
  100 25  .575 .924 .945 
   75  .316 .930 .951 
 20 30 25  .769 .924 .947 
   75  .523 .871 .917 
  50 25  .688 .902 .938 
   75  .437 .887 .951 
  100 25  .535 .900 .957 
   75  .241 .856 .945 
 30 30 25  .731 .899 .937 
   75  .477 .824 .929 
  50 25  .639 .889 .949 
   75  .414 .832 .950 
  100 25  .489 .826 .950 
   75  .203 .745 .945 

1.09 10 30 25  .474 .909 .927 
   75  .252 .908 .933 
  50 25  .350 .911 .931 
   75  .186 .904 .929 
  100 25  .144 .901 .948 
   75  .059 .878 .943 
 20 30 25  .440 .896 .938 
   75  .227 .861 .912 
  50 25  .342 .871 .936 
   75  .122 .858 .941 
  100 25  .109 .840 .955 
   75  .037 .775 .952 
 30 30 25  .429 .842 .934 
   75  .209 .779 .932 
  50 25  .256 .809 .945 
   75  .126 .765 .941 
  100 25  .089 .708 .942 
   75  .033 .600 .941 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 2 
of .106. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size; Bolded and italicized values represent unacceptable 
coverage of the 95% confidence intervals. 
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  To further explore the results presented in Tables 41 and 42, a logistic regression was 

conducted for each model, the DTS, ML-DTS, and CC-DTS models, respectively, where the 

dependent variable was binary and represented whether or not the confidence interval included 

the true value of the parameter and the simulation conditions were entered as the independent 

variables. The Cox Effect was recorded for each model parameter and is presented in Appendix 

I. For the DTS model, multiple nested logistic regression models were conducted to assess model 

fit, and it was determined that compared to a model with higher-order interactions, the model 

with third-order interactions produced the best model fit, [k"(16) =	8.95, p = 0.92]. The results 

indicated a practically important interaction between cluster size (dummy variable contrasting a 

cluster size of 100 to a cluster size of 30), variance between clusters, and Weibull scale 

parameter, [k"(71,948) = 6.05, p < .05, FDEF= 0.45]. When the cluster size was 30, the coverage 

rate was always greater than when it was 100 when examined in combination with the variance 

between clusters and Weibull scale parameter. For example, when the cluster size was 30, the 

variance between clusters was 0.32, and the Weibull scale parameter was 0.025, the coverage 

rate was greater than when the cluster size was 100, the variance between clusters was 0.032, and 

the Weibull scale parameter was 0.025 (mGnaD+Eooooooooooo30,0.32,.025 = .666, mGnaD+Eooooooooooo100,0.32,.025 = .379). 

Additionally, the coverage was always greater when the variance between clusters was 0.32 than 

when it was 1.09. When the cluster size was 100 and the Weibull scale parameter was 0.05, the 

coverage was greater than when the Weibull scale parameter was 0.025 regardless of the value of 

the variance between clusters; however, when the cluster size was 30, coverage was greater when 

the Weibull scale parameter was 0.025 than when it was 0.05 if the variance between clusters 

was 0.32, but coverage was greater when the Weibull scale parameter was 0.05 if the variance 

between clusters was 1.09. The main effect of the within-cluster sample size was also practically 
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significant, [k"(71,948) = −14.16, p < .05, FDEF= −0.67], such that the coverage rate was 

greater when the within-cluster sample size was 25 than when it was 75 (mGnaD+Eooooooooooo = .458, 

mGnaD+Eooooooooooo = .258). The main effect of the cluster size (dummy variable contrasting a cluster size 

of 50 to a cluster size of 30) was also practically important, [k"(71,948) = −4.92, p < .05, FDEF= 

−0.25], such that coverage was greater when the cluster size was 30 than when it was 50 

(mGnaD+Eooooooooooo = .478, mGnaD+Eooooooooooo = .377). For the ML-DTS model, multiple nested logistic regression 

models were conducted to assess model fit, and it was determined that compared to a model with 

higher-order interactions, the model with second-order interactions produced the best model fit, 

[k"(25) =	24.12, p = 0.51]. A practically important interaction was observed between mobility 

rate (dummy variable contrasting the 30% mobility rate condition with the 10% mobility rate 

condition) and cluster size (dummy variable contrasting a cluster size of 100 to a cluster size of 

30), [k"(71,973) = −8.50, p < .05, FDEF= −0.35]. When the mobility rate condition was 10%, 

the coverage rate was very similar regardless of cluster size (mGnaD+Eooooooooooo30 = .916, mGnaD+Eooooooooooo100 = 

.883). Conversely, when the mobility rate condition was 30%, coverage was greater when the 

cluster size was 30 than when it was 100 (mGnaD+Eooooooooooo30 = .821, mGnaD+Eooooooooooo100 = .693). Additionally, a 

practically important interaction was found between mobility rate (dummy variable contrasting 

the 30% mobility rate condition with the 10% mobility rate condition) and within-cluster sample 

size, [k"(71,973) = −7.58, p < .05, FDEF= −0.26]. Specifically, when the mobility rate condition 

was 10%, the average coverage was very similar regardless of the within-cluster sample size 

(mGnaD+Eooooooooooo25 = .913, mGnaD+Eooooooooooo75 = .907). When the mobility rate condition was 30%, the coverage 

rate was greater when the within-cluster sample size was 25 than when it was 75 (mGnaD+Eooooooooooo25 = 

.815, mGnaD+Eooooooooooo75 = .734). For the CC-DTS model, no main effect or interaction between the 
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independent variables was found to have a practically significant effect on the coverage of the 

95% confidence intervals.  

Coefficient for Discrete-Time Period 3 of the Logit Hazard Function, a3 

Table 43 presents the coverage of the 95% confidence intervals for the intercept for the 

third discrete-time period in the logit hazard function, a3, across 36 combinations of conditions 

where the Weibull scale parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, 

respectively. For the DTS model, the coverage rates were substantially below .925 for all 36 

combinations of conditions that included a Weibull scale parameter of 0.025. Coverage rates 

were especially poor when the variance between-clusters was 1.09, where the lowest coverage 

rate was .033. For the DTS model, when the variance between-clusters was 0.32, coverage rates 

ranged from .287 to .823. For the ML-DTS model, coverage rates were outside the acceptable 

.925 to .975 range for the majority of combinations of conditions, with only five combinations of 

conditions resulting in acceptable coverage rates. Specifically, coverage rates were within or 

only slightly below the acceptable range when the mobility condition was 10%, and in some 

cases, when the mobility condition was 20%. Otherwise, coverage rates were outside of the 

acceptable range, with unacceptable coverage values ranging from .566 and .922. For the ML-

DTS model, coverage rates became consistently worse when both mobility and sample size (both 

within-cluster and cluster sizes) increased. For the CC-DTS model, coverage rates were found to 

be acceptable for the majority of conditions. However, for seven combinations of conditions, all 

of which included a cluster size of 30, coverage rates were found to be very slightly below the 

.925 minimum acceptable rate.  
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Table 43 

Coverage Rates of the Coefficient Estimate of the Intercept for Discrete-Time Period 3 (6#= 

−2.67), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .823 .925 .924 

   75  .646 .922 .934 
  50 25  .782 .933 .946 
   75  .600 .928 .931 
  100 25  .673 .929 .951 
   75  .390 .906 .941 
 20 30 25  .793 .903 .940 
   75  .619 .887 .922 
  50 25  .796 .926 .957 
   75  .533 .885 .946 
  100 25  .632 .895 .940 
   75  .346 .862 .947 
 30 30 25  .793 .897 .921 
   75  .547 .837 .939 
  50 25  .732 .893 .952 
   75  .481 .843 .951 
  100 25  .585 .870 .949 
   75  .287 .745 .944 

1.09 10 30 25  .552 .907 .923 
   75  .300 .907 .924 
  50 25  .415 .902 .932 
   75  .243 .913 .934 
  100 25  .215 .899 .951 
   75  .076 .883 .935 
 20 30 25  .526 .862 .926 
   75  .281 .852 .918 
  50 25  .413 .870 .941 
   75  .178 .841 .950 
  100 25  .174 .817 .953 
   75  .049 .757 .941 
 30 30 25  .510 .821 .924 
   75  .265 .754 .944 
  50 25  .327 .785 .946 
   75  .168 .730 .941 
  100 25  .146 .696 .948 
   75  .033 .566 .940 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 3 
of .065. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size; Bolded and italicized values represent unacceptable 
coverage of the 95% confidence intervals. 
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Table 44 presents the coverage of the 95% confidence intervals for the intercept for the 

third discrete-time period in the logit hazard function, a3, across 36 combinations of conditions 

where the Weibull scale parameter was 0.05 for the DTS, ML-DTS, and CC-DTS models, 

respectively. For the DTS model, the coverage rates were substantially below .925 for all 36 

combinations of conditions. Coverage rates were especially poor when the variance between-

clusters was 1.09, where coverage ranged from .254 to .727. For the DTS model, when the 

variance between-clusters was 0.32, coverage rates ranged from .436 to .833. For the ML-DTS 

model, coverage rates were outside the acceptable .925 to .975 range for the majority of 

combinations of conditions, with only four combinations of conditions resulting in acceptable 

coverage rates. Specifically, coverage rates were within or very close to the acceptable range 

when the mobility condition was 10%, regardless of other conditions present in the dataset. 

Otherwise, coverage rates were outside of the acceptable range, with values overall falling 

between .701 and .923. For the ML-DTS model, coverage rates became notably worse with 

increasing mobility, such that coverage was lowest for any combination of conditions that 

included the 30% mobility condition in the generated datasets. Cluster size appeared to have 

some impact on coverage as well, especially when the variance between-clusters was 1.09, such 

that as sample size increased, coverage rates decreased. Conversely, the CC-DTS model resulted 

in acceptable coverage rates for all but two of the 36 combinations of conditions. However, for 

the two combinations of conditions that resulted in unacceptable coverage, the coverage rates 

were only very slightly below the .925 threshold.  
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Table 44 

Coverage Rates of the Coefficient Estimate of the Intercept for Discrete-Time Period 3 (6#= 

−1.90), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .833 .923 .928 

   75  .691 .925 .941 
  50 25  .818 .917 .933 
   75  .657 .931 .941 
  100 25  .776 .941 .957 
   75  .588 .922 .943 
 20 30 25  .822 .912 .937 
   75  .662 .893 .922 
  50 25  .828 .925 .943 
   75  .638 .897 .939 
  100 25  .757 .910 .954 
   75  .502 .877 .949 
 30 30 25  .802 .883 .928 
   75  .634 .853 .935 
  50 25  .779 .900 .958 
   75  .596 .875 .952 
  100 25  .704 .872 .943 
   75  .436 .786 .948 

1.09 10 30 25  .727 .918 .932 
   75  .501 .908 .926 
  50 25  .654 .904 .928 
   75  .493 .920 .930 
  100 25  .605 .922 .958 
   75  .416 .903 .942 
 20 30 25  .721 .915 .936 
   75  .474 .867 .919 
  50 25  .692 .904 .936 
   75  .456 .875 .938 
  100 25  .553 .871 .951 
   75  .363 .853 .952 
 30 30 25  .663 .853 .930 
   75  .427 .821 .939 
  50 25  .613 .833 .936 
   75  .398 .826 .945 
  100 25  .492 .796 .956 
   75  .254 .701 .939 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 3 
of .130. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size; Bolded and italicized values represent unacceptable 
coverage of the 95% confidence intervals. 
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To further explore the results presented in Tables 43 and 44, a logistic regression was 

conducted for each model, the DTS, ML-DTS, and CC-DTS models, respectively, where the 

dependent variable was binary and represented whether or not the confidence interval included 

the true value of the parameter and the simulation conditions were entered as the independent 

variables. The Cox Effect was recorded for each model parameter, and is presented in Appendix 

I. For the DTS model, multiple nested logistic regression models were conducted to assess model 

fit, and it was determined that compared to a model with higher-order interactions, the model 

with third-order interactions produced the best model fit, [k"(16) =	19.02, p = 0.27]. The results 

indicated that there was a practically important interaction between cluster size (dummy variable 

contrasting a cluster size of 100 to a cluster size of 30), variance between clusters, and Weibull 

scale parameter [k"(71,948) = 8.65, p < .05, FDEF= 0.46]. When the cluster size was 30, the 

coverage rate was always greater than when it was 100 when examined in combination with the 

variance between clusters and Weibull scale parameter. For example, when the cluster size was 

30, the variance between clusters was 0.32, and the Weibull scale parameter was 0.025, the 

coverage rate was greater than when the cluster size was 100, the variance between clusters was 

.032, and the Weibull scale parameter was 0.025 (mGnaD+Eooooooooooo30,0.32,0.025 = .666, mGnaD+Eooooooooooo100,0.32,0.025 

= .379). Additionally, the coverage was always greater when the variance between clusters was 

0.32 than when it was 1.09. Regardless of the cluster size and the variance between clusters, 

coverage was always greater when the Weibull scale parameter was 0.05 than when it was 0.025. 

The main effect of within-cluster sample size was also found to be practically important, 

[k"(71,948) = −12.13, p < .05, FDEF= −0.56], such that the coverage rate was greater when the 

within-cluster sample size was 25 than when it was 75 (mGnaD+Eooooooooooo25 = .631, mGnaD+Eooooooooooo75 = .423). 

For the ML-DTS model, multiple nested logistic regression models were conducted to assess 
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model fit, and it was determined that compared to a model with higher-order interactions, the 

model with second-order interactions produced the best model fit, [k"(25) =	32.8, p = 0.14]. The 

results indicated that there was a practically significant interaction between mobility rate 

(dummy variable contrasting the 10% mobility condition to the 30% mobility condition) and 

cluster size (dummy variable contrasting a cluster size of 100 to a cluster size of 30), [k"(71,973) 

= −6.91, p < .05, FDEF= −0.29]. When the cluster size was 30, coverage was slightly greater 

when the mobility rate condition was 10% than when it was 30% (mGnaD+Eooooooooooo10% = .634, 

mGnaD+Eooooooooooo30% = .580). Similarly, when the cluster size was 100, coverage was greater when the 

mobility rate condition was 10% than when it was 30% (mGnaD+Eooooooooooo10% = .467, mGnaD+Eooooooooooo30% = 

.367). For the CC-DTS model, no main effect or interaction between the independent variables 

was found to have a practically significant effect on the coverage of the 95% confidence 

intervals. 

Coefficient for Discrete-Time Period 4 of the Logit Hazard Function, a4 

Table 45 presents the coverage of the 95% confidence intervals for the intercept for the 

fourth discrete-time period in the logit hazard function, a4, across 36 combinations of conditions 

where the Weibull scale parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, 

respectively. For the DTS model, the coverage rates were substantially below 92.5% for all 36 

combinations of conditions that included a Weibull scale parameter of 0.025. Coverage rates 

were especially poor when the variance between-clusters was 1.09, where coverage rates ranged 

from .176 to .717. For the DTS model, when the variance between-clusters was 0.32, coverage 

rates ranged from .460 to .857. For the ML-DTS model, coverage rates were outside the 

acceptable .925 to .975 range for the majority of combinations of conditions, with only seven 

combinations of conditions resulting in acceptable coverage rates. Specifically, coverage rates 
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were within the acceptable range when the mobility condition was 10% and the variance 

between-clusters was 0.32. When the variance between-clusters was 1.09, the coverage rates 

were within or only slightly below .925. Otherwise, coverage rates were outside of the 

acceptable range. The unacceptable coverage rates ranged .702 to .922, with coverage rates 

generally decreasing as mobility increased. For the CC-DTS model, coverage rates were found to 

be acceptable for all but three combinations of conditions, all of which included a cluster size of 

30 and a variance between-clusters of 1.09. However, all unacceptable coverage rates for the 

CC-DTS model were only slightly below the acceptable range. 
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Table 45 

Coverage Rates of the Coefficient Estimate of the Intercept for Discrete-Time Period 4 (6$= 

−2.51), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .857 .935 .941 

   75  .744 .935 .948 
  50 25  .849 .939 .941 
   75  .686 .932 .947 
  100 25  .778 .938 .950 
   75  .569 .926 .943 
 20 30 25  .826 .914 .940 
   75  .710 .908 .933 
  50 25  .798 .910 .935 
   75  .627 .911 .956 
  100 25  .768 .907 .936 
   75  .505 .891 .960 
 30 30 25  .827 .896 .933 
   75  .661 .872 .935 
  50 25  .778 .887 .950 
   75  .571 .866 .941 
  100 25  .709 .872 .946 
   75  .460 .804 .947 

1.09 10 30 25  .717 .905 .921 
   75  .504 .913 .934 
  50 25  .642 .925 .940 
   75  .458 .922 .949 
  100 25  .525 .919 .942 
   75  .293 .891 .942 
 20 30 25  .697 .889 .932 
   75  .473 .878 .924 
  50 25  .630 .881 .936 
   75  .387 .868 .937 
  100 25  .479 .875 .949 
   75  .247 .826 .957 
 30 30 25  .659 .859 .922 
   75  .439 .809 .941 
  50 25  .556 .834 .944 
   75  .336 .799 .935 
  100 25  .396 .792 .948 
   75  .176 .702 .942 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 4 
of .075. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size; Bolded and italicized values represent unacceptable 
coverage of the 95% confidence intervals. 
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Table 46 presents the coverage of the 95% confidence intervals for the intercept for the 

fourth discrete-time period in the logit hazard function, a4, across 36 combinations of conditions 

where the Weibull scale parameter was 0.05 for the DTS, ML-DTS, and CC-DTS models, 

respectively. For the DTS model, the coverage rates were substantially below .925 for all 36 

combinations of conditions that included a Weibull scale parameter of 0.05. Coverage rates were 

especially poor when the variance between-clusters was 1.09, where coverage rates ranged from 

.613 to .815. For the DTS model, when the variance between-clusters was 0.32, coverage rates 

ranged from .697 to .897. For the ML-DTS model, coverage rates were outside the acceptable 

.925 to .975 range for 26 combinations of conditions. Specifically, coverage rates were within or 

only slightly below the acceptable range when the mobility condition was 10% or 20%, 

regardless of other combinations of conditions. When the variance between-clusters was 1.09, 

the coverage rates were within or only slightly below .925. Otherwise, coverage rates were 

outside of the acceptable range, ranging from .839 to .922, and generally decreased as mobility 

increased. For the CC-DTS model, coverage rates were found to be acceptable for all but two 

combinations of conditions, both of which included a cluster size of 30 and a variance between 

clusters of 1.09. However, both unacceptable coverage rates for the CC-DTS model were .922, 

and therefore, only very slightly below the acceptable range. 
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Table 46 

Coverage Rates of the Coefficient Estimate of the Intercept for Discrete-Time Period 4 (6$= 

−1.74), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .867 .934 .938 

   75  .772 .934 .939 
  50 25  .873 .929 .934 
   75  .747 .938 .952 
  100 25  .897 .944 .960 
   75  .725 .919 .944 
 20 30 25  .881 .942 .958 
   75  .754 .912 .937 
  50 25  .857 .910 .933 
   75  .756 .922 .949 
  100 25  .881 .927 .949 
   75  .762 .922 .952 
 30 30 25  .838 .900 .928 
   75  .718 .882 .939 
  50 25  .847 .896 .938 
   75  .720 .883 .946 
  100 25  .862 .912 .956 
   75  .697 .863 .932 

1.09 10 30 25  .773 .918 .929 
   75  .615 .926 .933 
  50 25  .781 .924 .937 
   75  .537 .928 .939 
  100 25  .761 .942 .948 
   75  .527 .915 .943 
 20 30 25  .799 .917 .944 
   75  .615 .900 .922 
  50 25  .769 .916 .940 
   75  .613 .914 .935 
  100 25  .789 .921 .952 
   75  .609 .924 .950 
 30 30 25  .777 .891 .922 
   75  .615 .864 .933 
  50 25  .806 .879 .937 
   75  .616 .877 .937 
  100 25  .815 .886 .952 
   75  .614 .839 .939 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 4 
of .150. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size; Bolded and italicized values represent unacceptable 
coverage of the 95% confidence intervals. 
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To further understand the practical implications of the coverage rates presented in Tables 

45 and 46, a logistic regression was conducted for each model, the DTS, ML-DTS, and CC-DTS 

models, respectively, where the dependent variable was binary and represented whether or not 

the confidence interval included the true value of the parameter and the simulation conditions 

were entered as the independent variables. The Cox Effect was recorded for each model 

parameter, and is presented in Appendix I. For the DTS model, multiple nested logistic 

regression models were conducted to assess model fit, and it was determined that compared to a 

model with higher-order interactions, the model with third-order interactions produced the best 

model fit, [k"(16) =	23.34, p = 0.10]. The results indicated a practically important interaction 

between cluster size (dummy variable contrasting a cluster size of 100 to a cluster size of 30), 

mobility rate (dummy variable contrasting the 30% mobility condition and 10% mobility 

condition), and the Weibull scale parameter, [k"(71,948) = 4.11, p < .05, FDEF= 0.26]. When the 

Weibull scale parameter was 0.05, coverage was always greater than when it was 0.025, 

regardless of the mobility rate or the cluster size. However, regardless of the mobility rate, 

coverage was only slightly greater when the Weibull scale parameter was 0.05 than when it was 

0.025 if the cluster size was 30, while the difference was greater if the cluster size was 100. For 

example, when the mobility rate condition was 10%, coverage was greater when the Weibull 

scale parameter was 0.05 than when it was 0.025 if the cluster size was 100 (mGnaD+Eooooooooooo10%,100,0.025 

= .541, mGnaD+Eooooooooooo10%,100,0.05 = .728), but was only slightly greater when the cluster size was 30 

(mGnaD+Eooooooooooo10%,30,0.025 = .706, mGnaD+Eooooooooooo10%,30,0.05 = .757). A practically important interaction was 

also observed between mobility rate (dummy variable contrasting the 30% mobility condition 

and the 10% mobility condition), variance between clusters, and the Weibull scale parameter, 

[k"(71,948) = 5.32, p < .05, FDEF= 0.27]. Under the majority of combinations of conditions, 
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coverage was greater when the mobility condition was 10%, regardless of the value of the 

variance between clusters and the Weibull scale parameter. However, when the variance between 

clusters was 1.09 and the Weibull scale parameter was 0.05, the coverage was greater when the 

mobility rate condition was 30% than when it was 10% (mGnaD+Eooooooooooo10%,1.09,0.05 = .666, 

mGnaD+Eooooooooooo30%,1.09,0.05 = .707). Additionally, the main effect of the within-cluster sample size was 

practically important, [k"(71,948) = −8.55, p < .05, FDEF= −0.43], such that the coverage was 

greater when the within-cluster sample size was 25 than when it was 75 (mGnaD+Eooooooooooo25 = .760, 

mGnaD+Eooooooooooo75 = .579). For the ML-DTS model, multiple nested logistic regression models were 

conducted to assess model fit, and it was determined that compared to a model with higher-order 

interactions, the model with second-order interactions produced the best model fit, [k"(25) 

=	19.56, p = 0.77]. The results indicated a practically important main effect of the mobility rate 

(dummy variable contrasting the 30% mobility condition to the 10% mobility condition), 

[k"(71,973) = −7.17, p < .05, FDEF= −0.34], such that coverage was greater when the mobility 

rate condition was 10% than when it was 30% (mGnaD+Eooooooooooo10% = .687, mGnaD+Eooooooooooo30% = .646). For the 

CC-DTS model, multiple nested logistic regression models were conducted to assess model fit, 

and it was determined that compared to a model with higher-order interactions, the model with 

third-order interactions produced the best model fit, [k"(16) =	6.43, p = 0.98]. A practically 

important interaction was found between mobility rate (dummy variable contrasting the 20% 

mobility rate condition to the 10% mobility rate condition), cluster size (dummy variable 

contrasting a cluster size of 100 to a cluster size of 30), and within-cluster sample size, 

[k"(71,948) = 3.44, p < .05, FDEF= 0.40]. Under the majority of combinations of conditions, 

coverage was nearly identical when the mobility rate condition was 10%, regardless of the 

cluster size or within-cluster sample size. However, when the mobility rate condition was 10% 



 

  172 
 

 

and the cluster size was 100, a lower within-cluster sample size resulted in slightly greater 

coverage (mGnaD+Eooooooooooo10%, 100, 25 = .950, mGnaD+Eooooooooooo10%, 100, 75 = .943). In contrast, when the mobility 

rate condition was 20% and the cluster size was 100, a lower within-cluster sample size resulted 

in slightly lower coverage (mGnaD+Eooooooooooo20%, 100, 25 = .947, mGnaD+Eooooooooooo20%, 100, 75 = .955). Although there 

is a slight difference in coverage rates observed, the coverage rates deemed practically important 

here are still well within the acceptable range. 

Coefficient for Discrete-Time Period 5 of the Logit Hazard Function, a5 

Table 47 presents the coverage of the 95% confidence intervals for the intercept for the 

fifth discrete-time period in the logit hazard function, a5, across 36 combinations of conditions 

where the Weibull scale parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, 

respectively. For the DTS model, undercoverage of the 95% confidence intervals was apparent 

for all 36 combinations of conditions. Coverage rates for the DTS model ranged from .530 to 

.885, and holding constant all other conditions, were lower when the variance between-clusters 

was 1.09 than when it was 0.32. For the ML-DTS model, coverage rates were outside the 

acceptable .925 to .975 range for the majority of combinations of conditions, with 12 

combinations of conditions resulting in acceptable coverage rates. However, in all combinations 

of conditions except for those that included the 30% mobility rate condition, all coverage rates 

were either within or only slightly below the minimum .925 acceptable coverage rate. For the 

ML-DTS model, the coverage rates ranged from .841 to .937. For the CC-DTS model, coverage 

rates were found to be acceptable for all but one set of conditions; however, it was only very 

slightly below the acceptable range (.923). 
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Table 47 

Coverage Rates of the Coefficient Estimate of the Intercept for Discrete-Time Period 5 (6%= 

−2.39), When l = 0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .885 .937 .935 

   75  .766 .926 .931 
  50 25  .876 .938 .947 
   75  .774 .922 .931 
  100 25  .859 .937 .944 
   75  .723 .930 .937 
 20 30 25  .876 .934 .949 
   75  .768 .915 .931 
  50 25  .873 .932 .946 
   75  .747 .913 .936 
  100 25  .853 .930 .947 
   75  .693 .919 .956 
 30 30 25  .882 .929 .945 
   75  .743 .871 .928 
  50 25  .867 .921 .948 
   75  .713 .887 .943 
  100 25  .830 .904 .951 
   75  .646 .849 .938 

1.09 10 30 25  .779 .923 .932 
   75  .650 .911 .923 
  50 25  .779 .932 .943 
   75  .630 .925 .935 
  100 25  .798 .934 .947 
   75  .617 .912 .947 
 20 30 25  .811 .921 .947 
   75  .640 .897 .936 
  50 25  .814 .920 .942 
   75  .637 .906 .930 
  100 25  .792 .917 .950 
   75  .588 .917 .955 
 30 30 25  .785 .896 .933 
   75  .597 .865 .927 
  50 25  .793 .897 .948 
   75  .587 .883 .939 
  100 25  .760 .891 .942 
   75  .530 .841 .934 

Note. l is the Weibull scale parameter, l = 0.025 corresponded to baseline hazard probability in time period 5 
of .084. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size; Bolded and italicized values represent unacceptable 
coverage of the 95% confidence intervals. 



 

  174 
 

 

Table 48 presents the coverage of the 95% confidence intervals for the intercept for the 

fifth discrete-time period in the logit hazard function, a5, across 36 combinations of conditions 

where the Weibull scale parameter was 0.05 for the DTS, ML-DTS, and CC-DTS models, 

respectively. For the DTS model, the coverage rates were below .925 for all 36 combinations of 

conditions that included a Weibull scale parameter of 0.05. Coverage rates were especially poor 

when the variance between-clusters was 1.09, where coverage rates ranged from .232 to .657. 

For the DTS model, when the variance between-clusters was 0.32, coverage rates ranged from 

.696 to .895. For the ML-DTS model, coverage rates were within the acceptable .925 to .975 

range for 20 combinations of conditions. For those datasets that included conditions resulting in 

unacceptable rates of coverage, coverage rates were only slightly below the acceptable range for 

the majority of the combinations of conditions. Specifically, the range of unacceptable coverage 

rates was from .898 to .924. For the CC-DTS model, coverage rates were found to be acceptable 

for all but two combinations of conditions, both of which included a cluster size of 30. However, 

both unacceptable coverage rates for the CC-DTS model were greater than .920, and therefore, 

only very slightly below the acceptable range. 
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Table 48 

Coverage Rates of the Coefficient Estimate of the Intercept for Discrete-Time Period 5 (6%= 

−1.60), When l = 0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .864 .937 .938 

   75  .749 .938 .942 
  50 25  .857 .929 .932 
   75  .696 .934 .946 
  100 25  .822 .935 .941 
   75  .630 .940 .942 
 20 30 25  .895 .955 .959 
   75  .731 .914 .931 
  50 25  .868 .932 .941 
   75  .754 .934 .950 
  100 25  .845 .940 .958 
   75  .705 .934 .954 
 30 30 25  .876 .917 .938 
   75  .747 .885 .924 
  50 25  .872 .925 .936 
   75  .749 .906 .933 
  100 25  .880 .942 .953 
   75  .703 .901 .937 

1.09 10 30 25  .656 .919 .929 
   75  .428 .920 .925 
  50 25  .582 .935 .941 
   75  .285 .920 .931 
  100 25  .372 .944 .951 
   75  .125 .931 .938 
 20 30 25  .701 .940 .951 
   75  .449 .904 .921 
  50 25  .607 .933 .939 
   75  .330 .918 .940 
  100 25  .382 .923 .942 
   75  .162 .932 .947 
 30 30 25  .717 .902 .929 
   75  .508 .898 .928 
  50 25  .657 .924 .940 
   75  .395 .898 .936 
  100 25  .480 .939 .952 
   75  .232 .899 .932 

Note. l is the Weibull scale parameter, l = 0.05 corresponded to baseline hazard probability in time period 5 
of .168. DTS = discrete-time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = 
cross-classified discrete-time survival model; VC = variance at the cluster-level; m% = mobility rate, c = 
cluster-level sample size, n = within-cluster sample size; Bolded and italicized values represent unacceptable 
coverage of the 95% confidence intervals. 
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To further understand the practical implications of the coverage rates presented in Tables 

47 and 48, a logistic regression was conducted for each model, the DTS, ML-DTS, and CC-DTS 

models, respectively, where the dependent variable was binary and represented whether or not 

the confidence interval included the true value of the parameter and the simulation conditions 

were entered as the independent variables. The Cox Effect was recorded for model parameter, 

and is presented in Appendix I. For the DTS model, multiple nested logistic regression models 

were conducted to assess model fit, and it was determined that compared to a model with higher-

order interactions, the model with third-order interactions produced the best model fit, [k"(16) 

=	13.2, p = 0.66]. The results indicated that there was a practically significant interaction 

between the variance between clusters, cluster size (dummy variable contrasting a cluster size of 

100 to a cluster size of 30), and Weibull scale parameter [k"(71,948) = −14.04, p < .05, FDEF= 

−0.75]. Regardless of the cluster size and the Weibull scale parameter, when the variance 

between clusters was 0.32, the coverage was nearly identical; however, when the variance 

between clusters was 1.09, the coverage was substantially lower when the Weibull scale 

parameter was 0.05 than when it was 0.025. For example, when the cluster size was 100 and the 

variance between clusters was 0.32, coverage was nearly identical regardless of the Weibull 

scale parameter (mGnaD+Eooooooooooo0.025 = .770, mGnaD+Eooooooooooo0.05 = .764); however, when the variance was 

1.09, there was a substantial difference in coverage by the value of the Weibull scale parameter 

(mGnaD+Eooooooooooo0.025 = .680, mGnaD+Eooooooooooo0.05 = .292). Additionally, there was a practically significant 

interaction between the mobility rate (dummy variable contrasting the 30% mobility rate 

condition to the 10% mobility rate condition), cluster size (dummy variable contrasting a cluster 

size of 100 to a cluster size of 30), and the Weibull scale parameter [k"(71,948) = 4.77, p < .05, 

FDEF= 0.30]. When the Weibull scale parameter was 0.025, coverage was always greater than 
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when it was 0.05, regardless of the mobility rate or the cluster size. However, regardless of the 

mobility rate, coverage was only slightly greater when the Weibull scale parameter was 0.05 than 

when it was 0.025 if the cluster size was 30, while the difference was greater if the cluster size 

was 100. For example, when the mobility rate condition was 10%, coverage was greater when 

the Weibull scale parameter was 0.025 than when it was 0.05 if the cluster size was 100 

(mGnaD+Eooooooooooo10%,100,0.025 = .750, mGnaD+Eooooooooooo10%,100,0.05 = .487), but was only slightly greater when the 

cluster size was 30 (mGnaD+Eooooooooooo10%,30,0.025 = .770, mGnaD+Eooooooooooo10%,30,0.05 = .674). Additionally, the main 

effect of the within-cluster sample size was practically important, [k"(71,948) = −8.11, p < .05, 

FDEF= −0.43], such that the coverage was greater when the within-cluster sample size was 25 

than when it was 75 (mGnaD+Eooooooooooo25 = .773, mGnaD+Eooooooooooo75 = .595). For both the ML-DTS and CC-DTS 

models, no main effect or interaction between the independent variables was found to have a 

practically significant effect on the coverage of the 95% confidence intervals.  

Coefficient of the individual-level predictor,	iK 

Table 49 presents the coverage of the 95% confidence intervals for coefficient for the 

individual-level predictor, @!, across 36 combinations of conditions where the Weibull scale 

parameter was 0.025 for the DTS, ML-DTS, and CC-DTS models, respectively. For the DTS 

model, undercoverage of the 95% confidence intervals was apparent for 28 of the 36 

combinations of conditions. When the variance between-clusters was 1.09, the DTS model 

resulted in coverage rates outside of the acceptable range regardless of the other conditions 

present in the generated datasets, with coverage rates ranging from .230 to .859. When the 

variance between-clusters was 0.32, there was no apparent pattern that resulted in unacceptable 

coverage rates; however, coverage rates overall were closer to the acceptable range when the 

variance between-clusters was 0.32 than when it was 1.09. For the ML-DTS model, coverage 
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rates were outside the acceptable .925 to .975 range for 5 combinations of conditions, all of 

which occurred when variance between-clusters was 1.09, and generally, when the mobility 

condition was 20% or 30% in combination with cluster sizes of 50 or greater. For the ML-DTS 

model, the coverage rates ranged from .869 to .950. For the CC-DTS model, coverage rates were 

found to be acceptable for all combinations of conditions presented in Table 49.  
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Table 49 

Coverage Rates of the Coefficient Estimate of the Level-One Predictor (@! =	0.50), When l = 

0.025 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .936 .943 .941 

   75  .908 .938 .939 
  50 25  .925 .947 .944 
   75  .910 .952 .955 
  100 25  .899 .937 .935 
   75  .848 .945 .946 
 20 30 25  .936 .948 .945 
   75  .918 .938 .945 
  50 25  .929 .943 .941 
   75  .912 .950 .949 
  100 25  .907 .936 .944 
   75  .867 .946 .947 
 30 30 25  .937 .945 .948 
   75  .937 .946 .953 
  50 25  .935 .946 .945 
   75  .889 .937 .955 
  100 25  .928 .952 .949 
   75  .844 .934 .951 

1.09 10 30 25  .858 .937 .943 
   75  .704 .943 .952 
  50 25  .813 .955 .952 
   75  .540 .934 .946 
  100 25  .648 .932 .936 
   75  .230 .935 .948 
 20 30 25  .859 .941 .946 
   75  .684 .942 .947 
  50 25  .803 .941 .942 
   75  .539 .923 .944 
  100 25  .631 .924 .944 
   75  .265 .910 .944 
 30 30 25  .858 .934 .951 
   75  .718 .933 .954 
  50 25  .804 .932 .944 
   75  .558 .888 .942 
  100 25  .684 .929 .955 
   75  .282 .869 .940 

Note. l is the Weibull scale parameter, !! =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size; Bolded and italicized values represent unacceptable coverage of the 95% 
confidence intervals. 
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Table 50 presents the coverage of the 95% confidence intervals for the coefficient for the 

individual-level predictor, @!, across 36 combinations of conditions where the Weibull scale 

parameter was 0.05 for the DTS, ML-DTS, and CC-DTS models, respectively. For the DTS 

model, undercoverage of the 95% confidence intervals was apparent for 34 of the 36 

combinations of conditions. Coverage rates for the DTS model ranged from .033 to .933. For the 

ML-DTS model, coverage rates were outside the acceptable .925 to .975 range for 7 

combinations of conditions, all of which occurred when the variance between-clusters was 1.09 

and the 20% or 30% mobility conditions. For the ML-DTS model, the coverage rates ranged 

from .828 to .958. For the CC-DTS model, coverage rates were found to be acceptable for all 

combinations of conditions.  
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Table 50 

Coverage Rates of the Coefficient Estimate of the Level-One Predictor (@! =	0.50), When l = 

0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .933 .958 .957 

   75  .859 .943 .940 
  50 25  .901 .944 .939 
   75  .816 .955 .952 
  100 25  .854 .948 .954 
   75  .679 .949 .952 
 20 30 25  .929 .950 .959 
   75  .867 .949 .948 
  50 25  .897 .943 .944 
   75  .823 .930 .940 
  100 25  .849 .931 .944 
   75  .667 .925 .942 
 30 30 25  .914 .938 .938 
   75  .889 .943 .945 
  50 25  .902 .937 .948 
   75  .834 .955 .963 
  100 25  .867 .940 .944 
   75  .677 .931 .957 

1.09 10 30 25  .786 .945 .957 
   75  .479 .935 .947 
  50 25  .660 .943 .945 
   75  .289 .946 .955 
  100 25  .410 .945 .951 
   75  .033 .935 .948 
 20 30 25  .786 .936 .941 
   75  .527 .927 .942 
  50 25  .678 .921 .936 
   75  .306 .915 .944 
  100 25  .430 .930 .956 
   75  .050 .878 .953 
 30 30 25  .785 .929 .951 
   75  .530 .903 .945 
  50 25  .654 .926 .945 
   75  .284 .890 .956 
  100 25  .439 .903 .942 
   75  .064 .828 .950 

Note. l is the Weibull scale parameter, !! =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size; Bolded and italicized values represent unacceptable coverage of the 95% 
confidence intervals. 
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To further understand the practical implications of the coverage rates presented in Tables 

49 and 50, a logistic regression was conducted for each model, the DTS, ML-DTS, and CC-DTS 

models, respectively, where the dependent variable was binary and represented whether or not 

the confidence interval included the true value of the parameter and the simulation conditions 

were entered as the independent variables. The Cox Effect was recorded for model parameter, 

and is presented in Appendix I. For the DTS model, multiple nested logistic regression models 

were conducted to assess model fit, and it was determined that compared to a model with higher-

order interactions, the model with fourth-order interactions produced the best model fit, [k"(4) 

=	2.92, p = 0.57]. The results indicated a practically important interaction between cluster size 

(dummy variable contrasting a cluster size of 100 to a cluster size of 30), mobility rate (dummy 

variable contrasting the 30% mobility condition and 10% mobility condition), the within-cluster 

sample size, and the variance between clusters, [k"(71,932) = 3.32, p < .05, FDEF= 0.55]. 

Regardless of the other combinations of conditions, coverage was lowest when the variance 

between clusters was 1.09. Coverage was also lower when the cluster size and within-cluster 

sample sizes were greater. Additionally, the results indicated a practically important interaction 

between cluster size (dummy variable contrasting a cluster size of 100 to a cluster size of 30), the 

within-cluster sample size, the variance between clusters, and the Weibull scale parameter 

[k"(71,932) = −2.69, p < .05, FDEF= −0.36]. As the cluster size and within-cluster sample size 

increased, the coverage decreased, regardless of the other conditions. Additionally, when the 

between clusters variance was 1.09 and the Weibull scale parameter was 0.05, coverage rates 

were always lower. However, the difference in the coverage rates by Weibull scale parameter 

became greater when the variance between clusters was 1.09 as compared to when it was 0.32, 

and increased as both the within-cluster and cluster size increased. Lastly, a practically important 
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interaction was observed between cluster size (dummy variable contrasting a cluster size of 50 to 

a cluster size of 30), the within-cluster sample size, and the mobility rate (dummy variable 

contrasting the 30% mobility condition and 10% mobility condition), [k"(71,932) = −2.02, p < 

.05, FDEF= −0.32]. The largest difference in coverage occurred due to the within-cluster sample 

size, such that regardless of the other variables in the interaction, coverage decreased 

substantially as within-cluster sample size increased. For example, when the mobility rate 

condition was 10% and the cluster size was 30, the coverage rate was greater when the within-

cluster sample size was 25 than when it was 75 (mGnaD+Eooooooooooo25 = .878, mGnaD+Eooooooooooo75 = .738). This 

pattern occurred regardless of mobility rate or cluster size, although when cluster size was 

greater, the difference in coverage rates by within-cluster sample size also increased. For the 

ML-DTS model, multiple nested logistic regression models were conducted to assess model fit, 

and it was determined that compared to a model with higher-order interactions, the model with 

third-order interactions produced the best model fit, [k"(16) =	12.17, p = 0.73]. The results 

indicated a practically significant interaction between mobility rate (dummy variable contrasting 

the 30% mobility condition and the 10% mobility condition), cluster size (dummy variable 

contrasting a cluster size of 100 to a cluster size of 30), and within-cluster sample size, 

[k"(71,948) = −2.72, p < .05, FDEF= −0.30]. When the mobility rate condition was 10%, the 

coverage rates were nearly equal regardless of the cluster size or within-cluster sample size. 

When the mobility rate condition was 30%, coverage was again nearly equal regardless of the 

within-cluster sample size when the cluster size was 30; however, when the cluster size was 100, 

coverage was slightly lower when the within-cluster sample size was 75 than when it was 25 

(mGnaD+Eooooooooooo30%,100,25 = .931, mGnaD+Eooooooooooo30%,100,75 = .890). For the CC-DTS model, no main effect or 
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interaction between the independent variables was found to have a practically significant effect 

on the coverage of the 95% confidence intervals.  

Coefficient of the cluster-level predictor,	iL 

Table 51 presents the coverage of the 95% confidence intervals for the coefficient for the 

cluster-level predictor, @", across 36 combinations of conditions where the Weibull scale 

parameter was .025 for the DTS, ML-DTS, and CC-DTS models, respectively. For the DTS 

model, undercoverage of the 95% confidence intervals was present for all 36 combinations of 

conditions. Coverage rates appeared to be significantly impacted by the within-cluster sample 

size, where coverage was generally lower when the sample size was 75 than when it was 25. 

Coverage rates for the DTS model ranged from .194 to .720. For the ML-DTS model, coverage 

rates were outside the acceptable .925 to .975 range for 24 combinations of conditions. 

Generally, it appeared that the coverage rates decreased as mobility rates increased, regardless of 

the other conditions present in the dataset. For the ML-DTS model, the coverage rates ranged 

from .790 to .936, where the lowest rates of coverage occurred in datasets generated using the 

30% mobility condition. For the CC-DTS model, coverage rates were found to be acceptable for 

all but four combinations of conditions, all of which included a cluster size of 30. However, for 

those conditions with unacceptable coverage rates, coverage was still greater than .910, and 

therefore, demonstrated only slight undercoverage.  
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Table 51 

Coverage Rates of the Coefficient Estimate of the Level-Two Predictor (@" =	0.50), When l = 

0.025 

Manipulated Condition  Estimating Model 
VC m% c n    DTS ML-DTS CC-DTS 
0.32 10 30 25  .720 .923 .922 

   75  .505 .930 .942 
  50 25  .689 .931 .946 
   75  .471 .923 .931 
  100 25  .635 .934 .943 
   75  .401 .918 .934 
 20 30 25  .708 .916 .940 
   75  .455 .887 .916 
  50 25  .669 .912 .949 
   75  .447 .902 .929 
  100 25  .608 .895 .930 
   75  .349 .884 .942 
 30 30 25  .665 .888 .925 
   75  .448 .858 .929 
  50 25  .625 .883 .955 
   75  .391 .855 .938 
  100 25  .514 .850 .955 
   75  .269 .790 .946 

1.09 10 30 25  .522 .936 .935 
   75  .303 .927 .931 
  50 25  .478 .933 .942 
   75  .291 .922 .938 
  100 25  .411 .937 .937 
   75  .238 .930 .931 
 20 30 25  .521 .929 .945 
   75  .297 .907 .916 
  50 25  .472 .925 .945 
   75  .294 .912 .931 
  100 25  .421 .925 .942 
   75  .233 .914 .942 
 30 30 25  .496 .898 .915 
   75  .312 .900 .934 
  50 25  .451 .905 .948 
   75  .278 .901 .933 
  100 25  .367 .898 .958 
   75  .194 .865 .943 

Note. l is the Weibull scale parameter, !" =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size; Bolded and italicized values represent unacceptable coverage of the 95% 
confidence intervals. 
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Table 52 presents the coverage of the 95% confidence intervals for the coefficient for the 

cluster-level predictor, @", across 36 combinations of conditions where the Weibull scale 

parameter was 0.05 for the DTS, ML-DTS, and CC-DTS models, respectively. For the DTS 

model, undercoverage of the 95% confidence intervals was present for all 36 combinations of 

conditions. Coverage rates appeared to be significantly impacted by the within-cluster sample 

size, where coverage was generally lower when the sample size was 75 than when it was 25. 

Coverage rates for the DTS model ranged from .170 to .649. For the ML-DTS model, coverage 

rates were outside the acceptable .925 to .975 range for 26 combinations of conditions. 

Generally, the coverage rates decreased as mobility rates increased, regardless of the other 

conditions present in the dataset. For the ML-DTS model, the coverage rates ranged from .909 to 

.938, where the lowest rates of coverage were in datasets that were generated with the 30% 

mobility condition. For the CC-DTS model, coverage rates were found to be acceptable for all 

but four combinations of conditions, all of which included a cluster size of 30 and mobility rate 

conditions of either 20% or 30%. However, for those conditions with unacceptable coverage 

rates, coverage was still greater than .910, and therefore, demonstrated only slight 

undercoverage.  
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Table 52 

Coverage Rates of the Coefficient Estimate of the Level-Two Predictor (@" =	0.50), When l = 

0.05 

Manipulated Condition  Estimating Model 
VC m% c n  DTS ML-DTS CC-DTS 
0.32 10 30 25  .649 .928 .927 

   75  .458 .941 .936 
  50 25  .636 .927 .941 
   75  .408 .930 .936 
  100 25  .573 .921 .937 
   75  .346 .917 .930 
 20 30 25  .633 .925 .937 
   75  .403 .902 .917 
  50 25  .596 .912 .933 
   75  .393 .897 .933 
  100 25  .547 .889 .940 
   75  .278 .894 .944 
 30 30 25  .611 .877 .912 
   75  .389 .868 .929 
  50 25  .554 .887 .955 
   75  .324 .859 .927 
  100 25  .430 .843 .953 
   75  .222 .809 .951 

1.09 10 30 25  .483 .931 .937 
   75  .283 .933 .938 
  50 25  .438 .938 .937 
   75  .244 .921 .937 
  100 25  .369 .930 .940 
   75  .197 .919 .932 
 20 30 25  .471 .928 .931 
   75  .273 .904 .915 
  50 25  .409 .924 .933 
   75  .266 .913 .936 
  100 25  .354 .918 .942 
   75  .173 .919 .946 
 30 30 25  .463 .891 .919 
   75  .268 .905 .935 
  50 25  .404 .908 .946 
   75  .245 .906 .933 
  100 25  .308 .900 .957 
   75  .170 .903 .946 

Note. l is the Weibull scale parameter, !" =	0.50 corresponded to hazard odds ratio of 1.65. DTS = discrete-
time survival model, ML-DTS = multilevel discrete-time survival model, CC-DTS = cross-classified discrete-
time survival model; VC = variance at the cluster-level; m% = mobility rate, c = cluster-level sample size, n = 
within-cluster sample size; Bolded and italicized values represent unacceptable coverage of the 95% 
confidence intervals. 
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To further understand the practical impacts of the simulation conditions on the coverage 

of the coefficient for the cluster-level predictor, a logistic regression was conducted for each 

model, the DTS, ML-DTS, and CC-DTS models, respectively, where the dependent variable was 

binary and represented whether or not the confidence interval included the true value of the 

parameter and the simulation conditions were entered as the independent variables. The Cox 

Effect was recorded for model parameter, and is presented in Appendix I. For the DTS model, 

multiple nested logistic regression models were conducted to assess model fit, and it was 

determined that compared to a model with higher-order interactions, the model with second-

order interactions produced the best model fit, [k"(25) =	17.78, p = 0.85]. The main effect of the 

within-cluster sample size was found to be practically significant, [k"(71,973) = −22.83, p < 

.05, FDEF = −0.58]. Specifically, when the within-cluster sample size was 25, the 95% 

confidence interval included the true parameter value more often than it did when the within-

cluster sample size was 75 (mGnaD+Eooooooooooo25 = .525, mGnaD+Eooooooooooo75 = .320). Additionally, the main effect 

of the variance between clusters was found to have a practically important impact on the 

coverage rates. Specifically, when the variance between clusters was 0.32, the 95% confidence 

interval included the true parameter value more often than it did when it was 1.09 (mGnaD+Eooooooooooo0.32 = 

.500, mGnaD+Eooooooooooo1.09 = .344). For the ML-DTS model, multiple nested logistic regression models 

were conducted to assess model fit, and it was determined that compared to a model with higher-

order interactions, the model with third-order interactions produced the best model fit, [k"(16) 

=	3.33, p = 0.99]. The results indicated a practically significant interaction between the mobility 

rate (dummy variable contrasting the 20% mobility condition to the 10% mobility condition), 

cluster size (dummy variable contrasting a cluster size of 100 to a cluster size of 30), and within-

cluster sample size, [k"(71,948) =2.75, p < .05, FDEF = 0.28]. When the mobility rate condition 
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was 10%, the coverage rates were nearly equivalent regardless of the within-cluster sample size 

or cluster size. However, when the mobility rate condition was 20%, the coverage rates where 

nearly equivalent regardless of the within-cluster sample size if the cluster size was 100, but if 

the cluster size was 30, the coverage rates differed slightly by the within-cluster sample size 

(mGnaD+Eooooooooooo20%,30,25 = .924, mGnaD+Eooooooooooo20%,30,75  = .900). Additionally, the main effect of the mobility 

rate (dummy variable contrasting the 30% mobility condition to the 10% mobility condition) was 

practically important, [k"(71,948) =−3.88, p < .05, FDEF = −0.29]. Specifically, when the 

mobility rate condition was 10%, the 95% confidence interval included the true parameter value 

more often than it did when it was 30% (mGnaD+Eooooooooooo10% = .928, mGnaD+Eooooooooooo30% = .876). For the CC-

DTS model, none of the simulation conditions were found to have a practically significant effect 

on the coverage of the 95% confidence intervals. 
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CHAPTER 5 

DISCUSSION 

 Using a Monte Carlo simulation, this study investigates the impact of ignoring a cross-

classified data structure due to individual mobility across clusters in a discrete-time survival 

analysis. In addition, it examines how the baseline hazard function, variability of the cluster 

random effect, mobility rate, and within- and between-cluster sample size impact the 

performance of a cross-classified discrete-time survival model. This simulation study includes 

datasets generated from 72 combinations of conditions by manipulating the within-cluster 

sample size (25 and 75), the cluster size (30, 50, 100), the between-cluster variance (0.32 and 

1.09), the Weibull scale parameter (0.025 and 0.05), and the rate of individual mobility across 

clusters (10%, 20%, and 30%). The data generating model in this study is a cross-classified 

discrete-time survival model, and therefore, the CC-DTS estimating model most closely matches 

the data generating procedures. Model performance is assessed by examining the relative 

parameter bias, root mean square error, and coverage of the 95% confidence intervals for the 

DTS, ML-DTS, and CC-DTS models across 1,000 replications of each of the 72 unique 

combinations of conditions. This chapter will discuss the results of this simulation study, serving 

to compare and contrast the performance of each of the three models included in this simulation 

study. Additionally, it contains a discussion of the limitations of the current study and 

suggestions for future research, and lastly, the importance of the study for empirical researchers. 

Summary of Results 

The following section describes the notable patterns observed in the results as they 

pertain to the relative parameter bias (RPB), root mean square error (RMSE), and coverage rates 

of the 95% confidence intervals (95% CIs), and places these results within the context of the 
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generated datasets. This section will first describe the results as they pertain to the hazard 

function, and then follow with results for the remaining parameters of interest: the level-1 

coefficient, the level-2 coefficient, and the variance between clusters. To further illustrate the 

results of this study, nested-loop plots (Rücker & Schwarzer, 2014), which plot the RPB, RMSE, 

and coverage rates of the 95% CIs of each model for all simulation conditions in one plot per 

parameter, have been provided in Appendices F, G, and H, respectively. 

Features of the Generated Data 

This study investigates the performance of three discrete-time survival models in the 

presence of a cross-classified data structure that is a result of the specific situation that occurs 

when individuals are mobile across clusters. As such, when examining the impact of mobility on 

the model parameters, it is important to understand how the data generating procedures affected 

the specification of mobility in the dataset. Recall that discrete-time survival analysis utilizes a 

person-period dataset, where the risk set during each discrete-time period changes because 

individuals are removed from the dataset following event occurrence. Due to the person-period 

data format, the specified percentage of mobile individuals (10%, 20%, and 30%) does not 

exactly match the actual mobility present in the generated datasets. Additionally, the Weibull 

scale parameter condition affects event occurrence, and therefore, the proportion of individuals 

removed from the dataset. Table 53 presents the average overall mobility rates across the 

generated datasets by Weibull scale parameter. Note that the actual mobility rates are lower than 

the specified mobility rates due to the changing risk set. Therefore, for the remainder of this 

discussion, the mobility condition will be referred to as “low”, “medium”, and “high” levels of 

mobility.  
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Table 53 

Comparison of Specified Mobility Rates to Actual Mobility Rates Observed in the Generated 

Datasets by Weibull Scale Parameter 

Weibull Scale 
Parameter 

Generated Overall 
Mobility 

Actual Overall 
Mobility 

0.025 10% 8.46% 
 20% 17.08% 
 30% 25.52% 

0.05 10% 7.41% 
 20% 14.97% 
 30% 22.37% 

Note. Actual overall mobility rates represent the proportion of individuals in the dataset that actually moved 
during the time period of study. 
 
The Hazard Function 

In discrete-time survival analysis, the hazard function is represented by a coefficient 

estimate, known as the intercept, for each discrete-time period to examine the likelihood of event 

occurrence in each discrete-time period of study. The findings indicate that the DTS model 

clearly has difficulty estimating the parameters representing the hazard function regardless of the 

combination of conditions present as compared to either the ML-DTS or the CC-DTS models. 

For instance, in regards to RPB, the DTS model yields moderately or substantially biased 

estimates for the majority of parameters representing the hazard function, regardless of the 

combination of simulation conditions. Indeed, the ANOVA results suggest important impacts of 

the Weibull scale parameter, the variance between clusters, and in some cases, mobility, on RPB 

for parameters representing the hazard function using the DTS model. A larger variance 

between-clusters, and in some cases, greater rates of mobility, result in more substantially 

negative RPB for the DTS model. The Weibull scale parameter sometimes interacts with the 

variance between-clusters, resulting in differing impacts of the Weibull scale parameter on RPB 

depending on the level of the variance between-clusters condition. In regards to RMSE, the 
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within-cluster sample size plays a very important role in determining the magnitude of RMSE for 

the parameters representing the hazard function for the DTS model. For instance, holding all 

other conditions constant, the RMSE value is consistently lower when the within-cluster sample 

size is 75 than when it is 25. Generally, as the sample size in the dataset increases, RMSE for the 

DTS model decreases. Additionally, the variance between clusters consistently has a large 

impact on RMSE for the DTS model, where RMSE is much greater when it is 1.09 than when it 

is 0.32. In regard to coverage of the 95% CIs, the DTS model performs poorly for all parameters 

of the hazard function, never falling within the acceptable range. In almost all combinations of 

conditions, it performs worse than either the ML-DTS or the CC-DTS models. Indeed, the 

cluster size, within-cluster sample size, and variance between-clusters consistently have 

practically important impacts on coverage of the 95% CIs for parameters representing the hazard 

function for the DTS model, such that the 95% CI includes the true parameter value more often 

in datasets that include a lower sample size and/or a lower variance between clusters. 

The performance of the ML-DTS model, in terms of RPB and coverage of the 95% CIs, 

is often superior to the DTS model. For instance, the ML-DTS model results in acceptable RPB 

for many combinations of simulation conditions. However, mobility and the variance between 

clusters has a clear impact on RPB for the parameters representing the hazard function for the 

ML-DTS model. In most cases, when the variance between clusters is 0.32, the ML-DTS model 

exhibits acceptable RPB, even when mobility increases. However, when the variance between 

clusters increases to 1.09, the magnitude of RPB for most parameters representing the hazard 

function becomes more substantially negative as the rate of mobility in the dataset increases, 

especially for medium and high rates of mobility. When unacceptable RPB is present, it is 

always moderate, or between a magnitude 0.05 and 0.10. Indeed, the results of the ANOVAs 
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indicate that the main effects of both the degree of mobility and the amount of variance between-

clusters have a practically important impact on the RPB for the parameters representing the 

hazard function for the ML-DTS model. Specifically, when the variance between-clusters or 

mobility increases in the dataset, RPB becomes more substantially negative. RMSE for the ML-

DTS model is highly influenced by both the variance between clusters and mobility. Specifically, 

holding all other manipulated conditions constant, as mobility increases, the RMSE tends to 

increase. This is especially true when the variance between clusters is 1.09, where the RMSE 

values overall are larger than when it is 0.32. Comparing across models, when the variance 

between-clusters is 0.32 and mobility is low, the RMSE estimates for each parameter of the 

hazard function produced by the ML-DTS model and the CC-DTS model are nearly equal. Given 

that under these same conditions RPB is also similar between the ML-DTS model and the CC-

DTS model, the RMSE results suggest that both models offer similar precision when estimating 

parameters representing the hazard function in datasets with low mobility rates and low between-

cluster variance. In regard to coverage of the 95% CIs, the ML-DTS model results in 

undercoverage of most parameters representing the hazard function when mobility is medium or 

high, regardless of other combinations of conditions. This observation is further supported by the 

results of the logistic regressions, which indicate that coverage for the coefficients representing 

the hazard function using the ML-DTS model are most often affected by the mobility rate and 

cluster size in the generated datasets. However, overall, coverage is substantially better using the 

ML-DTS model than the DTS model under all combinations of conditions.  

As compared to the DTS and ML-DTS models, the CC-DTS model estimates the 

coefficients representing the hazard function well. In all cases, RPB is clearly within the 

acceptable range, indicating virtually no bias (i.e., RPB was close to 0). Additionally, coverage 
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of the 95% CIs is well within the acceptable range for all combinations of conditions using the 

CC-DTS model, and the results of the logistic regressions indicate no practical impact of any 

simulation condition on coverage of the 95% CIs. Given that the ML-DTS and CC-DTS models 

result in no substantial RPB when the variance between clusters is 0.32 for any parameter 

representing the hazard function, lower values of RMSE suggest greater precision of the 

estimates. As such, RMSE values indicate that most often, the CC-DTS offers greater precision 

in the estimates of the hazard function, especially as mobility increases, than the ML-DTS 

model.  

Similar to the results found in a real data study by Lamote et al. (2013), the parameters 

representing the hazard function differ between the three models examined here. The DTS model 

has very different estimates of the parameters representing the hazard function than the other 

models, with unacceptable RPB and extremely poor coverage of the 95% CIs. A smaller 

difference in estimates of the hazard function exists between the ML-DTS model and the CC-

DTS model, and while coverage of the 95% CIs is always found to be acceptable for the CC-

DTS model, the ML-DTS model results in unacceptable coverage commensurate with increasing 

mobility in the dataset. This suggests that as mobility increases in the dataset, the likelihood of 

committing a Type I error also increases if mobility is ignored by modeling only the impact of 

the first cluster (e.g., school) on the hazard function. 

Previous research that compares a multilevel model that ignores mobility to a model that 

accounts for mobility across clusters has indicated that while bias may occur in some standard 

error estimates for coefficients at level-1, ignoring mobility does not impact intercept estimates 

(see for example, Cappelli et al., 2020; Chung & Beretvas, 2012; Leroux & Beretvas, 2018b; 

Leroux et al., 2020; Luo & Kwok, 2009, 2012; Meyers & Beretvas, 2006). However, it should be 
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expected that these findings would not hold true in a discrete time survival model, likely as a 

result of the introduction of heterogeneity to the dataset due to individual mobility across 

clusters. Barber et al. (2000) and Masyn (2003) described the impact of violating the assumption 

of no unobserved heterogeneity in discrete-time survival models, stating that when heterogeneity 

in the data is ignored by the estimating model, the hazard function may be negatively impacted. 

Barber et al. (2000) specifically stated that in the presence of clustering, excluding a random 

effect at the clustering level will likely result in a biased hazard function, as is apparent in this 

study when using a DTS model, where the hazard function is clearly biased under nearly all 

simulation conditions. It is likely that the low coverage rates observed using the DTS model are 

the result of the substantial RPB in the intercept coefficients in combination with underestimated 

standard errors of the intercept coefficients. It is well known that ignoring the clustering level of 

a nested data structure by using a single-level model, such as the DTS model, results in 

underestimated standard errors (Fielding & Goldstein, 2006; Moerbeek, 2004; Raudenbush & 

Bryk, 2002). Clark (2008) assessed the performance of a single-level generalized linear model in 

the presence of a clustered data structure with a specific focus on the impact of within-cluster 

sample sizes, and found that standard errors were underestimated by up to 40%, with standard 

error bias increasing as the within-cluster sample size increased to 20 individuals per cluster. The 

results of this study broadly follow those found by Clark (2008), although due to the combination 

of mobility and larger within-cluster sample sizes, more extreme undercoverage of the 95% CIs 

is present using the DTS model. Lamote et al. (2013) also compared a CC-DTS model to a ML-

DTS model using real data, and found that the hazard functions estimated by the two models also 

differed. Therefore, it is likely that just as clustering results in heterogeneity in the dataset, 

ignoring individual mobility across clusters represents another source of possible heterogeneity. 
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In this study, the results indicate that the ML-DTS model has some moderate RPB under some 

combinations of simulation conditions, especially when the variance between clusters is high and 

mobility in the dataset is medium to high. Therefore, in the presence of these conditions, the 

results suggest that the CC-DTS model better estimates the parameters representing the hazard 

function.  

Importantly, the data generating procedures employed in this study likely have an impact 

on the magnitude of the bias present in the hazard function, especially as it pertains to the 

moderate RPB observed in the ML-DTS model, which accounts for the clustered data structure 

but not mobility of individuals across clusters. As an example, one way that heterogeneity is 

introduced into the generated datasets is through the binary level-2 covariate (Z), which is 

specified such that students in schools coded as 1 have a greater likelihood of event occurrence 

across the study period than students in schools coded as 0. Additionally, mobility has an impact 

on Z, such that the true value of Z changes for mobile students, which remains unmodeled when 

using the ML-DTS model because it only takes on the value assigned to the first school. In other 

words, the ML-DTS model ignores the heterogeneity introduced by the impact of student 

mobility on the true value of the level-2 covariate, which therefore impacts the risk of event 

occurrence across the study (i.e., the hazard function). Furthermore, the data generation 

procedures for Z specify that 30% of clusters are coded as 1, while 70% are coded as 0; 

therefore, mobile students are more likely to begin in and move to a school coded 0 than they are 

to be in a school coded 1. If this ratio is different, for example a 50/50 ratio, mobile students 

would be just as likely to move into a school coded as 1 as they would be to a school coded as 0. 

In such a situation, it is possible that lower rates of mobility may have greater impacts on bias in 

the hazard function estimated using the ML-DTS model than that observed in this study, since 
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the true variability in Z would be greater in such datasets. As such, the results described here 

offer a note of caution when using an estimating model that ignores heterogeneity, which may 

result in more or less substantial bias of the hazard function given different data contexts. 

Coefficient of the individual-level predictor,	iK 

Results indicate that the coefficient of the individual-level predictor has substantial RPB 

across all conditions using the DTS model, with bias becoming more substantially negative when 

the variance between clusters increases. This should be expected, as the DTS model does not 

account for the nested data structure, and therefore, violates the assumption of no unobserved 

heterogeneity due to clustering (Barber et al., 2000). Additionally, RPB is consistently more 

substantially negative for the DTS model when the Weibull scale parameter is 0.05. RMSE 

values are notably impacted by the within-cluster sample size, with RMSE values decreasing 

when the within-cluster sample size is 75 as opposed to when it is 25. Coverage of the 95% CIs 

most often indicates slight to substantial undercoverage using the DTS model. The results of the 

logistic regression indicate that the coverage rate is highly impacted by the variance between 

clusters and the within-cluster sample size. Specifically, coverage is extremely poor when the 

variance between clusters is 1.09, and generally, coverage decreases when the within-cluster 

sample is 75. Similar to the results observed for the hazard function, these low coverage rates are 

likely explained by an underestimation of the standard error for the level-1 coefficient estimate, 

which results in a narrowing of the 95% CIs. In combination with substantial RPB, this results in 

very low rates of coverage of the true parameter value. These results suggest that the DTS model 

consistently underestimates the individual-level coefficient, especially when the variance 

between clusters is high. Conversely, for the ML-DTS model, the coefficient of the individual-

level predictor is estimated without bias for the majority of simulation conditions; however, the 
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RPB results indicate that the coefficient is moderately underestimated when the variance 

between clusters is high in combination with high rates of mobility. For those same combinations 

of conditions, coverage of the 95% CIs is also unacceptable, with the greatest undercoverage of 

the coefficient for the level-1 predictor occurring when mobility is high. The results indicate that 

the CC-DTS model, in contrast to the ML-DTS model and especially the DTS model, estimates 

the individual-level coefficient without bias and with acceptable coverage of the 95% CIs under 

all combinations of simulation conditions. 

Again, the moderate RPB and undercoverage of the 95% CIs present when mobility is 

ignored is likely due to the impact of unmodeled heterogeneity. Importantly, previous findings in 

the literature for continuous and binary outcomes that examined the impact of ignoring cross-

classified data structures using purely clustered multilevel models often found that there was no 

substantial impact of model misspecification on the individual-level fixed effect parameter 

estimates (see for example, Cappelli et al., 2020; Chung & Beretvas, 2012; Leroux & Beretvas, 

2018b; Leroux et al., 2020; Luo & Kwok, 2009, 2012; Meyers & Beretvas, 2006). However, 

these findings should not be expected to remain true for a discrete-time survival model due to the 

additional assumption of no unobserved heterogeneity, a violation of which can negatively 

impact lower-level coefficient estimates and their standard errors (Barber et al., 2000; Masyn, 

2003). In fact, the bias in the estimated coefficients for the level-1 covariate may occur even if 

the source for heterogeneity, which here is mobility across clusters, has no association with the 

covariate (Masyn, 2009). Specifically, for the ML-DTS model, medium to high mobility rates in 

combination with high variance between clusters appears to result in some RPB and 

undercoverage of the 95% CIs in the coefficient for the individual-level covariate. In contrast, 
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the CC-DTS model estimates the coefficient for the level-1 covariate well, regardless of the 

combination of simulation conditions. 

Lamote et al. (2013) is the only study that has compared the results of a cross-classified 

discrete-time survival model to a purely clustered discrete-time survival model, and reported that 

there was no substantial difference between the individual-level fixed effect estimates or their 

standard errors between the two models. Comparing their study results to the combination of 

conditions in this study that most closely match their data (i.e., 50 clusters, 75 individuals per 

cluster, a high mobility rate, variance between-clusters of 0.32, and Weibull scale parameter of 

0.025), similar findings are apparent. Specifically, under these conditions, the magnitude of RPB 

is not found to be substantial for the ML-DTS or CC-DTS models, and the RMSE values and 

coverage of the 95% CIs are similar to those found using the CC-DTS model. 

Coefficient of the cluster-level predictor,	iL 

The results indicate that the coefficient of the cluster-level predictor is estimated with 

substantial bias for both the DTS and ML-DTS models. For the DTS model, both mobility and 

the variance between clusters have a substantial negative impact on RPB and RMSE, and the 

within-cluster sample size has a large impact on coverage of the 95% CIs. When the DTS model 

is used, the cluster-level coefficient is substantially underestimated, especially as compared to 

the ML-DTS and CC-DTS models, for all combinations of conditions. Specifically, coverage 

rates of the 95% CIs are extremely low and substantial negative bias is present, indicating a 

higher likelihood of committing a Type I error. In comparison, the ML-DTS model performs 

better than the DTS model, but overall, is still poor as compared to the CC-DTS model, 

especially when there are high rates of mobility in the dataset. The ML-DTS model also results 

in moderate to substantial RPB for all combinations of conditions examined, although the 
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magnitude of the bias is always less severe than when the DTS model is used. RPB indicates 

only moderate underestimation of the cluster-level coefficient when overall mobility in the 

dataset is low, and when holding all other manipulated conditions constant, there is a clear 

negative impact of increasing mobility on RPB, such that substantial RPB is apparent when 

mobility is medium or high. Like the DTS model, the ML-DTS model results in substantial 

underestimation of the coefficient estimate and a high likelihood of committing a Type I error, as 

evidenced by the undercoverage of the 95% CIs in almost any combination of conditions that 

includes medium or high rates of mobility. The results of the logistic regression further support 

this finding, indicating that mobility has a practically important impact on coverage rates for the 

ML-DTS model. As opposed to the DTS and ML-DTS models, the CC-DTS model does not 

have substantial RPB for any combination of conditions. When the variance between clusters is 

1.09, RMSE using the CC-DTS model is clearly impacted by the cluster-level sample size, such 

that it becomes lower as cluster size increases. In regard to coverage rates of the 95% CIs, the 

CC-DTS model results in acceptable coverage for the majority of combinations of conditions, 

with the only exceptions occurring when the cluster size is 30. Taken as a whole, these results 

suggest that in order to confidently estimate the cluster-level coefficient using the CC-DTS 

model, a cluster size greater than 30 is required. 

The results of this study are consistent with the findings of previous research in the cross-

classified and multiple membership literature, where model misspecification was found to have a 

negative impact on cluster-level coefficient estimates (e.g., Cappelli et al., 2020; Chung & 

Beretvas, 2012; Choi & Wilson, 2016; Grady & Beretvas, 2010; Leroux et al., 2020; Luo & 

Kwok, 2009, 2012; Meyers & Beretvas, 2006). In this study, it should also be expected that use 

of the ML-DTS or DTS models would lead to bias in the cluster-level coefficient. Note that the 
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data generating model is a CC-DTS model, which allows for the value of the cluster level 

predictor, O(0), to change for mobile students, such that when a student changes schools, the 

school characteristic also changes accordingly. In contrast, the ML-DTS model is estimated 

using the characteristic of only the first school attended. Therefore, for mobile students, the value 

of Z in the ML-DTS model does not match the true value of Z, negatively impacting the 

estimated coefficient. As such, as mobility increases in the dataset, RPB of the cluster-level 

coefficient increases using the ML-DTS model, but does not impact RPB when the CC-DTS 

model is used. A similar mechanism of bias has been described in previous simulation studies 

that examined model performance in the presence of individual mobility across clusters, which 

found that models that ignore mobility by using only a single school result in different 

coefficient estimates for the cluster-level predictor (Cappelli et al., 2020; Chung & Beretvas, 

2012; Leroux et al., 2020). In a real data study using discrete-time survival analysis, Lamote et 

al. (2013) observed a similar pattern in the coefficient estimates, where the parameter estimates 

associated with school characteristics were lower when only a single school was used to estimate 

the cluster-level coefficient.  

Between-Clusters Variance Component, jPL  

The between-clusters variance component, σ&" , is only assessed for the ML-DTS and CC-

DTS models. As a single-level model, the DTS model does not account for the variance between 

clusters by incorporating a random component. The results indicate that the ML-DTS model 

results in substantial RPB regardless of the combination of conditions examined in this study. It 

is apparent that the most obvious pattern of RPB is related to mobility in the dataset, such that as 

mobility increases, the magnitude of RPB becomes larger. The ANOVA results support this 

finding, and indicate that mobility has a substantive impact on RPB. To a lesser extent, cluster 
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size also has an important impact on RPB, such that the magnitude of bias becomes less severe 

as cluster size increases. The results indicate that even when the rate of mobility in the dataset is 

low, there are important negative implications for the estimation of the between-clusters variance 

component when using the ML-DTS model. The RMSE results also indicate that mobility has 

important implications for the between-clusters variance component, such that RMSE increases 

as mobility increases. Although not apparent when assessing RPB, RMSE for the between-

clusters variance component is also clearly impacted by the amount of between-clusters 

variability, such that RMSE increases when variance between clusters is larger. For the CC-DTS 

model, the between-clusters variance component is consistently underestimated when the cluster 

size is 30, regardless of other combinations of simulation conditions. Additionally, especially 

when the variance between clusters is 0.32, RPB either approaches or slightly exceeds the 

magnitude of 0.05 threshold for moderate bias. In contrast to the ML-DTS model, RPB and 

RMSE under the CC-DTS model are not impacted by mobility. Instead, RMSE is again similarly 

impacted by both cluster size and variance between clusters.  

These findings are supported by cross-sectional studies that examined the impact of 

mobility on multilevel models, which have found that ignoring mobility using a purely clustered 

multilevel model results in biased estimates of the cluster-level variance component (Chung & 

Beretvas, 2012; Wheelis, 2017; Wolff Smith & Beretvas, 2017). Additionally, methodological 

studies using longitudinal multilevel models have resulted in similar findings, although slightly 

larger cluster sizes, generally 50 or greater, were suggested when modeling mobility using a 

longitudinal cross-classified and/or multiple membership model to estimate cluster-level 

variance components without bias (Cappelli et al., 2020; Choi & Wilson, 2016; Grady, 2010; 

Leroux & Beretvas, 2018b; Leroux et al., 2020; Luo & Kwok, 2012). These results are also 
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supported by the limited survival analysis literature. For example, Elghafghuf et al. (2014) used a 

cross-classified multiple membership Cox Model (i.e., a continuous-time, as opposed to discrete-

time, survival model), and found that in terms of RPB, the CCM Cox Model performed better 

when mobility was higher and when variance components were larger. Similar results are seen in 

this study. Although the difference in RPB is only very slight, when the variance between 

clusters is 1.09, there is no substantial bias using the CC-DTS model when the cluster size is 50 

or more, as opposed to a slight underestimation of the variance component when the cluster size 

is 50 and the variance between-clusters is 0.32. 

Conclusions and Implications for Policy 

Discrete-time survival analysis is commonly seen in the empirical literature across 

multiple disciplines in the social and behavioral sciences, such as education, criminology, and 

public health. This study examines the performance of a discrete-time survival model, a 

multilevel discrete-time survival model, and a cross-classified discrete-time survival model in the 

presence of a cross-classified data structure specifically resulting from individual mobility across 

clusters generated by a CC-DTS model. The results of this study suggest that in the presence of 

cross-classified data structures, the use of a discrete-time survival model without a random 

component could potentially result in severe bias for any model parameter, even when the 

variance between-clusters is relatively low. Therefore, under the conditions investigated in this 

study, a discrete-time survival model without a random component may not be appropriate to 

make inferences regarding the hazard function or covariates included in the model.  

The multilevel and cross-classified discrete-time survival models include a random 

component at the clustering level, and therefore, account for the clustered data structure often 

present in datasets in the social or behavioral sciences. The primary difference between the 
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models is that the CC-DTS model is specified to account for impure clustering, which in this 

study specifically occurs due to individual mobility across clusters, while the ML-DTS model is 

specified for only pure clustering of individuals within clusters. If the interest of the research is 

in describing the conditional hazard function, the ML-DTS model may be a comparatively 

simpler alternative to the CC-DTS model when overall mobility in the dataset is less than 10% in 

combination with an ICC of .10. However, regardless of the other conditions examined in this 

simulation study, as mobility increases, coverage of the 95% CIs decreases when the ML-DTS 

model is used, suggesting that there could potentially be an increased risk of making a Type I 

error, and therefore, incorrect inferences. Importantly, the extent to which the data conditions 

produce heterogeneity needs to be carefully considered when choosing to use the ML-DTS 

model in the presence of mobility, such that data conditions that result in greater heterogeneity 

under the same rates of mobility in this study may produce more or less bias in parameter 

estimates when that heterogeneity remains unmodeled. As such, caution may be necessary when 

employing the ML-DTS model to understand the conditional hazard function. When mobility 

rates are greater than 10% under the conditions investigated in this simulation, the CC-DTS 

model is one approach of handling mobility that could be given consideration to estimate 

parameters representing the hazard function to reduce parameter bias and to ensure correct 

inferences. Although this study employed a limited range of sample size conditions, initial 

findings suggest that the combination of a cluster-level sample size of 30 and within-cluster 

sample size of 25 may be sufficient for estimation of the hazard function using either the ML-

DTS or CC-DTS models under the simulation conditions examined here. Note that the impact of 

sample size on these results may change when real-world conditions differ from those generated 

in this study. If the interest is to describe the impact of a level-1 covariate on the hazard function, 
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the ML-DTS model and the CC-DTS model could both be considered when the ICC is .10, 

regardless of the proportion of mobile individuals in the dataset. A similar note of caution as 

described for the hazard function may also be considered here. In any case, when the ICC is .25 

and the mobility rate in the dataset is greater than 10%, slight parameter bias may occur and 

there may be a greater likelihood of a Type I error if using the ML-DTS model. If the interest is 

in describing the effect of cluster-level covariates on the hazard odds of event occurrence, more 

caution may be necessary if using the ML-DTS model. Given the data conditions generated as a 

part of this simulation study, severe bias and unacceptable coverage of the 95% CIs may result 

when using the ML-DTS model, even when overall rates of individual mobility across clusters 

are less than 10% in the dataset. Although negative impacts are minimal when the cluster size is 

30, the findings suggest that with data conditions that are similar to those present in this study, a 

minimum cluster size of 50 may be needed to accurately estimate the coefficient for a binary 

covariate at level 2. Lastly, if the interest is in accurately estimating the variance component at 

the cluster level and mobility is present in the dataset (regardless of the rate), the ML-DTS model 

may result in severe bias. However, to estimate the variance component without bias using the 

CC-DTS model under the conditions investigated in this simulation, a minimum sample size of 

more than 30 at the cluster level may be necessary, with increasing sample sizes at the cluster 

level and higher variance between clusters appearing to result in less biased estimates.  

The results of this study have important implications for policy in the social and 

behavioral sciences. Recent educational policy interests and the resulting funding from federal 

agencies such as the National Science Foundation have focused on creating effective teacher 

preparation programs that address issues such as teacher retention (e.g., the Robert Noyce 

Scholarship Program). In light of these interests, discrete-time survival analysis is an important 
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methodological approach to consider in studies of teacher retention, and indeed, has commonly 

been used in empirical research to understand the timing and risk of teachers leaving the 

profession (e.g., Donaldson, 2016; Kelly, 2004). Therefore, it is important for educational 

researchers to understand the impact of ignoring a level of clustering in discrete-time survival 

analysis, and further, the impact of ignoring mobility among students or teachers, both of which 

could potentially lead researchers to make incorrect inferences regarding the effect of individual- 

or cluster-level characteristics on the risk of event occurrence. Researchers using event-history 

outcomes should be especially cautious of ignoring clustering and/or mobility, regardless of 

whether the interest is in making inferences using parameters at the individual or clustering level. 

Empirical researchers are advised to take special care to understand the extent to which there is 

variance between clusters and mobility in their datasets if a discrete-time survival model is used 

to describe the timing and risk of event occurrence. 

Limitations and Future Research 

 This study is the first exploration of the impact of ignoring individual mobility across 

clusters when modeling an event history outcome using discrete-time survival analysis. As the 

first exploration, the purpose is to establish some understanding of the performance of a DTS 

model, a ML-DTS model, and a CC-DTS model in the presence of mobility as generated by the 

CC-DTS model and other common data conditions in the social and behavioral sciences. 

However, there are some limitations to the current study that may be addressed in future 

research. One study limitation is that mobility is generated to represent the proportion of the 

sample to be mobile. In other words, every sample dataset generated using the 10% mobility 

condition was initially generated to have 10% of individuals mobile across clusters. This 

procedure was used in all previous studies examining mobility, and was therefore adopted here 
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to maintain comparability. However, mobility could also be generated to be a proportion of the 

population, such that mobility across all datasets with the 10% mobility condition are generated 

to have an average of 10% mobility. Additionally, future studies may adjust the ratios of 0’s and 

1’s in binary covariates to examine how balanced and unbalanced binary covariates may impact 

the results described in this study when covariate values change as a result of mobility, or add 

continuous covariates to the dataset. Future studies may also consider adding more than one 

covariate at each level of the multilevel models, and consider more complex relationships 

between covariates (e.g., within- and cross-level interactions).  

 Another limitation of this study pertains to the generation of event occurrence. 

Specifically, the hazard function used in this study was generated using a two-parameter Weibull 

function, but the analytic model leaves the hazard function unstructured. This may result in an 

over-identification of the model, which may introduce some slight decrease in the precision of 

model estimates. Although the decrease in precision should affect all models compared in this 

study, and therefore should not impact the substantive results, a future study should consider 

editing the data generation procedures to be an exact match to the analytic model explored. 

 As an initial exploration into the performance of discrete-time survival models when 

individual mobility across clusters is present in the data, this study only manipulates conditions 

hypothesized to likely have an important impact on model estimates based on previous research. 

However, there are other conditions that future research should explore to further understand 

how they impact the estimates from a discrete-time survival analysis. Future research may 

consider the impact of more extreme survival functions on parameter estimates. For example, if 

survival is so high at the end of the study that hazard is extremely low in certain time periods, it 

would be interesting to assess at what point the lack of variability in event occurrence within-
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clusters impacts the parameter estimates. In educational research, it is quite common to have 

extremely low overall event occurrence on the order of 10% to 15%, and therefore, high survival 

at the end of the study (e.g., Davoudazadeh et al. (2015); Lamote et al. (2013)). In this study, the 

lowest overall event occurrence was about 27%, meaning that about 72% of the generated 

sample survived through the end of the study.  

Other additional conditions that future research may consider, and are specific to event 

history models, include the impact of manipulating the survival pattern (i.e., increasing, 

decreasing, and constant hazard across time), varying the widths of measurement occasions (i.e., 

the time between one observation and the next is not constant across individuals), or including 

interval-censored (missing) data in the datasets. While each of these have been explored and 

rarely impact parameter estimates (e.g., Moerbeek, 2012; Moerbeek & Hesen, 2018), when 

mobility is included in the data, it is possible that there are different impacts on model estimates. 

This may be especially true regarding the impact of mobility on the hazard function when the 

widths of measurement occasions are varied across individuals, as this may impact the timing of 

individual mobility. 

Future studies should also examine other types of cross-classification not examined here, 

such as those that occur when higher-level units are not purely clustered within one another (e.g., 

students nested in a cross-classification of neighborhoods and schools), as well as alternative 

model specifications that account for individual mobility across clusters. For example, a future 

study may explore the performance of a multiple membership discrete-time survival (MM-DTS) 

model to account for mobility, which is different from the CC-DTS model investigated here in 

that it uses a weighting mechanism to account for mobility. Lamote et al. (2013) compared a 

MM-DTS model to the CC-DTS model and other models, and concluded that the CC-DTS 
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model fit the data best. However, in other real data situations, it may not be the case that the CC-

DTS model best fits the data, and the MM-DTS model could alternatively be used to account for 

mobility. As such, studies may also investigate the performance of a CC-DTS model when the 

mobility mechanism in the generated data does not exactly match the model specification, and 

assess the extent to which bias may occur in the CC-DTS model estimates when the impact of 

the multiple associated clusters, for example, is cumulative as opposed to noncumulative.  
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APPENDIXES 

Appendix A: Literature Informed Hazard Probabilities 
 

Source 
Analysis 

Used Outcome Variable 

Levels in 
the 

Model 

Number of 
Time 

Periods 

Range of 
Hazard 

Probability 
(Logit) 

Ma & Willms, 
1999 

ML-
DTSA 

Student Dropout 
from Advanced 

Mathematics 
(Probability of 

math participation) 

2 1 .980 (3.900) 
2 .921 (2.460) 
3 .924 (2.500) 
4 .889 (2.080) 
5 .634 (0.550) 

Davoudzadeh et 
al., 2015 
 

ML-
DTSA 

First occurrence of 
grade retention 

2 1 .036 (−3.300) 
2 .058 (−2.786) 
3 .021 (−3.862) 
4 .017 (−4.080) 

Bowers, 2010 DTSA Student Dropout 1 1 .027 (−3.616) 
2 .043 (−3.091) 
3 .040 (−3.172) 
4 .036 (−3.283) 
5 .095 (−2.252) 
6 .036 (−3.296) 

Orozco, 2016 DTSA Student Dropout – 
Aggressive 

Students 

1 1 .001 (−6.513) 
2 .003 (−5.756) 
3 .008 (−4.779) 
4 .059 (−2.769) 
5 .093 (−2.276) 
6 .044 (−3.088) 

Lamote et al. 
(2013)1 

CC-
DTSA 

Student Dropout 2 1  .000 (−7.580) 
2 .013 (−4.359) 
3 .022 (−3.784) 
4 .028 (−3.549) 
5 .031 (−3.456) 
6 .014 (−4.268) 

Note. Studies were excluded that constrained the effect of time, such that hazard probabilities 
were not freely estimated during each time period. Only baseline hazard probabilities (logit 
values) are reported here. The study was excluded from this table if baseline hazard probabilities 
were not reported. 
1 Results represent the baseline values of the cross-classified discrete-time survival model. 
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Appendix B: Literature Informed Level-1 Covariate Values 
 

Source 
Model(s) 

Used 
Outcome 
Variable 

Levels 
in the 
Model 

Example 
Variables 

(Coded as 1) 

Range of 
Coefficient 

Values 
(logit) 

Proportion 
Coded 1 

Ma & 
Willms, 1999 

ML-
DTSA 

Student 
Dropout from 

Advanced 
Mathematics 

2 Female 0.090 Not 
Provided 

Davoudzadeh 
et al., 2015 
 

ML-
DTSA 

First 
occurrence of 

grade retention 

2 Female −0.547 to 
0.685 

.50 

Race 
(Multiple) 

−0.352 to 
0.396 

.32 

Below 
Poverty Line 

0.422 to 
1.298 

.16 

Non-English −1.096 to 
0.071 

.13 

Special 
Needs 

−0.166 to 
0.702 

.10 

Bowers, 
2010 

DTSA Student 
Dropout 

1 Boys −2.339 to 
−0.522 

.50 

Non-
European 
American 

−1.812 to 
0.277 

.55 

Lamote et al., 
2013 

CC-
DTSA 

Student 
Dropout 

2 Female −0.440 to 
−0.536 

Not 
Provided 

Repeated 
Grade 

0.987 to 
1.766 

Not 
Provided 

Orozco, 2016 DTSA Student 
Dropout – 
Aggressive 

Students 

1 Female 0.105 to 
0.330 

.48 

Latino 0.405 to 
0.484 

.42 

Randolph, 
Fraser, & 
Orthner, 
2006 

DTSA Student 
Dropout 

1 Male −0.040 Not 
Provided 

African 
American 

−0.640 Not 
Provided 

Slama, 2014 ML-
DTSA 

Reclassification 
into 

mainstream 
classrooms 

3 Spanish-
Speaking 

−0.579 to 
−0.538 

.55 

Low Income −0.245 to 
−0.152 

.70 

Schifter, 
2016 

DTSA High School 
Graduation 

1 Race 
(Multiple) 

−0.320 to 
0.255 

Not 
Provided 

Free or 
Reduced 
Lunch 

−0.388 Not 
Provided 
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Petras et al., 
2011 

ML-
DTSA 

First 
Occurrence of 

School 
Removal 

2 African 
American 

0.70 .34 

Male -- .51 
Free or 

Reduced 
Lunch, 

0.52 .52 

Carpenter, 
2007 

HGLM Likelihood of 
Dropout 

3 Black −0.769 to 
−0.309 

.11 
Hispanic .13 

White .76 
English 

Spoken at 
Home 

.069 to .382 Not 
Provided 

Cha, 2015 HGLM Dropout from 
Mathematics 

2 Male −0.287 to 
0.077 

.46 

Minority 
(Race) 

−0.822 to 
0.934 

.54 

Free Lunch −0.474 to 
0.196 

.27 

Subedi & 
Howard, 
2013 

HGLM High School 
Graduation and 

Dropout 

2 English 
Language 
Learner 

−0.23 Not 
Provided 

Werblow & 
Duesberry, 
2009 

HGLM High School 
Dropout 

2 Female −0.52 Not 
Provided 

Minority 
(Multiple) 

−1.09 to 
1.53 

Not 
Provided 

Note. If there is more than one model discussed in the source, the values reported are presented 
as a range. Only time-invariant covariates are reported. 
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Appendix C: Literature Informed Level-2 Covariate Values 
 
 

Source 
Model(s) 

Used 
Outcome 
Variable 

Levels 
in the 
Model 

Example 
Variables 

Used (Coded 
as 1) 

Range of 
Dichotomous 

Covariate Values 
(logit) 

Proportion 
coded 1 

Cha, 2015 HGLM Dropout from 
Mathematics 

2 Urban −0.51 to 0.766 0.27 
Suburban −0.266 to 0.397 0.42 

High 
minority 

−0.255 to 0.898 0.26 

Carpenter, 
2007 

HGLM Likelihood of 
Dropout 

2 School Type 1.36 Not 
Provided 

Urban −0.989 to 0.928 Not 
Provided 

Rural −0.204 to 0.680 Not 
Provided 

Werblow 
& 
Duesberry, 
2009 

HGLM High School 
Dropout 

2 Urban .0.07 Not 
Provided 

Rural 0.29 Not 
Provided 

Taniguchi, 
2017 

HGLM School 
Mobility 

2 Semi-Urban 0.638 to 0.941 0.24 

Note. If there is more than one model discussed in the source, the values reported are presented 
as a range. Only time-invariant covariates are reported. 
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Appendix D: Partial Eta Squared Values for the Factorial ANOVAs of the Relative 

Parameter Bias – Simulation Conditions as Independent Variables 

Table D1 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Intercept of Discrete-Time Period 1,	6!, For Each Estimating Model by 

Source of Variation 

 Model 
Source of Variation DTS ML-DTS CC-DTS 

Mobility 0.003 0.044 0.000 
Cluster Size 0.001 0.000 0.000 
Within-Cluster 0.000 0.000 0.000 
Variance 0.439 0.054 0.000 
Scale 0.019 0.000 0.000 
Mobility×Cluster Size 0.000 0.000 0.000 
Mobility×Within-Cluster 0.000 0.000 0.000 
Cluster Size×Within-Cluster 0.000 0.000 0.000 
Mobility×Variance 0.000 0.005 0.000 
Cluster Size×Variance 0.000 0.000 0.000 
Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Scale 0.000 0.000 0.000 
Cluster Size×Scale 0.000 0.000 0.000 
Within-Cluster Size×Scale 0.000 0.000 0.000 
Variance×Scale 0.001 0.000 0.000 
Mobility×Cluster Size×Within-Cluster 0.001 0.000 0.000 
Mobility×Cluster Size×Variance 0.000 0.000 0.000 
Mobility×Within-Cluster×Student 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Variance×Scale 0.000 0.000 0.000 
Cluster×Variance×Scale 0.000 0.000 0.000 
Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Variance×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility × Cluster Size × Within-Cluster × Variance × Scale 0.000 0.000 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table D2 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Intercept of Discrete-Time Period 2,	6", For Each Estimating Model by 

Source of Variation 

 Model 
Source of Variation DTS ML-DTS CC-DTS 

Mobility 0.007 0.038 0.000 
Cluster Size 0.001 0.000 0.000 
Within-Cluster 0.000 0.000 0.000 
Variance 0.263 0.045 0.000 
Scale 0.000 0.001 0.000 
Mobility×Cluster Size 0.000 0.000 0.000 
Mobility×Within-Cluster 0.000 0.000 0.000 
Cluster Size×Within-Cluster 0.001 0.001 0.000 
Mobility×Variance 0.000 0.005 0.000 
Cluster Size×Variance 0.000 0.000 0.000 
Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Scale 0.000 0.000 0.000 
Cluster Size×Scale 0.000 0.000 0.000 
Within-Cluster Size×Scale 0.000 0.000 0.000 
Variance×Scale 0.002 0.000 0.000 
Mobility×Cluster Size×Within-Cluster 0.001 0.000 0.000 
Mobility×Cluster Size×Variance 0.000 0.000 0.000 
Mobility×Within-Cluster×Student 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Variance×Scale 0.000 0.000 0.000 
Cluster×Variance×Scale 0.000 0.000 0.000 
Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Variance×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table D3 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Intercept of Discrete-Time Period 3,	6#, For Each Estimating Model by 

Source of Variation 

 Model 
Source of Variation DTS ML-DTS CC-DTS 

Mobility 0.011 0.027 0.000 
Cluster Size 0.000 0.000 0.000 
Within-Cluster 0.000 0.000 0.000 
Variance 0.084 0.029 0.000 
Scale 0.037 0.000 0.000 
Mobility×Cluster Size 0.000 0.000 0.000 
Mobility×Within-Cluster 0.000 0.000 0.000 
Cluster Size×Within-Cluster 0.000 0.000 0.000 
Mobility×Variance 0.001 0.003 0.000 
Cluster Size×Variance 0.000 0.000 0.000 
Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Scale 0.000 0.000 0.000 
Cluster Size×Scale 0.000 0.000 0.000 
Within-Cluster Size×Scale 0.000 0.000 0.000 
Variance×Scale 0.017 0.000 0.000 
Mobility×Cluster Size×Within-Cluster 0.000 0.000 0.000 
Mobility×Cluster Size×Variance 0.000 0.000 0.000 
Mobility×Within-Cluster×Student 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Variance×Scale 0.000 0.000 0.000 
Cluster×Variance×Scale 0.000 0.000 0.000 
Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Variance×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table D4 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Intercept of Discrete-Time Period 4,	6$,  For Each Estimating Model by 

Source of Variation 

 Model 
Source of Variation DTS ML-DTS CC-DTS 

Mobility 0.013 0.014 0.000 
Cluster Size 0.000 0.000 0.000 
Within-Cluster 0.000 0.000 0.000 
Variance 0.000 0.010 0.000 
Scale 0.130 0.001 0.000 
Mobility×Cluster Size 0.000 0.000 0.000 
Mobility×Within-Cluster 0.000 0.000 0.000 
Cluster Size×Within-Cluster 0.000 0.001 0.000 
Mobility×Variance 0.001 0.001 0.000 
Cluster Size×Variance 0.000 0.000 0.000 
Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Scale 0.001 0.000 0.000 
Cluster Size×Scale 0.000 0.000 0.000 
Within-Cluster Size×Scale 0.000 0.000 0.000 
Variance×Scale 0.040 0.001 0.000 
Mobility×Cluster Size×Within-Cluster 0.000 0.000 0.000 
Mobility×Cluster Size×Variance 0.000 0.000 0.000 
Mobility×Within-Cluster×Student 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Variance×Scale 0.000 0.000 0.000 
Cluster×Variance×Scale 0.000 0.000 0.000 
Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Variance×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table D5 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Intercept of Discrete-Time Period 5,	6%, For Each Estimating Model by 

Source of Variation 

 Model 
Source of Variation DTS ML-DTS CC-DTS 

Mobility 0.008 0.002 0.000 
Cluster Size 0.000 0.000 0.000 
Within-Cluster 0.000 0.000 0.000 
Variance 0.063 0.000 0.000 
Scale 0.263 0.010 0.000 
Mobility×Cluster Size 0.000 0.000 0.000 
Mobility×Within-Cluster 0.000 0.000 0.000 
Cluster Size×Within-Cluster 0.000 0.000 0.000 
Mobility×Variance 0.000 0.000 0.000 
Cluster Size×Variance 0.000 0.000 0.000 
Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Scale 0.000 0.001 0.000 
Cluster Size×Scale 0.000 0.000 0.000 
Within-Cluster Size×Scale 0.000 0.000 0.000 
Variance×Scale 0.072 0.003 0.000 
Mobility×Cluster Size×Within-Cluster 0.000 0.000 0.000 
Mobility×Cluster Size×Variance 0.000 0.000 0.000 
Mobility×Within-Cluster×Student 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Variance×Scale 0.000 0.000 0.000 
Cluster×Variance×Scale 0.000 0.000 0.000 
Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Variance×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias.  
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Table D6 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Level-One predictor,	@!, For Each Estimating Model by Source of Variation 

 Model 
Source of Variation DTS ML-DTS CC-DTS 

Mobility 0.000 0.005 0.000 
Cluster Size 0.001 0.000 0.000 
Within-Cluster 0.000 0.000 0.000 
Variance 0.165 0.008 0.000 
Scale 0.012 0.000 0.000 
Mobility×Cluster Size 0.000 0.000 0.000 
Mobility×Within-Cluster 0.000 0.000 0.000 
Cluster Size×Within-Cluster 0.000 0.000 0.000 
Mobility×Variance 0.000 0.001 0.000 
Cluster Size×Variance 0.000 0.000 0.000 
Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Scale 0.000 0.000 0.000 
Cluster Size×Scale 0.000 0.000 0.000 
Within-Cluster Size×Scale 0.000 0.000 0.000 
Variance×Scale 0.001 0.000 0.000 
Mobility×Cluster Size×Within-Cluster 0.000 0.000 0.000 
Mobility×Cluster Size×Variance 0.000 0.000 0.000 
Mobility×Within-Cluster×Student 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Variance×Scale 0.000 0.000 0.000 
Cluster×Variance×Scale 0.000 0.000 0.000 
Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Variance×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table D7 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Level-Two Predictor,	@", For Each Estimating Model by Source of Variation 

 Model 
Source of Variation DTS ML-DTS CC-DTS 

Mobility 0.012 0.016 0.000 
Cluster Size 0.000 0.000 0.000 
Within-Cluster 0.000 0.000 0.000 
Variance 0.020 0.001 0.000 
Scale 0.000 0.000 0.000 
Mobility×Cluster Size 0.001 0.001 0.001 
Mobility×Within-Cluster 0.000 0.000 0.000 
Cluster Size×Within-Cluster 0.000 0.000 0.000 
Mobility×Variance 0.000 0.000 0.000 
Cluster Size×Variance 0.000 0.000 0.000 
Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Scale 0.000 0.000 0.000 
Cluster Size×Scale 0.000 0.000 0.000 
Within-Cluster Size×Scale 0.000 0.000 0.000 
Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster 0.000 0.000 0.000 
Mobility×Cluster Size×Variance 0.000 0.000 0.000 
Mobility×Within-Cluster×Student 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Variance×Scale 0.000 0.000 0.000 
Cluster×Variance×Scale 0.000 0.000 0.000 
Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Variance×Scale 0.000 0.000 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table D8 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Variance Component,	L1",  For Each Estimating Model by Source of Variation 

 Model 
Source of Variation ML-DTS CC-DTS 

Mobility 0.186 0.000 
Cluster Size 0.010 0.008 
Within-Cluster 0.000 0.000 
Variance 0.008 0.000 
Scale 0.003 0.000 
Mobility×Cluster Size 0.000 0.000 
Mobility×Within-Cluster 0.000 0.000 
Cluster Size×Within-Cluster 0.000 0.000 
Mobility×Variance 0.000 0.000 
Cluster Size×Variance 0.000 0.000 
Within-Cluster×Variance 0.000 0.000 
Mobility×Scale 0.000 0.000 
Cluster Size×Scale 0.000 0.000 
Within-Cluster Size×Scale 0.000 0.000 
Variance×Scale 0.000 0.000 
Mobility×Cluster Size×Within-Cluster 0.000 0.000 
Mobility×Cluster Size×Variance 0.000 0.000 
Mobility×Within-Cluster×Student 0.000 0.000 
Cluster Size×Within-Cluster×Variance 0.000 0.000 
Mobility×Cluster Size×Scale 0.000 0.000 
Mobility×Within-Cluster×Scale 0.000 0.000 
Cluster Size×Within-Cluster×Scale 0.000 0.000 
Mobility×Variance×Scale 0.000 0.000 
Cluster×Variance×Scale 0.000 0.000 
Within-Cluster×Variance×Scale 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 0.000 
Mobility×Cluster Size×Variance×Scale 0.000 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Appendix E: Partial Eta Squared Values for the Factorial ANOVAs of the Relative 

Parameter Bias – Model as a Factor 

Table E1 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Intercept of Discrete-Time Period 1,	6!, by Source of Variation 

Source of Variation Partial Eta Squared 
Mobility 0.008 
Cluster Size 0.000 
Within-Cluster 0.000 
Variance 0.117 
Scale 0.003 
Model 0.385 
Mobility×Cluster Size 0.000 
Mobility×Within-Cluster 0.000 
Cluster Size×Within-Cluster 0.000 
Mobility×Variance 0.000 
Cluster Size×Variance 0.000 
Within-Cluster×Variance 0.000 
Mobility×Scale 0.000 
Cluster Size×Scale 0.000 
Within-Cluster Size×Scale 0.000 
Variance×Scale 0.000 
Mobility×Model 0.008 
Cluster Size×Model 0.000 
Within-Cluster×Model 0.000 
Variance×Model 0.114 
Scale×Model 0.004 
Mobility×Cluster Size×Within-Cluster 0.000 
Mobility×Cluster Size×Variance 0.000 
Mobility×Within-Cluster×Variance 0.000 
Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Scale 0.000 
Mobility×Within-Cluster×Scale 0.000 
Cluster Size×Within-Cluster×Scale 0.000 
Mobility×Variance×Scale 0.000 
Cluster Size×Variance×Scale 0.000 
Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Model 0.000 
Mobility×Within-Cluster×Model 0.000 
Cluster Size×Within-Cluster×Model 0.000 
Mobility×Variance×Model 0.001 
Cluster Size×Variance×Model 0.000 
Within-Cluster×Variance×Model 0.000 
Mobility×Scale×Model 0.000 
Cluster Size×Scale×Model 0.000 
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Within-Cluster×Scale×Model 0.000 
Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 
Mobility×Cluster Size×Variance×Scale 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Model 0.000 
Mobility×Cluster Size×Variance×Model 0.000 
Mobility×Within-Cluster×Variance×Model 0.000 
Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Scale×Model 0.000 
Mobility×Within-Cluster×Scale×Model 0.000 
Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Variance×Scale×Model 0.000 
Cluster Size×Variance×Scale×Model 0.000 
Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Cluster Size×Variance×Scale×Model 0.000 
Mobility×Within-Cluster×Variance×Scale×Model 0.000 
Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table E2 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Intercept of Discrete-Time Period 2,	6", by Source of Variation 

Source of Variation Partial Eta Squared 
Mobility 0.008 
Cluster Size 0.000 
Within-Cluster 0.000 
Variance 0.062 
Scale 0.000 
Model 0.245 
Mobility×Cluster Size 0.000 
Mobility×Within-Cluster 0.000 
Cluster Size×Within-Cluster 0.001 
Mobility×Variance 0.001 
Cluster Size×Variance 0.000 
Within-Cluster×Variance 0.000 
Mobility×Scale 0.000 
Cluster Size×Scale 0.000 
Within-Cluster Size×Scale 0.000 
Variance×Scale 0.000 
Mobility×Model 0.007 
Cluster Size×Model 0.000 
Within-Cluster×Model 0.000 
Variance×Model 0.049 
Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster 0.000 
Mobility×Cluster Size×Variance 0.000 
Mobility×Within-Cluster×Variance 0.000 
Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Scale 0.000 
Mobility×Within-Cluster×Scale 0.000 
Cluster Size×Within-Cluster×Scale 0.000 
Mobility×Variance×Scale 0.000 
Cluster Size×Variance×Scale 0.000 
Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Model 0.000 
Mobility×Within-Cluster×Model 0.000 
Cluster Size×Within-Cluster×Model 0.000 
Mobility×Variance×Model 0.001 
Cluster Size×Variance×Model 0.000 
Within-Cluster×Variance×Model 0.000 
Mobility×Scale×Model 0.000 
Cluster Size×Scale×Model 0.000 
Within-Cluster×Scale×Model 0.000 
Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 
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Mobility×Cluster Size×Variance×Scale 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Model 0.000 
Mobility×Cluster Size×Variance×Model 0.000 
Mobility×Within-Cluster×Variance×Model 0.000 
Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Scale×Model 0.000 
Mobility×Within-Cluster×Scale×Model 0.000 
Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Variance×Scale×Model 0.000 
Cluster Size×Variance×Scale×Model 0.000 
Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Cluster Size×Variance×Scale×Model 0.000 
Mobility×Within-Cluster×Variance×Scale×Model 0.000 
Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table E3 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Intercept of Discrete-Time Period 3,	6#, by Source of Variation 

Source of Variation Partial Eta Squared 
Mobility 0.007 
Cluster Size 0.000 
Within-Cluster 0.000 
Variance 0.022 
Scale 0.003 
Model 0.106 
Mobility×Cluster Size 0.000 
Mobility×Within-Cluster 0.000 
Cluster Size×Within-Cluster 0.000 
Mobility×Variance 0.001 
Cluster Size×Variance 0.000 
Within-Cluster×Variance 0.000 
Mobility×Scale 0.000 
Cluster Size×Scale 0.000 
Within-Cluster Size×Scale 0.000 
Variance×Scale 0.002 
Mobility×Model 0.005 
Cluster Size×Model 0.000 
Within-Cluster×Model 0.000 
Variance×Model 0.012 
Scale×Model 0.007 
Mobility×Cluster Size×Within-Cluster 0.000 
Mobility×Cluster Size×Variance 0.000 
Mobility×Within-Cluster×Variance 0.000 
Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Scale 0.000 
Mobility×Within-Cluster×Scale 0.000 
Cluster Size×Within-Cluster×Scale 0.000 
Mobility×Variance×Scale 0.000 
Cluster Size×Variance×Scale 0.000 
Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Model 0.000 
Mobility×Within-Cluster×Model 0.000 
Cluster Size×Within-Cluster×Model 0.000 
Mobility×Variance×Model 0.000 
Cluster Size×Variance×Model 0.000 
Within-Cluster×Variance×Model 0.000 
Mobility×Scale×Model 0.000 
Cluster Size×Scale×Model 0.000 
Within-Cluster×Scale×Model 0.000 
Variance×Scale×Model 0.003 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 
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Mobility×Cluster Size×Variance×Scale 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Model 0.000 
Mobility×Cluster Size×Variance×Model 0.000 
Mobility×Within-Cluster×Variance×Model 0.000 
Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Scale×Model 0.000 
Mobility×Within-Cluster×Scale×Model 0.000 
Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Variance×Scale×Model 0.000 
Cluster Size×Variance×Scale×Model 0.000 
Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Cluster Size×Variance×Scale×Model 0.000 
Mobility×Within-Cluster×Variance×Scale×Model 0.000 
Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table E4 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Intercept of Discrete-Time Period 4,	6$, by Source of Variation 

Source of Variation Partial Eta Squared 
Mobility 0.006 
Cluster Size 0.000 
Within-Cluster 0.000 
Variance 0.002 
Scale 0.015 
Model 0.022 
Mobility×Cluster Size 0.000 
Mobility×Within-Cluster 0.000 
Cluster Size×Within-Cluster 0.001 
Mobility×Variance 0.000 
Cluster Size×Variance 0.000 
Within-Cluster×Variance 0.000 
Mobility×Scale 0.000 
Cluster Size×Scale 0.000 
Within-Cluster Size×Scale 0.000 
Variance×Scale 0.005 
Mobility×Model 0.003 
Cluster Size×Model 0.000 
Within-Cluster×Model 0.000 
Variance×Model 0.002 
Scale×Model 0.024 
Mobility×Cluster Size×Within-Cluster 0.000 
Mobility×Cluster Size×Variance 0.000 
Mobility×Within-Cluster×Variance 0.000 
Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Scale 0.000 
Mobility×Within-Cluster×Scale 0.000 
Cluster Size×Within-Cluster×Scale 0.000 
Mobility×Variance×Scale 0.000 
Cluster Size×Variance×Scale 0.000 
Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Model 0.000 
Mobility×Within-Cluster×Model 0.000 
Cluster Size×Within-Cluster×Model 0.000 
Mobility×Variance×Model 0.000 
Cluster Size×Variance×Model 0.000 
Within-Cluster×Variance×Model 0.000 
Mobility×Scale×Model 0.000 
Cluster Size×Scale×Model 0.000 
Within-Cluster×Scale×Model 0.000 
Variance×Scale×Model 0.007 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 
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Mobility×Cluster Size×Variance×Scale 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Model 0.000 
Mobility×Cluster Size×Variance×Model 0.000 
Mobility×Within-Cluster×Variance×Model 0.000 
Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Scale×Model 0.000 
Mobility×Within-Cluster×Scale×Model 0.000 
Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Variance×Scale×Model 0.000 
Cluster Size×Variance×Scale×Model 0.000 
Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Cluster Size×Variance×Scale×Model 0.000 
Mobility×Within-Cluster×Variance×Scale×Model 0.000 
Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table E5 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Intercept of Discrete-Time Period 5,	6%, by Source of Variation 

Source of Variation Partial Eta Squared 
Mobility 0.002 
Cluster Size 0.000 
Within-Cluster 0.000 
Variance 0.006 
Scale 0.043 
Model 0.026 
Mobility×Cluster Size 0.000 
Mobility×Within-Cluster 0.000 
Cluster Size×Within-Cluster 0.000 
Mobility×Variance 0.000 
Cluster Size×Variance 0.000 
Within-Cluster×Variance 0.000 
Mobility×Scale 0.000 
Cluster Size×Scale 0.000 
Within-Cluster Size×Scale 0.000 
Variance×Scale 0.010 
Mobility×Model 0.001 
Cluster Size×Model 0.000 
Within-Cluster×Model 0.000 
Variance×Model 0.012 
Scale×Model 0.051 
Mobility×Cluster Size×Within-Cluster 0.000 
Mobility×Cluster Size×Variance 0.000 
Mobility×Within-Cluster×Variance 0.000 
Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Scale 0.000 
Mobility×Within-Cluster×Scale 0.000 
Cluster Size×Within-Cluster×Scale 0.000 
Mobility×Variance×Scale 0.000 
Cluster Size×Variance×Scale 0.000 
Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Model 0.000 
Mobility×Within-Cluster×Model 0.000 
Cluster Size×Within-Cluster×Model 0.000 
Mobility×Variance×Model 0.000 
Cluster Size×Variance×Model 0.000 
Within-Cluster×Variance×Model 0.000 
Mobility×Scale×Model 0.000 
Cluster Size×Scale×Model 0.000 
Within-Cluster×Scale×Model 0.000 
Variance×Scale×Model 0.011 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 
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Mobility×Cluster Size×Variance×Scale 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Model 0.000 
Mobility×Cluster Size×Variance×Model 0.000 
Mobility×Within-Cluster×Variance×Model 0.000 
Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Scale×Model 0.000 
Mobility×Within-Cluster×Scale×Model 0.000 
Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Variance×Scale×Model 0.000 
Cluster Size×Variance×Scale×Model 0.000 
Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Cluster Size×Variance×Scale×Model 0.000 
Mobility×Within-Cluster×Variance×Scale×Model 0.000 
Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
 
  



 

  246 
 

 

Table E6 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Level-One Predictor,	@!, For Each Estimating Model by Source of Variation 

Source of Variation Partial Eta Squared 
Mobility 0.000 
Cluster Size 0.001 
Within-Cluster 0.000 
Variance 0.030 
Scale 0.002 
Model 0.147 
Mobility×Cluster Size 0.000 
Mobility×Within-Cluster 0.000 
Cluster Size×Within-Cluster 0.000 
Mobility×Variance 0.000 
Cluster Size×Variance 0.000 
Within-Cluster×Variance 0.000 
Mobility×Scale 0.000 
Cluster Size×Scale 0.000 
Within-Cluster Size×Scale 0.000 
Variance×Scale 0.000 
Mobility×Model 0.001 
Cluster Size×Model 0.000 
Within-Cluster×Model 0.000 
Variance×Model 0.034 
Scale×Model 0.002 
Mobility×Cluster Size×Within-Cluster 0.000 
Mobility×Cluster Size×Variance 0.000 
Mobility×Within-Cluster×Variance 0.000 
Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Scale 0.000 
Mobility×Within-Cluster×Scale 0.000 
Cluster Size×Within-Cluster×Scale 0.000 
Mobility×Variance×Scale 0.000 
Cluster Size×Variance×Scale 0.000 
Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Model 0.000 
Mobility×Within-Cluster×Model 0.000 
Cluster Size×Within-Cluster×Model 0.000 
Mobility×Variance×Model 0.000 
Cluster Size×Variance×Model 0.000 
Within-Cluster×Variance×Model 0.000 
Mobility×Scale×Model 0.000 
Cluster Size×Scale×Model 0.000 
Within-Cluster×Scale×Model 0.000 
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Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 
Mobility×Cluster Size×Variance×Scale 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Model 0.000 
Mobility×Cluster Size×Variance×Model 0.000 
Mobility×Within-Cluster×Variance×Model 0.000 
Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Scale×Model 0.000 
Mobility×Within-Cluster×Scale×Model 0.000 
Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Variance×Scale×Model 0.000 
Cluster Size×Variance×Scale×Model 0.000 
Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Cluster Size×Variance×Scale×Model 0.000 
Mobility×Within-Cluster×Variance×Scale×Model 0.000 
Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table E7 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Coefficient for the Level-Two Predictor,	@", For Each Estimating Model by Source of Variation 

Source of Variation Partial Eta Squared 
Mobility 0.005 
Cluster Size 0.000 
Within-Cluster 0.000 
Variance 0.002 
Scale 0.000 
Model 0.049 
Mobility×Cluster Size 0.001 
Mobility×Within-Cluster 0.000 
Cluster Size×Within-Cluster 0.000 
Mobility×Variance 0.000 
Cluster Size×Variance 0.000 
Within-Cluster×Variance 0.000 
Mobility×Scale 0.000 
Cluster Size×Scale 0.000 
Within-Cluster Size×Scale 0.000 
Variance×Scale 0.000 
Mobility×Model 0.003 
Cluster Size×Model 0.000 
Within-Cluster×Model 0.000 
Variance×Model 0.003 
Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster 0.000 
Mobility×Cluster Size×Variance 0.000 
Mobility×Within-Cluster×Variance 0.000 
Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Scale 0.000 
Mobility×Within-Cluster×Scale 0.000 
Cluster Size×Within-Cluster×Scale 0.000 
Mobility×Variance×Scale 0.000 
Cluster Size×Variance×Scale 0.000 
Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Model 0.000 
Mobility×Within-Cluster×Model 0.000 
Cluster Size×Within-Cluster×Model 0.000 
Mobility×Variance×Model 0.000 
Cluster Size×Variance×Model 0.000 
Within-Cluster×Variance×Model 0.000 
Mobility×Scale×Model 0.000 
Cluster Size×Scale×Model 0.000 
Within-Cluster×Scale×Model 0.000 
Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 
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Mobility×Cluster Size×Variance×Scale 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Model 0.000 
Mobility×Cluster Size×Variance×Model 0.000 
Mobility×Within-Cluster×Variance×Model 0.000 
Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Scale×Model 0.000 
Mobility×Within-Cluster×Scale×Model 0.000 
Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Variance×Scale×Model 0.000 
Cluster Size×Variance×Scale×Model 0.000 
Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Cluster Size×Variance×Scale×Model 0.000 
Mobility×Within-Cluster×Variance×Scale×Model 0.000 
Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Table E8 

Partial Eta Squared Values for the Factorial ANOVAs of the Relative Parameter Bias of the 

Variance Component,	L1", For Each Estimating Model by Source of Variation 

Source of Variation Partial Eta Squared 
Mobility 0.037 
Cluster Size 0.009 
Within-Cluster 0.000 
Variance 0.001 
Scale 0.001 
Model 0.297 
Mobility×Cluster Size 0.000 
Mobility×Within-Cluster 0.000 
Cluster Size×Within-Cluster 0.000 
Mobility×Variance 0.000 
Cluster Size×Variance 0.000 
Within-Cluster×Variance 0.000 
Mobility×Scale 0.000 
Cluster Size×Scale 0.000 
Within-Cluster Size×Scale 0.000 
Variance×Scale 0.000 
Mobility×Model 0.043 
Cluster Size×Model 0.000 
Within-Cluster×Model 0.000 
Variance×Model 0.002 
Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster 0.000 
Mobility×Cluster Size×Variance 0.000 
Mobility×Within-Cluster×Variance 0.000 
Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Scale 0.000 
Mobility×Within-Cluster×Scale 0.000 
Cluster Size×Within-Cluster×Scale 0.000 
Mobility×Variance×Scale 0.000 
Cluster Size×Variance×Scale 0.000 
Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Model 0.000 
Mobility×Within-Cluster×Model 0.000 
Cluster Size×Within-Cluster×Model 0.000 
Mobility×Variance×Model 0.000 
Cluster Size×Variance×Model 0.000 
Within-Cluster×Variance×Model 0.000 
Mobility×Scale×Model 0.000 
Cluster Size×Scale×Model 0.000 
Within-Cluster×Scale×Model 0.000 
Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance 0.000 
Mobility×Cluster Size×Within-Cluster×Scale 0.000 
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Mobility×Cluster Size×Variance×Scale 0.000 
Mobility×Within-Cluster×Variance×Scale 0.000 
Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Model 0.000 
Mobility×Cluster Size×Variance×Model 0.000 
Mobility×Within-Cluster×Variance×Model 0.000 
Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Scale×Model 0.000 
Mobility×Within-Cluster×Scale×Model 0.000 
Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Variance×Scale×Model 0.000 
Cluster Size×Variance×Scale×Model 0.000 
Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Scale×Model 0.000 
Mobility×Cluster Size×Variance×Scale×Model 0.000 
Mobility×Within-Cluster×Variance×Scale×Model 0.000 
Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 
Mobility×Cluster Size×Within-Cluster×Variance×Scale×Model 0.000 

Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-
cluster sample size; Italicized and bolded values indicate a practically significant effect on relative parameter 
bias. 
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Appendix F: Nested Loop Plots for Relative Parameter Bias for Each Modeled Parameter 

Figure F1 

Relative Parameter Bias of a1, The Coefficient of the Intercept of the First Discrete-Time Period 
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Figure F2 

Relative Parameter Bias of a2, The Coefficient of the Intercept of the Second Discrete-Time Period 
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Figure F3 

Relative Parameter Bias of a3, The Coefficient of the Intercept of the Third Discrete-Time Period 
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Figure F4 

Relative Parameter Bias of a4, The Coefficient of the Intercept of the Fourth Discrete-Time Period 
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Figure F5 

Relative Parameter Bias of a5, The Coefficient of the Intercept of the Fifth Discrete-Time Period 
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Figure F6 

Relative Parameter Bias of !!, the Coefficient of the Level-1 Covariate 

 



 

  258 
 

 

Figure F7 

Relative Parameter Bias of !", the Coefficient of the Level-2 Covariate 
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Figure F8 

Relative Parameter Bias of "#", the Between-Clusters Variance Component 
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Appendix G: Nested Loop Plots for the Root Mean Square Error of Each Modeled Parameter 

Figure G1  

Root Mean Square Error of a1, the Coefficient of the Intercept of the First Discrete-Time Period 
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Figure G2 

Root Mean Square Error of a2, the Coefficient of the Intercept of the Second Discrete-Time Period 
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Figure G3 

Root Mean Square Error of a3, the Coefficient of the Intercept of the Third Discrete-Time Period 
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Figure G4 

Root Mean Square Error of a4, the Coefficient of the Intercept of the Fourth Discrete-Time Period 
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Figure G5 

Root Mean Square Error of a5, the Coefficient of the Intercept of the Fifth Discrete-Time Period 
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Figure G6 

Root Mean Square Error of !!, The Coefficient of the Level-1 Covariate 
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Figure G7 

Root Mean Square Error of !", The Coefficient of the Level-2 Covariate 
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Figure G8 

Root Mean Square Error of "#", The Between-Clusters Variance Component 
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Appendix H: Nested Loop Plots for the Coverage Rate of the 95% Confidence Intervals of Each Modeled Parameter 

Figure H1 

Coverage of the 95% Confidence Intervals of a1, The Coefficient of the Intercept of the First Discrete-Time Period 
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Figure H2 

Coverage of the 95% Confidence Intervals of a2, The Coefficient of the Intercept of the Second Discrete-Time Period 
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Figure H3 

Coverage of the 95% Confidence Intervals of a3, The Coefficient of the Intercept of the Third Discrete-Time Period 
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Figure H4 

Coverage of the 95% Confidence Intervals of a4, The Coefficient of the Intercept of the Fourth Discrete-Time Period 
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Figure H5  

Coverage of the 95% Confidence Intervals of a5, The Coefficient of the Intercept of the Fifth Discrete-Time Period 
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Figure H6  

Coverage of the 95% Confidence Intervals of !!, the Coefficient of the Level-1 Covariate 
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Figure H7 

Coverage of the 95% Confidence Intervals of !", the Coefficient of the Level-2 Covariate 

 

.
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Appendix I: Cox Effect for Each Main Effect and Interaction of Manipulated Conditions Entered in a Logistic Regression, by 

Model 

Table I1 

Cox effect for the Coverage of the 95% CIs of Each Main Effect and Interaction of Manipulated Conditions Entered into a Logistic 

Regression for the DTS Model 

Source of Variation 
!! Cox 
Effect 

!" Cox 
Effect 

!# Cox 
Effect 

!$ Cox 
Effect 

!% Cox 
Effect 

"! Cox 
Effect 

"" Cox 
Effect 

20% Mobility −0.02 −0.06 −0.08 −0.04 0.05 0.03 −0.07 
30% Mobility −0.07 −0.04 −0.15 −0.11 0.04 0.03 −0.16 
50 Clusters −0.26 −0.25 −0.13 −0.05 −0.03 −0.05 −0.10 
100 Clusters −0.67 −0.64 −0.47 −0.25 −0.10 −0.30 −0.23 
Within-Cluster −0.62 −0.67 −0.56 −0.43 −0.43 −0.21 −0.58 
Variance −1.27 −1.10 −0.78 −0.52 −0.45 −0.51 −0.55 
Weibull −0.21 −0.06 0.09 0.13 −0.05 0.00 −0.14 
20% Mobility×50 Clusters 0.07 0.05 0.10 −0.13 −0.06 −0.03 0.02 
30% Mobility×50 Clusters −0.05 −0.13 −0.05 −0.15 −0.07 0.00 −0.04 
20% Mobility×100 Clusters −0.10 −0.04 −0.02 −0.07 −0.11 0.03 −0.02 
30% Mobility×100 Clusters −0.02 −0.14 −0.06 −0.15 −0.15 0.23 −0.16 
20% Mobility×Within-Cluster 0.04 0.07 0.00 −0.09 −0.15 0.03 −0.02 
30% Mobility×Within-Cluster −0.11 −0.10 −0.04 −0.08 −0.18 0.20 0.00 
20% Mobility×Variance −0.07 0.01 0.01 0.02 0.10 −0.04 0.07 
30% Mobility×Variance −0.03 −0.02 0.04 −0.03 −0.01 −0.04 0.15 
20% Mobility×Weibull −0.04 −0.02 0.00 0.00 0.03 −0.09 −0.02 
30% Mobility×Weibull −0.01 −0.10 0.00 −0.10 0.01 −0.21 −0.01 
50 Clusters×Within-Cluster 0.04 0.08 0.02 −0.09 −0.01 0.03 0.03 
100 Clusters×Within-Cluster −0.20 −0.10 −0.14 −0.21 −0.09 −0.05 −0.03 
50 Clusters×Variance −0.40 −0.16 −0.21 −0.08 0.09 −0.17 0.00 
100 Clusters×Variance −1.33 −0.88 −0.48 −0.24 0.19 −0.43 0.02 
50 Clusters×Weibull 0.00 0.01 0.00 0.07 −0.03 −0.25* −0.02 
100 Clusters×Weibull −0.02 0.05 0.21 0.31 −0.10 −0.23 −0.03 
Within-Cluster×Variance −0.07 0.00 −0.08 −0.05 0.05 −0.37 0.07 
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Within-Cluster×Weibull 0.01 0.03 0.04 −0.01 −0.09 −0.32 0.02 
Variance×Weibull 0.11 0.27 0.34 0.10 −0.28 −0.32 0.04 
20% Mobility×Within-Cluster×Variance 0.06 −0.04 −0.01 −0.01 −0.01 −0.07  
20% Mobility×50 Clusters×Within-Cluster −0.29 −0.23 −0.18 0.10 0.10 0.02  
30% Mobility×50 Clusters×Within-Cluster −0.01 −0.01 −0.04 0.04 0.04 −0.32  
20% Mobility×100 Clusters×Within-Cluster −0.06 −0.17 −0.05 0.08 0.14 0.00  
30% Mobility×100 Clusters×Within-Cluster −0.12 −0.09 −0.09 0.03 0.06 −0.51  
20% Mobility×50 Clusters×Variance 0.00 −0.04 −0.05 0.05 −0.01 0.02  
30% Mobility×50 Clusters×Variance −0.05 −0.11 −0.05 0.04 0.03 0.01  
20% Mobility×100 Clusters×Variance 0.22 −0.12 −0.06 0.00 −0.08 −0.07  
30% Mobility×100 Clusters×Variance −0.13 −0.11 −0.10 0.00 −0.01 −0.14  
20% Mobility×50 Clusters×Weibull 0.00 0.02 0.08 0.07 0.05 0.09  
30% Mobility×50 Clusters×Weibull −0.05 0.10 0.10 0.21 0.10 0.24  
20% Mobility×100 Clusters×Weibull 0.01 0.04 0.00 0.12 0.14 0.00  
30% Mobility×100 Clusters×Weibull −0.05 0.07 −0.01 0.26 0.30 −0.01  
30% Mobility×Within-Cluster×Variance 0.11 0.04 0.00 0.00 0.05 −0.14  
20% Mobility×Within-Cluster×Weibull −0.01 −0.04 −0.01 0.12 0.10 0.09  
30% Mobility×Within-Cluster×Weibull 0.04 0.05 0.00 0.09 0.17 0.16  
20% Mobility×Variance×Weibull 0.02 0.00 0.05 0.06 −0.07 0.11  
30% Mobility×Variance×Weibull −0.01 0.04 −0.03 0.27 0.12 0.23  
50 Clusters×Within-Cluster×Variance −0.05 −0.06 0.12 0.03 −0.10 −0.22  
100 Clusters×Within-Cluster×Variance −0.43* 0.01 0.10 0.09 −0.09 −0.49  
50 Clusters×Within-Cluster×Weibull −0.01 0.06 0.02 −0.02 −0.03 0.10  
100 Clusters×Within-Cluster×Weibull −0.08 0.09 0.12 0.00 −0.03 −0.06  
50 Clusters×Variance×Weibull 0.09 0.09 0.16 0.02 −0.27 0.10  
100 Clusters×Variance×Weibull −0.10 0.45 0.46 0.15 −0.75 −0.05  
Within-Cluster×Variance×Weibull 0.02 0.04 0.03 −0.03 −0.11 0.06  
30% Mobility×Within-Cluster×Variance×Weibull      −0.10  
30% Mobility×50 Clusters×Within-Cluster×Variance      0.30  
20% Mobility×100 Clusters×Within-Cluster×Variance      0.20  
20% Mobility×50 Clusters×Within-Cluster×Variance      0.03  
30% Mobility×100 Clusters×Within-Cluster×Variance      0.55  
20% Mobility×50 Clusters×Within-Cluster×Weibull      −0.13  
30% Mobility×50 Clusters×Within-Cluster×Weibull      −0.05  
20% Mobility×100 Clusters×Within-Cluster×Weibull      −0.12  
30% Mobility×100 Clusters×Within-Cluster×Weibull      0.11  
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20% Mobility×50 Clusters×Variance×Weibull      −0.05  
30% Mobility×50 Clusters×Variance×Weibull      −0.29  
20% Mobility×100 Clusters×Variance×Weibull      0.08  
30% Mobility×100 Clusters×Variance×Weibull      0.00  
20% Mobility×Within-Cluster×Variance×Weibull      0.04  
50 Clusters×Within-Cluster×Variance×Weibull      −0.05  
100 Clusters×Within-Cluster×Variance×Weibull      −0.36  
Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-cluster sample size; Cluster Size = reference is 
30 clusters; Mobility Rate = reference is 10%; Italicized and bolded values indicate a practically significant effect of magnitude 0.25 on coverage of the 
95% confidence interval. * Represents a practical but not statistically significant finding. Blank cells represent variables not included in the logistic 
regression for a given model parameter based on reported model fit statistics.  
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Table I2 

Cox Effect for the Coverage of the 95% CIs of Each Main Effect and Interaction of Manipulated Conditions Entered into a Logistic 

Regression for the ML-DTS Model 

Source of Variation 
!! Cox 
Effect 

!" Cox 
Effect 

!# Cox 
Effect 

!$ Cox 
Effect 

!% Cox 
Effect 

"! Cox 
Effect 

"" Cox 
Effect 

20% Mobility −0.12 −0.10 −0.14 −0.20 −0.02 0.01 −0.06 
30% Mobility −0.29 −0.28 −0.28 −0.34 −0.22 −0.01 −0.29 
50 Clusters 0.01 −0.07 0.03 −0.01 −0.03 0.06 0.04 
100 Clusters −0.05 −0.07 0.06 −0.02 −0.04 −0.08 0.06 
Within-Cluster −0.07 −0.09 −0.06 −0.05 −0.13 −0.07 0.03 
Variance −0.23 −0.23 −0.17 −0.21 −0.14 −0.06 0.07 
Weibull −0.07 −0.14 −0.10 −0.12 −0.04 0.15 0.04 
20% Mobility×50 Clusters −0.04 −0.07 0.01 −0.07 −0.02 −0.04 −0.08 
30% Mobility×50 Clusters −0.10 −0.08 −0.03 −0.08 0.04 −0.05 −0.03 
20% Mobility×100 Clusters −0.17 −0.18 −0.13 −0.04 −0.02 0.01 −0.23 
30% Mobility×100 Clusters −0.34 −0.35 −0.29 −0.17 −0.05 0.15 −0.23 
20% Mobility×Within-Cluster −0.16 −0.15 −0.13 −0.02 −0.06 0.07 −0.24 
30% Mobility×Within-Cluster −0.24 −0.26 −0.22 −0.13 −0.15 0.08 −0.16 
20% Mobility×Variance −0.17 −0.15 −0.08 −0.02 −0.02 −0.02 0.03 
30% Mobility×Variance −0.27 −0.24 −0.21 −0.07 0.02 0.01 0.03 
20% Mobility×Weibull 0.04 0.09 0.10 0.16 0.06 −0.04 0.00 
30% Mobility×Weibull 0.03 0.10 0.12 0.18 0.12 −0.17 −0.08 
50 Clusters×Within-Cluster 0.05 0.08 0.03 0.06 0.06 0.07 −0.07 
100 Clusters×Within-Cluster −0.08 −0.02 −0.11 −0.11 0.02 0.18 −0.12 
50 Clusters×Variance −0.11 −0.03 −0.09 0.03 0.05 0.06 −0.03 
100 Clusters×Variance −0.17 −0.17 −0.15 −0.02 0.05 0.03 0.04 
50 Clusters×Weibull 0.04 0.06 0.03 0.02 0.01 −0.20 −0.03 
100 Clusters×Weibull 0.05 0.11 0.10 0.17 0.12 −0.03 −0.15 
Within-Cluster×Variance 0.05 0.04 0.06 −0.01 0.03 0.10 −0.05 
Within-Cluster×Weibull 0.02 0.02 0.05 0.04 0.04 −0.06 0.08 
Variance×Weibull 0.16 0.18 0.16 0.17 0.03 −0.08 −0.06 
20% Mobility×Within-Cluster×Variance      −0.04 0.07 
20% Mobility×50 Clusters×Within-Cluster      −0.08 0.20 
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30% Mobility×50 Clusters×Within-Cluster      −0.15 0.05 
20% Mobility×100 Clusters×Within-Cluster      −0.14 0.28 
30% Mobility×100 Clusters×Within-Cluster      −0.30 −0.02 
20% Mobility×50 Clusters×Variance      −0.06 0.03 
30% Mobility×50 Clusters×Variance      −0.13 0.05 
20% Mobility×100 Clusters×Variance      −0.07 0.08 
30% Mobility×100 Clusters×Variance      −0.22 0.11 
20% Mobility×50 Clusters×Weibull      −0.04 −0.02 
30% Mobility×50 Clusters×Weibull      0.17 0.06 
20% Mobility×100 Clusters×Weibull      −0.11 0.08 
30% Mobility×100 Clusters×Weibull      −0.06 0.16 
20% Mobility×Variance×Weibull      0.00 0.00 
30% Mobility×Within-Cluster×Variance      −0.19 0.18 
20% Mobility×Within-Cluster×Weibull      −0.06 −0.02 
30% Mobility×Within-Cluster×Weibull      0.08 0.01 
50 Clusters×Within-Cluster×Weibull      0.19 −0.06 
30% Mobility×Variance×Weibull      −0.05 0.05 
50 Clusters×Within-Cluster×Variance      −0.20 −0.01 
100 Clusters×Within-Cluster×Variance      −0.20 −0.02 
Within-Cluster×Variance×Weibull      −0.05 −0.03 
100 Clusters×Within-Cluster×Weibull      0.00 0.02 
50 Clusters×Variance×Weibull      0.09 0.06 
100 Clusters×Variance×Weibull      0.10 0.05 
Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-cluster sample size; Cluster Size = reference is 
30 clusters; Mobility Rate = reference is 10%; Italicized and bolded values indicate a practically significant effect of magnitude 0.25 on coverage of the 
95% confidence interval. Blank cells represent variables not included in the logistic regression for a given model parameter based on reported model fit 
statistics.  
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Table I3 

Cox Effect for the Coverage of the 95% CIs of Each Main Effect and Interaction of Manipulated Conditions Entered into a Logistic 

Regression for the CC-DTS Model 

Source of Variation 
!! Cox 
Effect 

!" Cox 
Effect 

!# Cox 
Effect 

!$ Cox 
Effect 

!% Cox 
Effect 

"! Cox 
Effect 

"" Cox 
Effect 

20% Mobility −0.04 0.06 0.03 0.00 0.07 −0.02 −0.01 
30% Mobility 0.10 0.04 0.05 −0.09 0.00 0.02 0.04 
50 Clusters 0.04 −0.10 0.12 0.01 0.05 0.00 0.10 
100 Clusters −0.01 −0.02 0.18 0.10 0.12 0.00 0.14 
Within Cluster −0.06 −0.10 −0.03 0.04 −0.08 0.03 −0.05 
Variance −0.08 −0.09 −0.04 −0.17 −0.03 0.00 0.00 
Weibull 0.07 −0.06 0.01 0.01 −0.01 0.02 −0.01 
20% Mobility×50 Clusters 0.05 0.12  −0.07    
30% Mobility×50 Clusters 0.02 0.14  0.16    
20% Mobility×100 Clusters 0.11 0.14  −0.13    
30% Mobility×100 Clusters −0.02 −0.03  0.10    
20% Mobility×Within Cluster −0.04 −0.11  −0.10    
30% Mobility×Within Cluster −0.13 −0.03  0.02    
20% Mobility×Variance 0.05 −0.02  0.08    
30% Mobility×Variance 0.00 −0.03  0.09    
20% Mobility×Weibull 0.01 −0.03  0.16    
30% Mobility×Weibull −0.05 0.00  −0.03    
50 Clusters×Within Cluster 0.08 0.09  0.06    
100 Clusters×Within Cluster 0.10 0.05  −0.09    
50 Clusters×Variance 0.01 0.05  0.17    
100 Clusters×Variance 0.07 0.07  0.08    
50 Clusters×Weibull −0.06 0.02  −0.09    
100 Clusters×Weibull 0.03 0.10  0.12    
Within Cluster×Variance 0.01 0.05  0.09    
Within Cluster×Weibull −0.05 0.03  −0.05    
Variance×Weibull −0.03 0.01  0.01    
20% Mobility×Within Cluster×Variance    −0.13    
20% Mobility×50 Clusters×Within Cluster    0.21    
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30% Mobility×50 Clusters×Within Cluster    −0.17    
20% Mobility×100 Clusters×Within Cluster    0.40    
30% Mobility×100 Clusters×Within Cluster    −0.08    
20% Mobility×50 Clusters×Variance    −0.05    
30% Mobility×50 Clusters×Variance    −0.12    
20% Mobility×100 Clusters×Variance    0.09    
30% Mobility×100 Clusters×Variance    −0.02    
20% Mobility×50 Clusters×Weibull    −0.08    
30% Mobility×50 Clusters×Weibull    0.01    
20% Mobility×100 Clusters×Weibull    −0.17    
30% Mobility×100 Clusters×Weibull    −0.06    
20% Mobility×Variance×Weibull    −0.02    
30% Mobility×Within Cluster×Variance    0.00    
20% Mobility×Within Cluster×Weibull    −0.09    
30% Mobility×Within Cluster×Weibull    0.04    
50 Clusters×Within Cluster×Weibull    0.11    
30% Mobility×Variance×Weibull    0.00    
50 Clusters×Within Cluster×Variance    −0.16    
100 Clusters×Within Cluster×Variance    −0.04    
Within Cluster×Variance×Weibull    −0.01    
100 Clusters×Within Cluster×Weibull    −0.08    
50 Clusters×Variance×Weibull    0.01    
Note. Scale = Weibull scale parameter, Variance = variance at the cluster-level; Within-Cluster = within-cluster sample size; Cluster Size = reference is 
30 clusters; Mobility Rate = reference is 10%; Italicized and bolded values indicate a practically significant effect of magnitude 0.25 on coverage of the 
95% confidence interval. Blank cells represent variables not included in the logistic regression for a given model parameter based on reported model fit 
statistics.  
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Technical Appendix A: Calculation of the Residual Intra-Class Correlation Coefficient 

 In the discrete-time survival analysis literature, if the ICC is calculated and the method 

for the calculation has been reported, it is commonly calculated using the following formula: 

!!"/(!!" +	#
!

$ ). In this formulation, the individual-level error terms are assumed to follow a 

standard logistic distribution when the outcome is binary. For example, Moerbeek (2012) 

conducted a methodological study using discrete-time survival analysis, and when varying the 

variance-between clusters, reports the equivalent ICCs using this approach. However, this 

formulation of the ICC is equivalent to the ICC for the baseline model, or the model without 

covariates included. In this study, the generating model is a conditional model, and therefore, the 

between-clusters variance represents the residual variance, or the variance between-clusters after 

accounting for the variance described by the covariates included in the model. Therefore, the 

ICC was calculated to represent the residual ICC using the following equation: 

&'' = 	 %&!!#"(()#")+,#!-
%&!!#"(()#")+,#!-+&$!#%(()#%)+

&!
'
					, 

where )( is the coefficient for the level-1 covariate, )" is the coefficient for the level-2 covariate, 

*. is the probability that the level-2 covariate, Z, is equal to 1, */ is the probability that the level-

1 covariate, X, is equal to 1, and #
!

$  is the total variance at level-1.  

For example, when the variance between-clusters was equal to 0.32, the ICC can be 

calculated as: 

. 10 = &'' = 	 (0.5" ∗ 0.3(1 − 0.3) + 0.32)
(0.5" ∗ 0.3(1 − 0.3) + 0.32) + 0.5" ∗ 0.5(1 − 0.5) + *

"
3
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Technical Appendix B: Data Generation in R 

library(parallel) 
repsPerCondition <- 1000 
 
simulationConditions <- data.frame( 
  nRATE = c(.10, .10, .10, .10, .10, .10, .20, .20, .20, .20, .20, .20, .30,  
            .30, .30, .30, .30, .30, .10, .10, .10, .10, .10, .10, .20, .20,  
            .20, .20, .20, .20, .30, .30, .30, .30, .30, .30, .10, .10, .10,  
            .10, .10, .10, .20, .20, .20, .20, .20, .20, .30, .30, .30, .30,  
            .30, .30, .10, .10, .10, .10, .10, .10, .20, .20, .20, .20, .20,  
            .20, .30, .30, .30, .30, .30, .30), 
  nSTU = c(25, 25, 25, 75, 75, 75, 25, 25, 25, 75, 75, 75, 25, 25, 25, 75,  
           75, 75, 25, 25, 25, 75, 75, 75, 25, 25, 25, 75, 75, 75, 25, 25,  
           25, 75, 75, 75, 25, 25, 25, 75, 75, 75, 25, 25, 25, 75, 75, 75,  
           25, 25, 25, 75, 75, 75, 25, 25, 25, 75, 75, 75, 25, 25, 25, 75,  
           75, 75, 25, 25, 25, 75, 75, 75), 
  nSCH = c(30, 50, 100, 30, 50, 100, 30, 50, 100, 30, 50, 100, 30, 50, 100,  
           30, 50, 100, 30, 50, 100, 30, 50, 100, 30, 50, 100,30, 50, 100,  
           30, 50, 100, 30, 50, 100, 30, 50, 100, 30, 50, 100, 30, 50, 100, 
           30, 50, 100, 30, 50, 100, 30, 50, 100, 30, 50, 100, 30, 50, 100, 
           30, 50, 100, 30, 50, 100, 30, 50, 100, 30, 50, 100), 
  nVAR = c(1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09,  
           1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09,  
           1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09, 1.09,  
           1.09, 1.09, 1.09, .32, .32, .32, .32, .32, .32, .32, .32, .32, .32,  
           .32, .32, .32, .32, .32, .32, .32, .32, .32, .32, .32, .32, .32, .32,  
           .32, .32, .32, .32, .32, .32, .32, .32, .32, .32, .32, .32), 
  nLOGHAZ_T1 = c(-2.51, -2.51, -2.51, -2.51, -2.51, -2.51,-2.51, -2.51,  
                 -2.51, -2.51, -2.51, -2.51,-2.51, -2.51, -2.51,-2.51, -2.51,  
                 -2.51, -3.25, -3.25, -3.25, -3.25, -3.25, -3.25, -3.25, -3.25,  
                 -3.25, -3.25, -3.25, -3.25, -3.25, -3.25, -3.25, -3.25, -3.25,  
                 -3.25, -2.51, -2.51, -2.51, -2.51, -2.51, -2.51,-2.51, -2.51,  
                 -2.51, -2.51, -2.51, -2.51,-2.51, -2.51, -2.51,-2.51, -2.51,  
                 -2.51, -3.25, -3.25, -3.25,-3.25, -3.25, -3.25, -3.25, -3.25,  
                 -3.25, -3.25, -3.25, -3.25, -3.25, -3.25, -3.25, -3.25, -3.25,  
                 -3.25),  
  nLOGHAZ_T2 = c(-2.13, -2.13,-2.13, -2.13, -2.13, -2.13, -2.13, -2.13, -2.13,  
                 -2.13, -2.13, -2.13, -2.13, -2.13, -2.13, -2.13, -2.13, -2.13,  
                 -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88,  
                 -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88,  
                 -2.13, -2.13,-2.13, -2.13, -2.13, -2.13, -2.13, -2.13, -2.13,  
                 -2.13, -2.13, -2.13, -2.13, -2.13, -2.13, -2.13, -2.13, -2.13,  
                 -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88,  
                 -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88, -2.88), 
  nLOGHAZ_T3 = c(-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90, 
                 -1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-2.67,-2.67,-2.67,-2.67, 
                 -2.67,-2.67,-2.67,-2.67,-2.67,-2.67,-2.67,-2.67,-2.67,-2.67,-2.67, 
                 -2.67,-2.67,-2.67,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90, 
                 -1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-1.90,-2.67, 
                 -2.67,-2.67,-2.67,-2.67,-2.67,-2.67,-2.67,-2.67,-2.67,-2.67,-2.67, 
                 -2.67,-2.67,-2.67,-2.67,-2.67,-2.67), 
  nLOGHAZ_T4 = c(-1.74, -1.74, -1.74, -1.74, -1.74, -1.74, -1.74, -1.74, -1.74,  
                 -1.74, -1.74,-1.74, -1.74, -1.74, -1.74, -1.74, -1.74, -1.74,  
                 -2.51, -2.51, -2.51, -2.51,-2.51, -2.51, -2.51, -2.51, -2.51,  
                 -2.51, -2.51, -2.51, -2.51, -2.51, -2.51,-2.51, -2.51, -2.51,  
                 -1.74, -1.74, -1.74, -1.74, -1.74, -1.74, -1.74, -1.74,-1.74,  
                 -1.74, -1.74, -1.74, -1.74, -1.74, -1.74, -1.74, -1.74, -1.74,  
                 -2.51,-2.51, -2.51, -2.51, -2.51, -2.51, -2.51, -2.51, -2.51,  
                 -2.51, -2.51, -2.51,-2.51, -2.51, -2.51, -2.51, -2.51, -2.51), 
  nLOGHAZ_T5 = c(-1.60, -1.60, -1.60, -1.60, -1.60, -1.60, -1.60, -1.60, -1.60,  
                 -1.60, -1.60,-1.60, -1.60, -1.60, -1.60, -1.60, -1.60, -1.60,  
                 -2.39, -2.39, -2.39, -2.39,-2.39, -2.39, -2.39, -2.39, -2.39,  
                 -2.39, -2.39, -2.39, -2.39, -2.39, -2.39,-2.39, -2.39, -2.39,  
                 -1.60, -1.60, -1.60, -1.60, -1.60, -1.60, -1.60, -1.60,-1.60, 
                 -1.60, -1.60, -1.60, -1.60, -1.60, -1.60, -1.60, -1.60, -1.60,  
                 -2.39,-2.39, -2.39, -2.39, -2.39, -2.39, -2.39, -2.39, -2.39,  
                 -2.39, -2.39, -2.39,-2.39, -2.39, -2.39, -2.39, -2.39, -2.39) 
) 
nREP <- rep((1:repsPerCondition), each = nrow(simulationConditions)) 
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simulateParam <- cbind(nREP, do.call(rbind, replicate(n = repsPerCondition,  
                                                      simulationConditions,  
                                                      simplify = FALSE))) 
simulateParam$UniqueID <- 1:nrow(simulateParam) 
 
simulateParams <- split(simulateParam, 1:nrow(simulateParam)) 
 
rm(repsPerCondition, nREP, simulateParam, simulationConditions) 
 
UniqueIDs <- do.call(rbind, simulateParams) 
write.csv(UniqueIDs, file = "E:/UniqueIDXtoX.csv") 
 
rm(UniqueIDs) 
 
#Simulate the data 
SIM <- function(myParams) { 
   
  library(coda) 
  library(MASS) 
  library(dplyr) 
   
  nRATE <- myParams$nRATE 
  nSCH <- myParams$nSCH 
  nSTU <- myParams$nSTU 
  nVAR <- myParams$nVAR 
  nREP <- myParams$nREP 
  nLOGHAZ_T1 <- myParams$nLOGHAZ_T1  
  nLOGHAZ_T2 <- myParams$nLOGHAZ_T2 
  nLOGHAZ_T3 <- myParams$nLOGHAZ_T3 
  nLOGHAZ_T4 <- myParams$nLOGHAZ_T4 
  nLOGHAZ_T5 <- myParams$nLOGHAZ_T5 
  UniqueID <- myParams$UniqueID 
  set.seed(nREP) 
   
  #Generate Data#  
  SCH_T1 = rep(seq(1, nSCH), each = nSTU) 
  numSTU <- nSTU*nSCH 
   
  # Generate X and Z 
  X <- rep(0, numSTU) 
  X[sample(1:numSTU, .5*numSTU)] <- 1 
  Z <- rep(0, times = nSCH) 
  Z[sample(1:nSCH, .3 * nSCH)] <- 1 
   
  # Generate Mobility 
  numMobSTU <- numSTU*nRATE 
  MOB <- sample(1:numSTU, numMobSTU) 
  MOB_PATTERN <- rep(0, numSTU)  
  MOBSTU <- rep(0, numSTU)   
  MOBSTU[MOB] <- ifelse(MOBSTU[MOB] == nSTU, 1, MOBSTU[MOB] + 1) 
   
  # 40% Movers at T2 
  MOB1 <- MOB[1:(.40*numMobSTU)]    
  MOB_PATTERN[MOB1] <- 1 
   
  # 30% Movers at T3 
  MOB2 <- MOB[(.40*numMobSTU + 1):(.70*numMobSTU)]   
  MOB_PATTERN[MOB2] <- 2 
   
  # 10% Movers at T4 
  MOB3 <- MOB[(.70*numMobSTU + 1):(.80*numMobSTU)] 
  MOB_PATTERN[MOB3] <- 3 
   
  # 10% Movers at T2 and T3 
  MOB4 <- MOB[(.80*numMobSTU + 1):(.90*numMobSTU)] 
  MOB_PATTERN[MOB4] <- 4 
   
  # 10% Movers at T2 and T4 
  MOB5 <- MOB[(.90*numMobSTU + 1):(numMobSTU)] 
  MOB_PATTERN[MOB5] <- 5 
   
  # Assign Schools 
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  SCH_T2 <- SCH_T1 
  SCH_T2[MOB1] <- ifelse(SCH_T2[MOB1] == nSCH, 1, SCH_T2[MOB1] + 1) 
  SCH_T2[MOB4] <- ifelse(SCH_T2[MOB4] == nSCH, 1, SCH_T2[MOB4] + 1) 
  SCH_T2[MOB5] <- ifelse(SCH_T2[MOB5] == nSCH, 1, SCH_T2[MOB5] + 1) 
   
  SCH_T3 <- SCH_T2 
  SCH_T3[MOB2] <- ifelse(SCH_T3[MOB2] == nSCH, 1, SCH_T3[MOB2] + 1) 
  SCH_T3[MOB4] <- ifelse(SCH_T3[MOB4] == nSCH, 1, SCH_T3[MOB4] + 1)       
   
  SCH_T4 <- SCH_T3 
  SCH_T4[MOB3] <- ifelse(SCH_T4[MOB3] == nSCH, 1, SCH_T4[MOB3] + 1) 
  SCH_T4[MOB5] <- ifelse(SCH_T4[MOB5] == nSCH, 1, SCH_T4[MOB5] + 1) 
   
  SCH_T5 <- SCH_T4 
   
  # Assign mobility indicator per time period 
  MOB_T2 <- ifelse(SCH_T2 == SCH_T1, 0, 1) 
  MOB_T3 <- ifelse(SCH_T3 == SCH_T2, 0, 1) 
  MOB_T4 <- ifelse(SCH_T4 == SCH_T3, 0, 1) 
 
  rm(MOB,MOB1,MOB2,MOB3,MOB4,MOB5) 
   
  # Generate Z for CC-DTS 
  Z1 <- Z[SCH_T1] 
  Z2 <- Z[SCH_T2] 
  Z3 <- Z[SCH_T3] 
  Z4 <- Z[SCH_T4] 
  Z5 <- Z[SCH_T5] 
   
  # Bind data and convert to long format 
  dat <- rbind(cbind(STU = 1:numSTU, SCH = SCH_T1, Z = Z1, 
                     D1 = 1, D2 = 0, D3 = 0, D4 = 0, D5 = 0, TIME = 1,  
                     MOBSTU, MOB_PATTERN, MOB_T2 = 0, MOB_T3 = 0,  
                     MOB_T4 = 0), 
               cbind(STU = 1:numSTU, SCH = SCH_T2, Z = Z2, 
                     D1 = 0, D2 = 1, D3 = 0, D4 = 0, D5 = 0,  
                     TIME = 2, MOBSTU, MOB_PATTERN,  
                     MOB_T2, MOB_T3 = 0, MOB_T4 = 0), 
               cbind(STU = 1:numSTU, SCH = SCH_T3, Z = Z3, 
                     D1 = 0, D2 = 0, D3 = 1, D4 = 0, D5 = 0,  
                     TIME = 3, MOBSTU, MOB_PATTERN,  
                     MOB_T2 = 0, MOB_T3, MOB_T4 = 0), 
               cbind(STU = 1:numSTU, SCH = SCH_T4, Z = Z4, 
                     D1 = 0, D2 = 0, D3 = 0, D4 = 1, D5 = 0,  
                     TIME = 4, MOBSTU, MOB_PATTERN,  
                     MOB_T2 = 0, MOB_T3 = 0, MOB_T4), 
               cbind(STU = 1:numSTU, SCH = SCH_T5, Z = Z5, 
                     D1 = 0, D2 = 0, D3 = 0, D4 = 0, D5 = 1, TIME = 5,  
                     MOBSTU, MOB_PATTERN, MOB_T2 = 0, MOB_T3 = 0,  
                     MOB_T4 = 0)) 
   
  rm(Z2,Z3,Z4,Z5,SCH_T2,SCH_T3,SCH_T4,SCH_T5, MOB_T2, MOB_T3, MOB_T4,  
     MOB_PATTERN, MOBSTU) 
   
  dat <- cbind(dat, SCH1 = rep(SCH_T1, time = 5), SCH0 = rep(1, numSTU), 
               Z1 = rep(Z1, time = 5), X) 
   
  rm(SCH_T1,X,Z,Z1) 
   
  # Generate Random Effect 
  u <- rnorm(n = nSCH, mean = 0, sd = sqrt(nVAR)) 
   
  # Generate Events 
  hlogit <-  nLOGHAZ_T1*dat[, "D1"] + nLOGHAZ_T2*dat[, "D2"] +  
    nLOGHAZ_T3*dat[, "D3"] + nLOGHAZ_T4*dat[, "D4"] +  
    nLOGHAZ_T5*dat[, "D5"] + .5*dat[, "X"] + .5*dat[, "Z"] +  
    u[dat[, "SCH"]] 
   
  rm(u) 
   
  # Compute the event  
  HazProb <- exp(hlogit) / (1 + exp(hlogit)) 
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  dat <- cbind(dat, Event = rbinom(n = numSTU*5, size = 1, prob = HazProb),  
               nREP,nRATE,nSCH,nSTU,nVAR,nLOGHAZ_T1, nLOGHAZ_T2, nLOGHAZ_T3, 
               nLOGHAZ_T4, nLOGHAZ_T5, DatasetID = UniqueID) 
   
  rm(HazProb,hlogit) 
   
  # Convert to person-period data format 
  EventData <- group_by(as.data.frame(dat), STU) %>% 
    mutate(first1 = min(which(Event == 1 | row_number() == n()))) %>% 
    filter(row_number() <= first1) %>% 
    select(-first1) 
   
  rm(dat) 
   
  EventData <- as.data.frame(EventData) 
   
  # Datafile export 
  myfile <- file.path("ComputerPath",  
                      paste0(UniqueID, "_SimDAT", ".csv")) 
   
  write.csv(EventData, file = myfile, row.names = FALSE) 
  rm(myfile) 
   
} 
 
##Run Simulations 
system.time({ 
  cl <- makeCluster(mc <- getOption("cl.cores", 6)) 
  simulationResults <- parLapply(cl, simulateParams, SIM) 
  stopCluster(cl) 
}) 
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Technical Appendix C: Model Estimation in R 

library(parallel) 
 
SIM <- function(filename) { 
   
library(lme4) 
   
dat <- read.csv(file = filename, header = TRUE) 
   
##RUN THE MODELS   
# DTS Estimation 
DTS <- glmer(Event ~ 0 + D1 + D2 + D3 + D4 + D5 + X + Z1 + (1 | SCH0),  
             family = binomial, data = dat, 
             glmerControl(check.nobs.vs.rankZ = "ignore",  
                          check.nobs.vs.nRE = "ignore", 
                          check.nlev.gtreq.5 = "ignore",  
                          check.nlev.gtr.1 = "ignore", 
                          check.conv.singular = "ignore")) 
 
# Get results 
results_DTS <- cbind(fixef(DTS), confint(DTS, parm = "beta_", method = "Wald")) 
colnames(results_DTS) <- c("coef","LowerCI","UpperCI") 
results_DTS <- rbind(results_DTS, var = as.data.frame(VarCorr(DTS))$vcov) 
results_DTS <- cbind(results_DTS, Model = 1, Convergence = 0) 
rm(DTS) 
 
# ML-DTS Estimation 
MDTS <- glmer(Event ~  0 + D1 + D2 + D3 + D4 + D5 + X + Z1 + (1 | SCH1),  
              family = binomial, data = dat,  
              glmerControl(optimizer = "bobyqa",  
                           optCtrl = list(maxfun = 2e5))) 
 
# Get results 
results_MDTS <- cbind(fixef(MDTS), confint(MDTS, parm = "beta_", method = "Wald")) 
colnames(results_MDTS) <- c("coef","LowerCI","UpperCI") 
results_MDTS <- rbind(results_MDTS, var = as.data.frame(VarCorr(MDTS))$vcov) 
results_MDTS <- cbind(results_MDTS, Model = 2,  
                      Convergence = ifelse(any( 
                        grepl("failed to converge", 
                              MDTS@optinfo$conv$lme4$messages))  
                        == 'TRUE', 1, 0)) 
rm(MDTS) 
 
# CC-DTS Estimation 
CCDTS <- glmer(Event ~  0 + D1 + D2 + D3 + D4 + D5 + X + Z + (1 | SCH),  
               family = binomial, data = dat,  
               glmerControl(optimizer = "bobyqa",  
                            optCtrl = list(maxfun = 2e5))) 
 
# Get results 
results_CCDTS <- cbind(fixef(CCDTS), confint(CCDTS, parm = "beta_", method = "Wald")) 
colnames(results_CCDTS) <- c("coef","LowerCI","UpperCI") 
results_CCDTS <- rbind(results_CCDTS, var = as.data.frame(VarCorr(CCDTS))$vcov) 
results_CCDTS <- cbind(results_CCDTS, Model = 3,  
                       Convergence = ifelse(any( 
                         grepl("failed to converge", 
                               CCDTS@optinfo$conv$lme4$messages))  
                         == 'TRUE', 1, 0)) 
rm(CCDTS) 
 
# Bind results 
Results_ALL <- rbind(results_DTS, results_MDTS, results_CCDTS) 
rm(results_DTS, results_MDTS, results_CCDTS) 
TrueValues <- c(nLOGHAZ_T1 = dat[1, 25], nLOGHAZ_T2 = dat[1, 26],  
                nLOGHAZ_T3 = dat[1, 27], nLOGHAZ_T4 = dat[1, 28],  
                nLOGHAZ_T5 = dat[1, 29], .5, .5, nVAR = dat[1, 24]) 
Results_ALL <- cbind(nREP = dat[1, 20], nRATE = dat[1, 21], nSCH = dat[1, 22], 
                     nSTU = dat[1, 23], nVAR = dat[1, 24], 
                     nLOGHAZ_T1 = dat[1, 25], UniqueID = dat[1, 30], TrueValues,  
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                     Results_ALL) 
rm(dat, TrueValues) 
 
return(Results_ALL) 
} 
 
#Run Simulation 
filenames <- list.files(path = “ComputerPath", pattern = "csv", full.names = TRUE) 
 
system.time({ 
  cl <- makeCluster(mc <- getOption("cl.cores", 6)) 
  simulationResults <- parLapply(cl, filenames, SIM) 
  stopCluster(cl) 
}) 
 
simResults <- do.call(rbind, simulationResults) 
write.csv(simResults, "SimResultsXthroughX.csv") 
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Technical Appendix D: Analysis in R 

library(plyr) 
library(heplots) 
 
numREPS <- 1000 
 
dataSIM <- data.frame(simResults) 
dataSIM$Param <- as.factor(rep(c("D1", "D2", "D3", "D4", "D5", "X", "Z1", "Var"))) 
rm(simResults) 
 
#Analysis 
dataSIM$cov <- ifelse(dataSIM$LowerCI <= dataSIM$TrueValues &  
                        dataSIM$UpperCI >= dataSIM$TrueValues, 1, 0) 
dataSIM$RPB <- (dataSIM$coef - dataSIM$TrueValues)/dataSIM$TrueValues 
 
EstModels <- ddply(dataSIM, c("Model", "Param", "nRATE", "nSCH", "nSTU",  
                              "nVAR", "nLOGHAZ_T1","TrueValues"), 
                   summarize, RPBmean = mean(RPB), 
                   covRate = sum(cov)/numREPS, 
                   sd = sd(coef), 
                   EstAverage = mean(coef)) 
 
rm(numREPS)  
 
EstModels$RMSE <- sqrt((EstModels$EstAverage - EstModels$TrueValues)^2 +  
                         (EstModels$sd)^2) 
 
EstModels <- EstModels[-c(11:12)] 
 
#ANOVA 
dataSIM$nRATE <- as.factor(dataSIM$nRATE) 
dataSIM$nSCH <- as.factor(dataSIM$nSCH) 
dataSIM$nSTU <- as.factor(dataSIM$nSTU) 
dataSIM$nVAR <- as.factor(dataSIM$nVAR) 
dataSIM$nLOGHAZ_T1 <- as.factor(dataSIM$nLOGHAZ_T1) 
dataSIM$Model <- as.factor(dataSIM$Model) 
 
dataDTS <- subset(dataSIM, dataSIM$Model == 1) 
dataMLDTS <- subset(dataSIM, dataSIM$Model == 2) 
dataCCDTS <- subset(dataSIM, dataSIM$Model == 3) 
dataSIM_Var <- subset(dataSIM, dataSIM$Model == 2 | dataSIM$Model == 3) 
 
#Set contrasts 
options(contrasts = c("contr.helmert", "contr.poly"))  
 
#ANOVA for RPB with Model as IV with partial eta squared 
D1 <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1*Model,  
               data = subset(dataSIM, Param == "D1")), 
            type = 3, anova = TRUE, partial = TRUE) 
 
D2 <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1*Model,  
               data = subset(dataSIM, Param == "D2")),  
            type = 3, anova = TRUE, partial = TRUE) 
 
D3 <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1*Model,  
               data = subset(dataSIM, Param == "D3")),  
            type = 3, anova = TRUE, partial = TRUE) 
 
D4 <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1*Model,  
               data = subset(dataSIM, Param == "D4")), 
            type = 3, anova = TRUE, partial = TRUE) 
 
D5 <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1*Model,  
               data = subset(dataSIM, Param == "D5")), 
            type = 3, anova = TRUE, partial = TRUE) 
 
X <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1*Model,  
              data = subset(dataSIM, Param == "X")),  
           type = 3, anova = TRUE, partial = TRUE) 
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Z <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1*Model,  
              data = subset(dataSIM, Param == "Z1")),  
           type = 3, anova = TRUE, partial = TRUE) 
 
Var <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1*Model,  
                data = subset(dataSIM_Var, Param == "Var")), 
             type = 3, anova = TRUE, partial = TRUE) 
 
Model_Eta <- round(cbind(D1,  

D2,  
D3,  
D4,  
D5,  
X,  
Z,  
Var,  

          Model = 0),  
                   digits = 3) 
names(Model_Eta) <- c("D1Eta", "D1SS", "D1DF", "D1F", "D1P","D2Eta",  
                      "D2SS", "D2DF", "D2F", "D2P", "D3Eta", "D3SS",  
                      "D3DF", "D3F", "D3P", "D4Eta", "D4SS", "D4DF",  
                      "D4F", "D4P", "D5Eta", "D5SS", "D5DF", "D5F",  
                      "D5P", "XEta", "XSS", "XDF", "XF", "XP", "ZEta",  
                      "ZSS", "ZDF", "ZF", "ZP", "VarEta", "VarSS",  
                      "VarDF", "VarF", "VarP", "Model") 
rm(D1, D2, D3, D4, D5, X, Z, Var) 
 
#ANOVA within model# 
#DTS Model 
D1_DTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                   data = subset(dataDTS, Param == "D1")),  
                type = 3, anova = TRUE, partial = TRUE) 
 
D2_DTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                   data = subset(dataDTS, Param == "D2")), 
                type = 3, anova = TRUE, partial = TRUE) 
 
D3_DTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                   data = subset(dataDTS, Param == "D3")),  
                type = 3, anova = TRUE, partial = TRUE) 
 
D4_DTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                   data = subset(dataDTS, Param == "D4")), 
                type = 3, anova = TRUE, partial = TRUE) 
 
D5_DTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                   data = subset(dataDTS, Param == "D5")),  
                type = 3, anova = TRUE, partial = TRUE) 
 
X_DTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                  data = subset(dataDTS, Param == "X")), 
               type = 3, anova = TRUE, partial = TRUE) 
 
Z_DTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                  data = subset(dataDTS, Param == "Z1")),  
               type = 3, anova = TRUE, partial = TRUE) 
 
DTS_ANOVA <- round(cbind(D1_DTS,  

D2_DTS,  
D3_DTS,  
D4_DTS,  
D5_DTS,  

                         X_DTS,  
Z_DTS,  
VarEta = 0,  
VarSS = 0,  

     VarDF = 0,  
                         VarF = 0,  

VarP = 0,  
Model = 1),  

                   digits = 3) 
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names(DTS_ANOVA) <- c("D1Eta", "D1SS", "D1DF", "D1F", "D1P","D2Eta",  
                      "D2SS", "D2DF", "D2F", "D2P", "D3Eta", "D3SS",  
                      "D3DF", "D3F", "D3P", "D4Eta", "D4SS", "D4DF",  
                      "D4F", "D4P", "D5Eta", "D5SS", "D5DF", "D5F",  
                      "D5P", "XEta", "XSS", "XDF", "XF", "XP", "ZEta",  
                      "ZSS", "ZDF", "ZF", "ZP", "VarEta", "VarSS", "VarDF",  
                      "VarF", "VarP", "Model") 
rm(D1_DTS, D2_DTS, D3_DTS, D4_DTS, D5_DTS, X_DTS, Z_DTS) 
 
#ML-DTS Model 
D1_MLDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                     data = subset(dataMLDTS, Param == "D1")),  
                  type = 3, anova = TRUE, partial = TRUE) 
 
D2_MLDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                     data = subset(dataMLDTS, Param == "D2")), 
                  type = 3, anova = TRUE, partial = TRUE) 
 
D3_MLDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                     data = subset(dataMLDTS, Param == "D3")),  
                  type = 3, anova = TRUE, partial = TRUE) 
 
D4_MLDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                     data = subset(dataMLDTS, Param == "D4")), 
                  type = 3, anova = TRUE, partial = TRUE) 
 
D5_MLDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                     data = subset(dataMLDTS, Param == "D5")),  
                  type = 3, anova = TRUE, partial = TRUE) 
 
X_MLDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                    data = subset(dataMLDTS, Param == "X")),  
                 type = 3, anova = TRUE, partial = TRUE) 
 
Z_MLDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                    data = subset(dataMLDTS, Param == "Z1")), 
                 type = 3, anova = TRUE, partial = TRUE) 
 
Var_MLDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                      data = subset(dataMLDTS, Param == "Var")), 
                   type = 3, anova = TRUE, partial = TRUE) 
 
MLDTS_ANOVA <- round(cbind(D1_MLDTS,  

D2_MLDTS,  
D3_MLDTS,  
D4_MLDTS, 
D5_MLDTS,  
X_MLDTS,  
Z_MLDTS,  
Var_MLDTS, 
Model = 2),  

                     digits = 3) 
 
names(MLDTS_ANOVA) <- c("D1Eta", "D1SS", "D1DF", "D1F", "D1P","D2Eta",  
                        "D2SS", "D2DF", "D2F", "D2P", "D3Eta", "D3SS",  
                        "D3DF", "D3F", "D3P", "D4Eta", "D4SS", "D4DF",  
                        "D4F", "D4P", "D5Eta", "D5SS", "D5DF", "D5F",  
                        "D5P", "XEta", "XSS", "XDF", "XF", "XP", "ZEta",  
                        "ZSS", "ZDF", "ZF", "ZP", "VarEta", "VarSS", "VarDF",  
                        "VarF", "VarP", "Model") 
rm(D1_MLDTS, D2_MLDTS, D3_MLDTS, D4_MLDTS, D5_MLDTS, X_MLDTS, Z_MLDTS, Var_MLDTS) 
 
#CC-DTS Model 
D1_CCDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                     data = subset(dataCCDTS, Param == "D1")),  
                  type = 3, anova = TRUE, partial = TRUE) 
 
D2_CCDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                     data = subset(dataCCDTS, Param == "D2")),  
                  type = 3, anova = TRUE, partial = TRUE) 
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D3_CCDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                     data = subset(dataCCDTS, Param == "D3")), 
                  type = 3, anova = TRUE, partial = TRUE) 
 
D4_CCDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                     data = subset(dataCCDTS, Param == "D4")), 
                  type = 3, anova = TRUE, partial = TRUE) 
 
D5_CCDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                     data = subset(dataCCDTS, Param == "D5")), 
                  type = 3, anova = TRUE, partial = TRUE) 
 
X_CCDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                    data = subset(dataCCDTS, Param == "X")), 
                 type = 3, anova = TRUE, partial = TRUE) 
 
Z_CCDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                    data = subset(dataCCDTS, Param == "Z1")),  
                 type = 3, anova = TRUE, partial = TRUE) 
 
Var_CCDTS <- etasq(lm(RPB ~ nRATE*nSCH*nSTU*nVAR*nLOGHAZ_T1,  
                      data = subset(dataCCDTS, Param == "Var")),  
                   type = 3, anova = TRUE, partial = TRUE) 
 
CCDTS_ANOVA <- round(cbind(D1_CCDTS,  

D2_CCDTS,  
D3_CCDTS,  
D4_CCDTS,  
D5_CCDTS,  
X_CCDTS,  
Z_CCDTS,  
Var_CCDTS,  
Model = 3),  

                     digits = 3) 
names(CCDTS_ANOVA) <- c("D1Eta", "D1SS", "D1DF", "D1F", "D1P","D2Eta",  
                        "D2SS", "D2DF", "D2F", "D2P", "D3Eta", "D3SS",  
                        "D3DF", "D3F", "D3P", "D4Eta", "D4SS", "D4DF",  
                        "D4F", "D4P", "D5Eta", "D5SS", "D5DF", "D5F",  
                        "D5P", "XEta", "XSS", "XDF", "XF", "XP", "ZEta",  
                        "ZSS", "ZDF", "ZF", "ZP", "VarEta", "VarSS",  
                        "VarDF", "VarF", "VarP", "Model") 
rm(D1_CCDTS, D2_CCDTS, D3_CCDTS, D4_CCDTS, D5_CCDTS, X_CCDTS, Z_CCDTS,  
   Var_CCDTS, dataDTS, dataMLDTS, dataCCDTS) 
 
AnovaResults <- rbind(Model_Eta, DTS_ANOVA, MLDTS_ANOVA, CCDTS_ANOVA) 
rm(Model_Eta, DTS_ANOVA, MLDTS_ANOVA, CCDTS_ANOVA) 
 
#Logistic Regression for Coverage of the 95% CIs. 
 
options(contrasts = c("contr.treatment", "contr.poly"))  
 
 
D1_DTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^3,  
          data = subset(dataDTS, Param == "D1"),  
          family = binomial) #Good 
 
D2_DTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^3,  
          data = subset(dataDTS, Param == "D2"),  
          family = binomial) #Good  
 
D3_DTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^3,  
          data = subset(dataDTS, Param == "D3"),  
          family = binomial) #Good 
 
D4_DTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^3,  
          data = subset(dataDTS, Param == "D4"),  
          family = binomial) #Good 
 
D5_DTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^3,  
          data = subset(dataDTS, Param == "D5"), #Good 
          family = binomial) 
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DTS_Log_Haz <- round(cbind(D1Estimate = D1_DTS$coefficients, 
                           D1SE = summary(D1_DTS)$coefficients[,2], 
                           D1TVal = summary(D1_DTS)$coefficients[,3],  
                           D1PVal = summary(D1_DTS)$coefficients[,4],  
                           D1OR = exp(D1_DTS$coefficients), 
                           D1_CoxEffect = D1_DTS$coefficients/1.65, 
                           D2Estimate = D2_DTS$coefficients,  
                           D2SE = summary(D2_DTS)$coefficients[,2], 
                           D2TVal = summary(D2_DTS)$coefficients[,3],  
                           D2PVal = summary(D2_DTS)$coefficients[,4],  
                           D2OR = exp(D2_DTS$coefficients),  
                           D2_CoxEffect = D2_DTS$coefficients/1.65, 
                           D3Estimate = D3_DTS$coefficients, 
                           D3SE = summary(D3_DTS)$coefficients[,2], 
                           D3TVal = summary(D3_DTS)$coefficients[,3],  
                           D3PVal = summary(D3_DTS)$coefficients[,4],  
                           D3OR = exp(D3_DTS$coefficients),  
                           D3_CoxEffect = D3_DTS$coefficients/1.65, 
                           D4Estimate = D4_DTS$coefficients,  
                           D4SE = summary(D4_DTS)$coefficients[,2], 
                           D4TVal = summary(D4_DTS)$coefficients[,3],  
                           D4PVal = summary(D4_DTS)$coefficients[,4],  
                           D4OR = exp(D4_DTS$coefficients), 
                           D4_CoxEffect = D4_DTS$coefficients/1.65, 
                           D5Estimate = D5_DTS$coefficients,  
                           D5SE = summary(D5_DTS)$coefficients[,2], 
                           D5TVal = summary(D5_DTS)$coefficients[,3],  
                           D5PVal = summary(D5_DTS)$coefficients[,4],  
                           D5OR = exp(D5_DTS$coefficients), 
                           D5_CoxEffect = D5_DTS$coefficients/1.65), digits = 2) 
 
DTS_Log_Haz <- cbind(names = rownames(DTS_Log_Haz), DTS_Log_Haz) 
 
X_DTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^4,  
         data = subset(dataDTS, Param == "X"),  
         family = binomial) #4 way is better than 3 way, but not 5 way. Go with 4 way 
 
DTS_Log_X <- round(cbind(XEstimate = X_DTS$coefficients,  
                         XSE = summary(X_DTS)$coefficients[,2], 
                         XTVal = summary(X_DTS)$coefficients[,3],  
                         XPVal = summary(X_DTS)$coefficients[,4],  
                         XOR = exp(X_DTS$coefficients),  
                         X_CoxEffect = X_DTS$coefficients/1.65),  
                   digits = 2) 
 
DTS_Log_X <- cbind(names = rownames(DTS_Log_X), DTS_Log_X) 
 
Z_DTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^2,  
         data = subset(dataDTS, Param == "Z1"),  
         family = binomial) #2 way is the best fit 
 
DTS_Log_Z <- round(cbind(Zestimate = Z_DTS$coefficients, 
                         ZSE = summary(Z_DTS)$coefficients[,2], 
                         ZTVal = summary(Z_DTS)$coefficients[,3],  
                         ZPVal = summary(Z_DTS)$coefficients[,4],  
                         ZOR = exp(Z_DTS$coefficients), 
                         Z_CoxEffect = Z_DTS$coefficients/1.65),  
                   digits = 2) 
 
DTS_Log_Z <- cbind(names = rownames(DTS_Log_Z), DTS_Log_Z) 
 
DTS_Log <- merge(DTS_Log_Haz, DTS_Log_X, by = "names", all = TRUE, sort = FALSE) 
DTS_Log <- merge(DTS_Log, DTS_Log_Z, by = "names", all = TRUE, sort = FALSE) 
 
rm(D1_DTS, D2_DTS, D3_DTS, D4_DTS, D5_DTS, X_DTS, Z_DTS, DTS_Log_Haz, DTS_Log_X, 
DTS_Log_Z) 
 
D1_MLDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^2,  
              data = subset(dataMLDTS, Param == "D1"),  
              family = binomial) # 2 way is best 
 
D2_MLDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^2,  
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              data = subset(dataMLDTS, Param == "D2"),  
              family = binomial) # 2 way is best 
 
D3_MLDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^2,  
              data = subset(dataMLDTS, Param == "D3"),  
              family = binomial) # 2 way is best 
 
D4_MLDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^2,  
              data = subset(dataMLDTS, Param == "D4"),  
              family = binomial) # 2 way is best 
 
D5_MLDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^2,  
              data = subset(dataMLDTS, Param == "D5"),  
              family = binomial) # 2 way is best 
 
MLDTS_Log_Haz <- round(cbind(D1Estimate = D1_MLDTS$coefficients,  
                         D1SE = summary(D1_MLDTS)$coefficients[,2], 
                         D1TVal = summary(D1_MLDTS)$coefficients[,3],  
                         D1PVal = summary(D1_MLDTS)$coefficients[,4],  
                         D1OR = exp(D1_MLDTS$coefficients), 
                         D1_CoxEffect = D1_MLDTS$coefficients/1.65, 
                         D2Estimate = D2_MLDTS$coefficients, 
                         D2SE = summary(D2_MLDTS)$coefficients[,2], 
                         D2TVal = summary(D2_MLDTS)$coefficients[,3],  
                         D2PVal = summary(D2_MLDTS)$coefficients[,4],  
                         D2OR = exp(D2_MLDTS$coefficients),  
                         D2_CoxEffect = D2_MLDTS$coefficients/1.65, 
                         D3Estimate = D3_MLDTS$coefficients, 
                         D3SE = summary(D3_MLDTS)$coefficients[,2], 
                         D3TVal = summary(D3_MLDTS)$coefficients[,3],  
                         D3PVal = summary(D3_MLDTS)$coefficients[,4],  
                         D3OR = exp(D3_MLDTS$coefficients),  
                         D3_CoxEffect = D3_MLDTS$coefficients/1.65, 
                         D4Estimate = D4_MLDTS$coefficients,  
                         D4SE = summary(D4_MLDTS)$coefficients[,2], 
                         D4TVal = summary(D4_MLDTS)$coefficients[,3],  
                         D4PVal = summary(D4_MLDTS)$coefficients[,4],  
                         D4OR = exp(D4_MLDTS$coefficients), 
                         D4_CoxEffect = D4_MLDTS$coefficients/1.65, 
                         D5Estimate = D5_MLDTS$coefficients,  
                         D5SE = summary(D5_MLDTS)$coefficients[,2], 
                         D5TVal = summary(D5_MLDTS)$coefficients[,3],  
                         D5PVal = summary(D5_MLDTS)$coefficients[,4],  
                         D5OR = exp(D5_MLDTS$coefficients), 
                         D5_CoxEffect = D5_MLDTS$coefficients/1.65), 
                       digits = 2) 
 
MLDTS_Log_Haz <- cbind(names = rownames(MLDTS_Log_Haz), MLDTS_Log_Haz) 
 
X_MLDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^3,  
             data = subset(dataMLDTS, Param == "X"),  
             family = binomial) #3 way is best 
 
Z_MLDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^3,  
             data = subset(dataMLDTS, Param == "Z1"),  
             family = binomial) #2 way is best 
 
MLDTS_Log_XZ <- round(cbind(XEstimate = X_MLDTS$coefficients, 
                       XSE = summary(X_MLDTS)$coefficients[,2], 
                       XTVal = summary(X_MLDTS)$coefficients[,3],  
                       XPVal = summary(X_MLDTS)$coefficients[,4],  
                       XOR = exp(X_MLDTS$coefficients),  
                       X_CoxEffect = X_MLDTS$coefficients/1.65, 
                       ZEstimate = Z_MLDTS$coefficients,  
                       ZSE = summary(Z_MLDTS)$coefficients[,2], 
                       ZTVal = summary(Z_MLDTS)$coefficients[,3],  
                       ZPVal = summary(Z_MLDTS)$coefficients[,4],  
                       ZOR = exp(Z_MLDTS$coefficients), 
                       Z_CoxEffect = Z_MLDTS$coefficients/1.65), 
                 digits = 2) 
 
MLDTS_Log_XZ <- cbind(names = rownames(MLDTS_Log_XZ), MLDTS_Log_XZ) 



 

  295 
 

 

 
MLDTS_Log <- merge(MLDTS_Log_Haz, MLDTS_Log_XZ, by = "names", all = TRUE, sort = 
FALSE) 
 
rm(D1_MLDTS, D2_MLDTS, D3_MLDTS, D4_MLDTS, D5_MLDTS, X_MLDTS, Z_MLDTS, MLDTS_Log_Haz, 
MLDTS_Log_XZ) 
 
D1_CCDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^2,  
              data = subset(dataCCDTS, Param == "D1"),  
              family = binomial) #2 way is best 
 
D2_CCDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^2,  
              data = subset(dataCCDTS, Param == "D2"),  
              family = binomial) #2 way is best 
 
CCDTS_Log_D1D2 <- round(cbind(D1Estimate = D1_CCDTS$coefficients,  
                         D1SE = summary(D1_CCDTS)$coefficients[,2], 
                         D1TVal = summary(D1_CCDTS)$coefficients[,3],  
                         D1PVal = summary(D1_CCDTS)$coefficients[,4],  
                         D1OR = exp(D1_CCDTS$coefficients), 
                         D1_CoxEffect = D1_CCDTS$coefficients/1.65, 
                         D2Estimate = D2_CCDTS$coefficients,  
                         D2SE = summary(D2_CCDTS)$coefficients[,2], 
                         D2TVal = summary(D2_CCDTS)$coefficients[,3],  
                         D2PVal = summary(D2_CCDTS)$coefficients[,4],  
                         D2OR = exp(D2_CCDTS$coefficients),  
                         D2_CoxEffect = D2_CCDTS$coefficients/1.65), 
                   digits = 2) 
 
CCDTS_Log_D1D2 <- cbind(names = rownames(CCDTS_Log_D1D2), CCDTS_Log_D1D2) 
 
D3_CCDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1),  
              data = subset(dataCCDTS, Param == "D3"),  
              family = binomial) #Main effects only 
 
D5_CCDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1),  
                data = subset(dataCCDTS, Param == "D5"),  
                family = binomial) #Main effects 
 
X_CCDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1),  
               data = subset(dataCCDTS, Param == "X"),  
               family = binomial) #Main effects 
 
Z_CCDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1),  
               data = subset(dataCCDTS, Param == "Z1"),  
               family = binomial) #Main effects 
 
CCDTS_Log_main <- round(cbind(D3Estimate = D3_CCDTS$coefficients, 
                              D3SE = summary(D3_CCDTS)$coefficients[,2], 
                              D3TVal = summary(D3_CCDTS)$coefficients[,3],  
                              D3PVal = summary(D3_CCDTS)$coefficients[,4],  
                              D3OR = exp(D3_CCDTS$coefficients),  
                              D3_CoxEffect = D3_CCDTS$coefficients/1.65, 
                              D5Estimate = D5_CCDTS$coefficients,  
                              D5SE = summary(D5_CCDTS)$coefficients[,2], 
                              D5TVal = summary(D5_CCDTS)$coefficients[,3],  
                              D5PVal = summary(D5_CCDTS)$coefficients[,4],  
                              D5OR = exp(D5_CCDTS$coefficients), 
                              D5_CoxEffect = D5_CCDTS$coefficients/1.65, 
                              XEstimate = X_CCDTS$coefficients,  
                              XSE = summary(X_CCDTS)$coefficients[,2], 
                              XTVal = summary(X_CCDTS)$coefficients[,3],  
                              XPVal = summary(X_CCDTS)$coefficients[,4],  
                              XOR = exp(X_CCDTS$coefficients),  
                              X_CoxEffect = X_CCDTS$coefficients/1.65, 
                              ZEstimate = Z_CCDTS$coefficients, 
                              ZSE = summary(Z_CCDTS)$coefficients[,2], 
                              ZTVal = summary(Z_CCDTS)$coefficients[,3],  
                              ZPVal = summary(Z_CCDTS)$coefficients[,4],  
                              ZOR = exp(Z_CCDTS$coefficients), 
                              Z_CoxEffect = Z_CCDTS$coefficients/1.65), 
                        digits = 2) 
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CCDTS_Log_main <- cbind(names = rownames(CCDTS_Log_main), CCDTS_Log_main) 
 
D4_CCDTS <- glm(cov ~ (nRATE+nSCH+nSTU+nVAR+nLOGHAZ_T1)^3,  
              data = subset(dataCCDTS, Param == "D4"),  
              family = binomial)#3 way is best 
 
CCDTS_Log_D4 <- round(cbind(D4Estimate = D4_CCDTS$coefficients,  
                         D4SE = summary(D4_CCDTS)$coefficients[,2], 
                         D4TVal = summary(D4_CCDTS)$coefficients[,3],  
                         D4PVal = summary(D4_CCDTS)$coefficients[,4],  
                         D4OR = exp(D4_CCDTS$coefficients), 
                         D4_CoxEffect = D4_CCDTS$coefficients/1.65), 
                   digits = 2) 
 
CCDTS_Log_D4 <- cbind(names = rownames(CCDTS_Log_D4), CCDTS_Log_D4) 
 
CCDTS_Log <- merge(CCDTS_Log_D1D2, CCDTS_Log_main, by = "names", all = TRUE, sort = 
FALSE) 
CCDTS_Log <- merge(CCDTS_Log, CCDTS_Log_D4, by = "names", all = TRUE, sort = FALSE) 
 
rm(D1_CCDTS, D2_CCDTS, D3_CCDTS, D4_CCDTS, D5_CCDTS, X_CCDTS, Z_CCDTS,  
   CCDTS_Log_main, CCDTS_Log_D4, CCDTS_Log_D1D2) 
 
#Save Results 
 
write.csv(EstModels, "BiasResults.csv") 
write.csv(AnovaResults, "RPB_AnovaResults.csv") 
write.csv(DTS_Log, "CoverageResultsDTS.csv") 
write.csv(MLDTS_Log, "CoverageResultsMLDTS.csv") 
write.csv(CCDTS_Log, "CoverageResultsCCDTS.csv") 
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Technical Appendix E: Descriptive Statistics from the Generated Datasets 

library(parallel) 
 
MOBILE_STATS <- function(filename) { 
   
  library(plyr) 
   
  dat_MOB <- read.csv(file = filename, header = TRUE) 
  MOB_STATS1 <- ddply(dat_MOB, c("MOB_PATTERN"), summarize,  
                      nMOB_T2 = sum(MOB_T2),  
                      nMOB_T3 = sum(MOB_T3), 
                      nMOB_T4 = sum(MOB_T4)) 
   
  numSTU <- dat_MOB[1, 22]*dat_MOB[1, 23] 
  numMobSTU <- numSTU*dat_MOB[1, 21] 
   
  MOB_STATS1 <- cbind(MOB_STATS1,  
                      nPROP_PATTERN1 = ifelse(MOB_STATS1$MOB_PATTERN == 1, 
                                              MOB_STATS1$nMOB_T2/numMobSTU, 0),  
                      nPROP_PATTERN2 = ifelse(MOB_STATS1$MOB_PATTERN == 2,  
                                              MOB_STATS1$nMOB_T3/numMobSTU, 0),  
                      nPROP_PATTERN3 = ifelse(MOB_STATS1$MOB_PATTERN == 3,  
                                              MOB_STATS1$nMOB_T4/numMobSTU, 0),  
                      nPROP_PATTERN4 = ifelse(MOB_STATS1$MOB_PATTERN == 4,  
                                              MOB_STATS1$nMOB_T3/numMobSTU, 0),  
                      nPROP_PATTERN5 = ifelse(MOB_STATS1$MOB_PATTERN == 5,  
                                              MOB_STATS1$nMOB_T4/numMobSTU, 0), 
                      PROPA_MOB = (sum(ifelse(MOB_STATS1$MOB_PATTERN == 1, 
                                              MOB_STATS1$nMOB_T2, 0),  
                                       ifelse(MOB_STATS1$MOB_PATTERN == 2,  

MOB_STATS1$nMOB_T3, 0), 
                                       ifelse(MOB_STATS1$MOB_PATTERN == 3,  

MOB_STATS1$nMOB_T4, 0), 
                                       ifelse(MOB_STATS1$MOB_PATTERN == 4,  

MOB_STATS1$nMOB_T3, 0), 
                                       ifelse(MOB_STATS1$MOB_PATTERN == 5,  

MOB_STATS1$nMOB_T4, 
                                              0)) 
                                   /numSTU)) 
  rm(numSTU) 

   
   
  MOB_STATS1 <- as.matrix(cbind(nREP = dat_MOB[1, 20], nRATE = dat_MOB[1, 21], 
                                nSCH = dat_MOB[1, 22], nSTU = dat_MOB[1, 23], 
                                nVAR = dat_MOB[1, 24], nLOGHAZ_T1 = dat_MOB[1, 25], 
                                UniqueID = dat_MOB[1, 30], MOB_STATS1)) 
   
  rm(numMobSTU) 
   
  return(MOB_STATS1) 
} 
 
filenames <- list.files(path = "ComputerPath", pattern = "csv", full.names = TRUE) 
 
system.time({ 
  cl <- makeCluster(mc <- getOption("cl.cores", 6)) 
  mobilityDescriptives <- parLapply(cl, filenames, MOBILE_STATS) 
  stopCluster(cl) 
}) 
 
MOB_DESC <- data.frame(do.call(rbind, mobilityDescriptives)) 
rm(filenames, MOBILE_STATS) 
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