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FACTORS INFLUENCING THE ACCURACY OF ESTIMATES IN HIERARCHICAL AGE-

PERIOD-COHORT MODELS: A MONTE CARLO SIMULATION STUDY 

 
 
 

by 
 
 
 

BRANDON ATTELL 

 
 
 
 

Under the Direction of Audrey J. Leroux, Ph.D. 
 
 
 

ABSTRACT 

Social scientists have long been interested in the role that age, period, and cohort effects have in 

influencing longitudinal trends in a variety of research areas. However, because the three effects 

are linear derivatives of one another traditional statistical models cannot simultaneously isolate 

their unique effects due to their perfect confounding, an issue known as the identification 

problem. One recent solution to the identification problem is the estimation of age, period, and 

cohort effects through the use of cross-classified random effects modeling applied to repeated 

cross-sectional data. This approach takes advantage of the multilevel modeling framework and 

proposes that age can be treated as an individual-level (level-one) variable and period and cohort 

effects can be treated as categorical variables that define cluster membership at level-two, 

allowing all three effects to be simultaneously estimated. Using a Monte Carlo simulation study, 

this dissertation investigated two broad areas of methodological issues related to the performance 

of the model. First, four factors were manipulated that may influence the accuracy of estimates in 

the model: the number of survey years available for analysis; the cohort grouping employed in 

the model; the variability of the period effect; and the variability of the cohort effect. Second, 

four model fit indices were evaluated to determine their performance in detecting the cohort 



 
 

grouping underlying the structure of the dataset used in the analysis. The results of the simulation 

study indicated that the cohort grouping used in the model heavily influenced the accuracy of 

many of the model parameters, while the number of survey years available for analysis most 

directly influenced the accuracy of the period-level predictor. To a lesser extent, variability in the 

period and cohort effects impacted the accuracy of a few of the model parameters, but tended to 

occur in scenarios where bias was exhibited due to the cohort grouping. Importantly, all four of 

the model fit indices performed well in detecting the cohort grouping underlying the dataset. 

Implications of these findings are discussed for applied researchers, funders and administrators 

of repeated cross-sectional surveys, and life course theorists. Areas for future methodological 

research are also provided. 

INDEX WORDS: age-period-cohort, longitudinal research, life course theory, hierarchical linear 

models, Monte Carlo simulation 
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1  INTRODUCTION 

Social scientists have long been interested in the study of social change. Indeed, cross-

sectional research may be limited if the research design relies entirely on data collected at one 

point in time, resulting in conclusions that must be interpreted as correlational instead of causa-

tional (Kraemer et al., 2000). In these scenarios longitudinal research offers an advantage to 

cross-sectional studies by considering the influence of data collected at multiple points in time, 

laying the groundwork for the measurement of change, particularly the magnitude and direction 

among key variables and outcomes of interest (Podsakoff et al., 2011; Ruspini, 1999). As it re-

lates to longitudinal research, social scientists importantly recognize and place emphasis on the 

fact that social change occurs not only among individuals but is also influenced by the broader 

social contexts and circumstances in which they are situated (Bernardi et al., 2019, 2020; Landes 

& Settersten, 2019). This leads to an understanding of social change as occurring at both the in-

dividual and societal level. One theoretical framework aligned to this particular conceptualiza-

tion of social change and longitudinal research is life course sociological theory. 

Life Course Theory 
Proponents of life course theory contend that any longitudinal change in social phenome-

non can be attributed to three competing and simultaneous forces: age effects, period effects, and 

cohort effects. Age effects refer to the situation in which longitudinal change in an outcome of 

interest can be partly or wholly attributed to the biological aging process that occurs as an indi-

vidual gets older (Keyes & Li, 2012). Therefore, age effects are measured at the individual level, 

and they represent person-level changes over time as people move throughout the life course. For 

example, as individuals age they are at greater risk of death as their physical health deteriorates 

in later life. Similarly, risk for chronic conditions such as heart attack, stroke, or cancer are 
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typically age-graded in which individuals are more likely to experience these events as they age 

biologically. 

These age effects are not only relegated to developmental or biological processes. As in-

dividuals move throughout the life course, phenomena such as attitudes, beliefs, or ideas might 

change for a variety of reasons. For example, life course sociologists have pointed out the im-

portance of life transitions that occur as we age. Life transitions refer to the important socially 

constructed roles that we take on throughout life that impact our attitudes and viewpoints, and 

include transitions such as graduating from college, getting married, and experiencing the death 

of parents (George, 1993). Life transitions are inherently tied to the “age structuring” of society 

(Settersten & Mayer, 1997). That is, societies have social and cultural expectations and norms 

that individuals typically conform to regarding important life accomplishments, roles, and posi-

tions that should be achieved at established time points during the life course. For example, one 

can argue that it is more socially acceptable to rely on parents for financial support during child-

hood, but less so by age 40 or 50. Finally, as individuals age they experience formative life 

events that impact their outlook on the world. Accordingly, differences in attitudes towards an 

outcome of interest may vary by age given these variations in life experiences (Elder, 1994, 

1998). 

As pointed out by Glenn, however, “age differences in a variable may reflect the effects 

of being born at different times and having different formative experiences rather than or in addi-

tion to the effects of growing older” (2002, p. 465). Therefore, while recognizing the important 

role that age plays in influencing longitudinal change over time, life course theorists also priori-

tize the need to situate individuals in the historical contexts to which they are associated, while 

also taking into account changing social contexts over time (Heinz & Kruger, 2001). Taking into 
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account broader contextual forces is especially important because while individuals might ex-

hibit their own agency and make their own choices, the opportunities and actions available to 

them may be constrained by societal forces and historical timelines (Elder, 1998). The first of 

these broader contextual forces is that of the cohort effect. A cohort can be defined as any group 

of individuals that collectively experience some event at the same time (Yang, 2011). For exam-

ple, in public health research, it is common to define cohorts by delineating a group of individu-

als who collectively experience a particular disease or illness, such as the cohort of babies born 

with birth defects as a result of the 2015 Zika virus outbreak in Brazil (Satterfield-Nash et al., 

2017). Once a cohort is conceptualized, it can be compared to other cohorts for differences in 

outcomes over time. 

Perhaps the most commonly utilized cohort in the application of life course theory is the 

birth cohort, or all individuals who are born during a specified time period (Glenn, 2005). Life 

course sociologists have described several reasons why birth cohorts are particularly influential 

sources of variance in change over time, especially as they relate to attitudinal changes. One ex-

planation is that what people think of current events and social phenomenon is equally explaina-

ble by not only what is currently taking place in the world, but what was also happening when 

individuals were growing up (Alwin & McCammon, 2003). For example, birth cohort differ-

ences regarding attitudes toward technology may exist between cohorts who spent much of their 

childhood without technology compared to cohorts that grew up in the proliferation of the Inter-

net and personal devices like cellphones and tablets. From this point of view, the birth cohort is a 

useful analytical tool that indexes commonly shared experiences tied to a specific historical era 

that an individual carries with them throughout life (Alwin & McCammon, 2003). From a macro 

perspective, birth cohorts influence longitudinal trends as new cohorts come into existence, 
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bringing new experiences and attitudes, while older cohorts die out of the population, taking their 

experiences and attitudes with them, a process life course sociologists have referred to as demo-

graphic metabolism and cohort succession (Firebaugh, 1997; Glenn, 2005; Lutz, 2012; Ryder, 

1965).  

In addition to cohort effects, life course sociologists contend that a second historical con-

text must also be taken into consideration: period effects. The life course theoretical literature 

has conceptualized period effects in two ways. Perhaps most simply, some contend that period 

effects merely represent the date at which an outcome or observation is measured (Fosse & 

Winship, 2019). However, it is more commonly recognized that period effects can also be con-

ceptualized as variations over time, typically calendar years, that influence all age groups simul-

taneously (Keyes & Li, 2012). In this view, period effects are important to consider because they 

subsume important historical events, environmental changes, and changing social and cultural 

contexts (Yang, 2011). As an example, a researcher examining yearly trends in attitudes toward 

gun violence might notice substantial peaks in anti-gun attitudes in years where mass school 

shootings occurred. Life course sociologists contend that period effects are therefore indicators 

that capture important events like the Columbine shooting or Sandy Hook shooting that simulta-

neously impact or expose all age groups to some phenomenon that may impact the outcome of 

interest, often times quantifying sudden institutional changes or shifts over years (Mayer, 2009). 

Stated another way, we can view period effects as explaining potential peaks and valleys exhib-

ited in certain years of data for an outcome, and they can also represent changes due to the broad 

passage of time or the linear passage of calendar years that are thought to capture the many dif-

ferent “shifts in social, cultural, economic, or physical environments” (Yang & Land, 2013, p. 2) 

that may influence an outcome. The notion that period effects capture broad shifts over years is 
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particularly important given that life course scholars are generally interested in examining trends 

over long periods of time, typically over several decades. For example, one such period effect is 

exhibited in changing attitudes towards same-sex marriage in the United States. In her analysis 

using data from the General Social Survey between 1988 and 2010, Baunach (2012) found 

strong period effects; namely that in 1988 only 3.3% of Americans strongly agreed to same-sex 

marriage, which increased to 21.6% in 2010. 

In light of life course theory, a successful longitudinal analysis must take into account all 

three temporal aspects that comprise age, period, and cohort effects. Otherwise, conclusions re-

garding one of the effects, if examined in isolation of the others, may result in erroneous findings 

as to the true processes responsible for social change. An age-period-cohort (APC) model, there-

fore, is generally any model that attempts to estimate the unique contributions of age effects, pe-

riod effects, and cohort effects at the same time (Costanza et al., 2017; Keyes & Li, 2012). These 

models are particularly useful in their alignment with life course theory in that they recognize 

and prioritize the “multilevel phenomenon, ranging from structured pathways through social in-

stitutions and organizations to the social trajectories of individuals and their developmental path-

ways” (Elder, 1994, p. 5) that each age, period, and cohort process might have in contributing to 

longitudinal change over time in an outcome of interest. That is, APC models attempt to not only 

examine individual-level change over time (age effects), but also equally consider the important 

roles that period effects and cohort effects have by linking individuals to these influential social 

contexts (Elder, 1998; Suzuki, 2012). 

If an APC model appropriately accounts for all three temporal parameters, researchers 

can better understand which of the processes are more important in influencing a particular out-

come. Such a better understanding has important implications for policy and program 
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interventions. For example, Riether et al. (2009) conducted an APC analysis of trends in the 

prevalence of obesity in the United States from 1976 to 2002 using a sample of 1.7 million adults 

from the National Health Interview Surveys. The results of their APC analysis indicated rela-

tively small age and cohort effects, but large period effects that were primarily responsible for 

rising rates of obesity. They concluded that the “secular trend” hypothesis regarding increases in 

the prevalence of obesity is supported by APC analysis, meaning that longitudinal changes in 

obesity are likely due to shifting yearly trends at the societal level in issues like more time spent 

working and less time for leisure and exercise activity. Therefore, intervening from a policy or 

programmatic perspective requires solutions that take into account not only individual-level fac-

tors, but societal-level factors as well. As such, APC models may help shed light on the most ap-

propriate level to intervene at when addressing important and complex social problems. 

The Identification Problem 
Publicly available, longitudinal datasets like that used by Riether et al. (2009) capturing 

the variables necessary for APC models are ubiquitous. Therefore, the inherit challenge in APC 

modeling does not lie in data availability but is instead an estimation issue. Although statistical 

models aligned with life course theory have advanced over time through the implementation of 

growth curve models and event history analysis (Elder et al., 2003; Mayer, 2009), specific mod-

els attempting to uniquely separate longitudinal change in any outcome that is attributable to 

each distinct age, period, and cohort process continue to suffer from what has long been recog-

nized as the identification problem (Blalock, 1967; Fienberg & Mason, 1979; K. O. Mason et al., 

1973). Consider the following. If a survey is administered to an individual in the year 2018 and 

demographic information regarding the respondent’s age is collected, say 20 years old, their birth 

cohort membership can be easily calculated by subtracting the respondent’s age from the survey 

year. In this case, the respondent that is 20 years old in 2018 was born in 1998, giving them 
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membership in the 1998 birth cohort. Alternatively, if in the same survey birth cohort infor-

mation was collected for a respondent, say 1975, their age can be derived by subtracting the birth 

cohort from the survey year, in this case resulting in a respondent that is 43 years old. Finally, if 

birth cohort information and age in years at the time of the survey is available, the year in which 

a respondent was surveyed can be determined by adding the respondent’s birth cohort and age 

together. Therefore, age, period, and cohort effects are linear derivatives of one another and can 

be represented as: 

Age =	period− cohort,
Period = age+ cohort,
Cohort = period− age.

(1) 

The perfectly linear combinations of age, period, and cohort result in a statistical model 

that is fully specified if all three variables are entered into the same model at once. Therefore, the 

linear relationships between age, period, and cohort are problematic because traditional statistical 

models such as ordinary least squares regression or logistic regression cannot simultaneously iso-

late their unique effects due to their perfect confounding. This situation has been termed the 

“identification problem” and has plagued researchers for the past thirty to forty years. From a life 

course theoretical perspective, the estimation of all three effects simultaneously is imperative to 

more fully understand the exact mechanisms responsible for longitudinal changes over time. 

However, the identification problem makes the concurrent estimation of these effects mathemati-

cally impossible. Therefore, despite what some have termed a “futile quest” (Bell & Jones, 

2014a; Glenn, 1976), sociologists, demographers, statisticians, and other researchers have de-

voted significant attention to finding solutions and workarounds to the APC identification prob-

lem. 
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Statement of Purpose 
One recent solution to the identification problem that has been particularly appealing to 

life course scholars is the use of sophisticated multilevel modeling techniques to estimate age, 

period, and cohort effects simultaneously. As will be discussed in more detail in Chapter 2, mul-

tilevel models are used to analyze clustered data collected at different levels of measurement, for 

example students (level-one) nested within classrooms (level two). As it relates to solving the 

identification problem, Yang and Land (2006) proposed that age could be treated as an individ-

ual level variable (level one) and period and cohort effects could be treated as categorical varia-

bles that define cluster membership at level two. As such, they contend the identification prob-

lem could be solved by using a multilevel model to simultaneously estimate all three APC ef-

fects. 

The use of such a model is proliferated in the applied literature, especially among life 

course scholars studying historical changes in physical and mental health, and social scientists 

examining changing attitudes towards a variety of social, political, and cultural issues. Yet, de-

spite the popularity of the model in the applied literature, less attention has been given to the 

methodological development of the model beyond its initial articulation fifteen years ago. Using 

a Monte Carlo simulation study, the purpose of this dissertation is to fill this gap in the literature 

by examining several important methodological components of the model faced by researchers 

seeking to use it in practice. Broadly, there are two areas of investigation. The first area is con-

cerned with the statistical accuracy of the estimates derived from the model. Previous simulation 

studies examined the influence that the number of survey years had on the accuracy of the model 

estimates and the ability of the model to accurately recover period and cohort trends. This disser-

tation expands on previous simulation studies by re-examining the impact of the number of re-

peated cross-sections on accuracy of estimates in the model in addition to three other factors: the 
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cohort groupings employed in the model, the variability of the period effect, and the variability 

of the cohort effect. 

The second area of investigation is concerned with how applied researchers should spec-

ify cohort groups in the model. In reality, birth cohorts are a continuous measure given that they 

are derived from an individual’s year of birth. However, to define level-two cluster membership 

in a multilevel model they must be transformed and treated as categorical variables that define an 

individual’s membership into a level-two cohort grouping. Common cohort groupings used in 

previous research include the three-year cohort, five-year cohort, and ten-year cohort. While any 

cohort grouping could be arbitrarily chosen, many applied researchers contend that a balance 

should exist between specificity and breadth that exists in the heterogeneity of individuals cap-

tured in a particular cohort grouping, with the five-year cohort serving as an ideal balance that is 

used in many models in the applied literature. Therefore, the choice of which cohort grouping to 

use is an important decision faced by applied researchers. While theoretically grounded, no 

methodological attention has been devoted to examining how applied researchers can define such 

cohort groups in the model. One potential is the use of model fit indices to determine which co-

hort grouping best fits the underlying structure of the data in the analysis. Therefore, this disser-

tation aims to examine if model fit indices could work in this way and to identify which com-

monly used fit indices can aid applied researchers in determining the best cohort size to use in 

the model. 
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2  REVIEW OF THE LITERATURE 

This chapter provides a review of the literature for estimating age-period-cohort (APC) 

models and describes the purpose of the current study. The review begins by examining several 

historical methods of estimating APC models that attempt to resolve or work around the identifi-

cation issue described in Chapter 1. As pointed out by Fosse and Winship (2019), hundreds or 

even thousands of articles exist debating various solutions to the identification issue. Therefore, 

the review provides an overview of several of the most commonly utilized solutions to the APC 

identification problem. These solutions were specifically selected for review as they were con-

sistently identified by other researchers in several different lines of previous research tracing the 

historical development of estimating APC effects (Fosse & Winship, 2019; Glenn, 2005; Har-

ding, 2009; Yang, 2011; Yang & Land, 2013). These historical methods include the reduced two-

factor APC model; performing nonlinear parametric transformations on at least one of the three 

age, period, and cohort effects; the constrained generalized linear APC model; and the age-pe-

riod-cohort characteristics model.  

Following the review of these methods, I next discuss their limitations and introduce the 

hierarchical age-period-cohort cross-classified random effects model (HAPC-CCREM). Given 

that the HAPC-CCREM is an advanced form of multilevel modeling, a broad overview of multi-

level models is provided as context for the HAPC-CCREM. Additionally, a review of applied 

studies utilizing the HAPC-CREM is provided to demonstrate the utility and uptake of the model 

in the literature. Next, specific attention is given to methodological developments of the HAPC-

CCREM. Namely, previous methodological studies and reviews have examined the following as 

it relates to the HAPC-CCREM: guidelines for centering variables; the accuracy of restricted 

maximum likelihood estimation epirical Bayes (REML-EB) estimates; assumptions of 
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independence; and a model building approach for assessing the significance of the period and 

cohort effects. Despite these important advancements, some criticisms of the HAPC-CCREM 

exist. These criticisms are reviewed in light of responses from proponents of the HAPC-

CCREM, who refute the criticims by examining the erroneous simulation studies in which they 

are based.  

In statistical research it is common to provide abbreviations for models with long names 

to alleviate redundancy. Perhaps because the research on estimating age, period, and cohort ef-

fects stems from several different disciplines, naming conventions and abbreviations in the litera-

ture are often divergent, although specific researchers tend to be consistent throughout their own 

work. In this chapter and throughout the dissertation, I blend the abbreviations given to model 

names utilized by Fosse and Winship (2019) and Yang and Land (2013). Readers are directed to 

the List of Abbreviations as a placeholder for model names. Regarding statistical notation, I 

keep with the notation utilized by developers or major proponents of the specific model under 

review. For example, notation for the HAPC-CCREM follows Yang and colleagues (Frenk et al., 

2013; Yang, 2006, 2008; Yang & Land, 2013, 2006), while notation used in reviewing hierar-

chical linear models follows Raudenbush and Bryk (2002). Additionally, the terms multilevel 

models and hierarchical linear models are used interchangeably.  

Finally, a note on the use of the term cohort. In many disciplines, such as public health 

and demography, a cohort is defined as a group of entities or individuals collectively experienc-

ing a shared event during a specified time frame (Yang, 2011). For example, a group of individu-

als that acquired a disease in an outbreak, or a group of students that graduated high school in the 

same year, or a group of individuals that were married in a given year, are all examples of co-

horts. In the area of life course research specifically concerned with age-period-cohort models, 
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the particular cohort of interest is the birth cohort, or all individuals born during a given year. As 

discussed in Chapter 1, the birth cohort is specifically of interest because it indexes commonly 

shared experiences tied to a specific historical era that an individual carries with them throughout 

life (Alwin & McCammon, 2003) Therefore, throughout this dissertation the use of the term co-

hort specifically implies the birth cohort. 

Historical Methods of Estimating APC Models 
Consider the classical APC (C-APC) model that is statistically defined as: 

𝑌!"# = 𝜇 + 𝛼! + 𝜋" + 𝛾# + 𝜀!"# , (2) 

where 𝑌!"# represents the outcome variable of interest for person i in period j and cohort k, 𝜇 is 

the regression intercept, or the expected outcome when all variables in the model equal zero, 𝛼! 

represents the ith age effect, 𝜋" represents the jth period effect,  𝛾# represents the kth cohort ef-

fect, and 𝜀!"# represents the error term (Fosse & Winship, 2019). Historically, the C-APC model 

was of most interest for use on aggregated dataset where 𝑌!"# represented specific incidence and 

prevalence rates for an outcome of interest, such as birth and death rates (Fosse & Winship, 

2019; Yang & Land, 2006) 

Perhaps the easiest way to examine age, period, and cohort effects is to estimate a re-

duced two-factor APC model (Yang & Land, 2013). Conceptually, this means that at any one 

time a researcher can examine two of the three effects in the C-APC model, and then sequen-

tially estimate different models until all combinations of the age-period-cohort array have been 

examined. This results in a re-specification of the C-APC model into the following series of 

equations, in which results could be compared across all three resulting models: 

𝑌!# = 𝜇 + 𝛼! + 𝛾# + 𝜀!#
𝑌"# = 𝜇 + 𝜋" + 𝛾# + 𝜀"#
𝑌!" = 𝜇 + 𝛼! + 𝜋" + 𝜀!"

	 (3) 
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Although this approach is technically not a solution to the APC identification issue, it may prove 

useful if an outcome substantially varies in one or two of the effects over the third. As pointed 

out by Glenn (2002, 2005), even cross-tabulations and graphical examinations for two out of the 

three APC effects at a time may provide very insightful descriptive information about each of the 

effects. 

If these types of descriptive analyses indicate that one or two of the effects can be priori-

tized over the third, there are further useful statistical models that align well with life course so-

ciological theory. The most popular of these procedures has been the linear decompositions set 

forth by Firebaugh to examine intracohort change and cohort succession effects (Firebaugh, 

1997). Specifically, for an outcome of interest, the following regression equation for the C-APC 

model is specified: 

𝑌"# = 𝜇 + 𝜋" + 𝛾# + 𝜀"# , (4) 

which provides resulting regression coefficients for the period and cohort effects. That is, the 

model excludes the age parameter. The values for the period and cohort effects are then used to 

partition longitudinal trends into intracohort change and cohort succession effects. Intracohort 

change is calculated as 

𝜋"(PeriodT − Period1), (5) 

where PeriodT represents the value of the final survey year and Period1 represents the value of 

the first survey year. In a similar manner, cohort succession effects are calculated as  

𝛾#4Cohort$::::::::::: 	−	Cohort%::::::::::;, (6) 

where Cohort:::::::::$ represents the average year of birth for the last time period and Cohort%:::::::::: repre-

sents the average year of birth for the first survey year. These values are then summed to repre-

sent the total change over time: 
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∆𝑌"# = 𝜋"∆T+ 𝛾#∆C+ 𝜀"# . (7)  

where 𝜋"∆T represents the intracohort change effects derived from Equation 5, 𝛾#∆C represents 

the cohort succession effects derived from Equation 6, and 𝜀"# represents the error term. 

In addition to the reduced two-factor APC model and linear decomposition techniques, 

another historical method of estimating APC effects is to conduct a nonlinear parametric trans-

formation for at least one of the three age, period, and cohort effects in the C-APC model as de-

scribed by Mason and Fienberg (1985). This is usually carried out by including quadratic or cu-

bic terms for the age effect, but polynomial effects for the periods and cohorts can also be speci-

fied. While specifying a polynomial term for one of the three APC effects breaks the linear de-

pendency described in the APC identification issue, the model is limited based on its strong theo-

retical assumption that the functional form specified mirrors the corresponding effect in real life 

(Winship & Harding, 2008). Therefore, the nonlinear parametric transformation approach may 

produce strikingly misleading or differing results depending on which of the effects are trans-

formed, particularly if more than one of the effects is transformed at a time. 

Given the limitations of the approaches discussed so far, several authors (Fosse & Win-

ship, 2019; Glenn, 2005; Harding, 2009; Yang, 2011; Yang & Land, 2013) contend that the most 

widely utilized historical method for APC modeling is the constrained generalized linear APC 

model (CG-APC) proposed by Mason and colleagues (Fienberg & Mason, 1979; Mason et al., 

1973; Mason & Fienberg, 1985). The model is generated as follows. First, each age, period, and 

cohort variable is separated into specified categorical widths of interest to the researcher, where 

the cohort and period groups are set to longer widths than the age groupings to break the linear 

dependency among the three terms. Next, dummy indicators are constructed for each individual 

to reflect their corresponding age, period, and cohort membership. For each age, period, and 
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cohort set of dummy indicators, one grouping must be excluded from the analysis as the referent 

category, which is analogous to the coding of categorical variables in traditional regression mod-

eling. Then, an equality constraint is placed on one additional age, period, or cohort grouping by 

leaving it out of the regression model. Typically, an adjacent category is chosen that sits next in 

sequence to the overall referent category for the additionally chosen equality constraint (Mason 

& Fienberg, 1985). This approach is theoretically substantiated on the grounds that in real life, 

two adjacent social groupings should theoretically be more similar than two groups that are 

spaced further apart. For example, the real life trends exhibited in the cohorts “1900-1905” and 

“1906-1910” would be more similar than imposing the equality constraint on the “1900-1905” 

and “2010-2015” cohorts (Glenn, 2005). 

As an illustration of the CG-APC model, consider a hypothetical dataset with age catego-

ries 𝐴%, 𝐴&, … , 𝐴'(, period categories 𝑃%, 𝑃&, … , 𝑃&), and cohort categories 𝐶%, 𝐶&, … , 𝐶&(. Using 

this dataset, several possible re-specifications of the classical APC model to the constrained gen-

eralized linear APC model are: 

𝑌!"# = 𝜇 +C𝛼!

*!"

*#

+C𝜋"

+!$

+#

+C𝛾#

,%&

,#

+ 𝜀!"# ,

𝑌!"# = 𝜇 +C𝛼!
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+C𝜋"
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,%&

,#

+ 𝜀!"# ,
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*!&
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+!$

+#

+C𝛾#

,%"

,#

+ 𝜀!"# .

	 (8) 

In the first re-specification, the additional equality constraint is placed within the set of 

dummy indicators for age, while in the second and third re-specifications, the additional equality 

constraint is placed within the dummy indicators for period and cohort, respectively. The allure 

and benefit of the CG-APC model is that it allows all effects to be estimated simultaneously 



 

 
 

16 

while not requiring nonlinear parametric transformations of the age, period, and cohort effects. 

However, the challenge is that the model behaves differently depending on which set of equality 

constraints are imposed, and therefore strong theoretical assumptions must be made a priori 

about which constraints will most closely reflect real life trends and minimize the error produced 

by the model (Glenn, 2005; Yang et al., 2004). Moreover, the specification of APC effects using 

dummy indicators does not provide an exact estimate for a particular age, period, or cohort of in-

terest, but instead the parameters always reflect a comparison of one category to the referent 

within the model. 

Following the introduction of the CG-APC model in the early 1970s, one slightly more 

recent APC model that has proven popular over time is the age-period-cohort characteristics 

(APC-C) model introduced by O’Brien and colleagues (O’Brien, 1989, 2000; O’Brien et al., 

1999). The premise behind the APC-C model is that proxy variables representing demographic 

characteristics can be substituted for the cohort effects parameters in the classical APC model. 

For example, instead of using the linearly derived cohorts like in the C-APC model or dummy 

indicators like in the CG-APC model, one could use characteristics like average educational level 

or proportion of unemployed individuals within each cohort. In effect, the proxy variables ap-

proach replaces the temporal cohort variable with a separate non-temporal variable that repre-

sents some aspect of the cohorts (Fosse & Winship, 2019). However, the use of proxy variables 

for the cohort effects is only worthwhile if multi-collinearity does not exist between the proxy 

variable and the age and period effects. Otherwise, the model potentially returns to the same 

identification issue of the C-APC model. 

Collectively, these four approaches represent the main ways that researchers have exam-

ined age, period, and cohort effects for the past thirty to forty years. While useful in various 
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ways, none of the approaches fully solve the identification issue by allowing estimates for all 

APC effects to be estimated at once, and each approach has its own benefits and drawbacks as 

discussed above. Even with the more statistically savvy methods such as the constrained general-

ized age-period-cohort model and the age-period-cohort characteristics model, “side infor-

mation” and additional “strong theory” is usually required to supplement and complete any inter-

pretations drawn from the analysis, given that the identification issue has not been fully resolved 

(Glenn, 2002, 2005; H. Smith et al., 1982). Considering the limitations of these historical meth-

ods, a tremendous breakthrough came in resolving the APC identification problem with the re-

search of Claire Yang (formerly Yang Yang) and Kenneth Land. Yang and Land (2006) pro-

posed that all three effects could be estimated at one time utilizing an advanced multilevel mod-

eling technique known as cross-classified random effects modeling (CCREM). Given that 

CCREMs fall into the broader class of hierarchical linear models, they termed their solution the 

hierarchical age-period-cohort cross-classified random effects model (HAPC-CCREM). In the 

section that follows, important conceptual, methodological, and statistical motivations behind the 

HAPC-CCREM are outlined. An overview of multilevel models and their extensions is also pro-

vided as a fundamental background to the HAPC-CCREM. 

The Hierarchical Age-Period-Cohort Cross-Classified Random Effects Model 
Fundamental to Yang and Land’s solution to the identification problem is the estimation 

of age, period, and cohort effects derived from repeated cross-sectional data. Contrasted with a 

panel study design or prospective cohort study design, in which the same set of individuals are 

followed over time and surveyed at multiple time points, a repeated cross-sectional data study 

design samples a new population of individuals on a regular basis, each time creating a different 

sample of individuals that are representative of that cross-section, while often asking identical 

questions across cross-sections (Brady & Johnston, 2015). Yang and Land (2006) contend that 
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the repeated cross-sectional study design presents both opportunities and challenges for age-pe-

riod-cohort modeling. Specifically, the micro-level data collected at each cross-section can be 

aggregated to the population level to conform to earlier APC methods (for example, see Fienberg 

& Mason, 1979; Heckman & Robb, 1985; K. O. Mason et al., 1973) while still retaining individ-

ual-level information regarding the dependent variable of interest and associated control or pre-

dictor variables. However, the challenge lies in how to take advantage of this data structure. To 

that end, their proposed solution is the mixed models approach they set forth to address the APC 

identification issue. 

Apart from the conceptual justification that repeated-cross sectional data allows the in-

corporation of both individual and aggregate demographic information, their use of the mixed 

models approach is also justified from a statistical standpoint as well. Yang and Land (2006) 

contend that the historical ways of overcoming the identification issue, including equality con-

straints, the use of proxy variables, or transforming at least one of the APC variables to break the 

linear dependency results in a single-level, pooled fixed effects regression model with the poten-

tial for biased parameter and standard error estimates. As an illustration, consider the following 

equations that represent the outcome of a theoretical dependent variable of interest for five indi-

viduals belonging to the five-year birth cohort 1960-1964 that were sampled from a repeated 

cross-section in the year 1990 (Yang & Land, 2006, pp. 83–84): 

𝑌%,%..(,%./(0%./1 = 𝛽( + 𝛽%(30) + 𝛽&(30)& + 𝜀%,%..(,%./(0%./1
𝑌&,%..(,%./(0%./1 = 𝛽( + 𝛽%(31) + 𝛽&(31)& + 𝜀&,%..(,%./(0%./1
𝑌',%..(,%./(0%./1 = 𝛽( + 𝛽%(32) + 𝛽&(32)& + 𝜀',%..(,%./(0%./1
𝑌1,%..(,%./(0%./1 = 𝛽( + 𝛽%(33) + 𝛽&(33)& + 𝜀1,%..(,%./(0%./1
𝑌),%..(,%./(0%./1 = 𝛽( + 𝛽%(34) + 𝛽&(34)& + 𝜀),%..(,%./(0%./1

(9) 

In these equations, 𝛽( represents the regression intercept for each person surveyed in 1990, while 

𝛽% and 𝛽& represent the linear and quadratic age effects, respectively. As Yang and Land note 
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(2006, p. 84), completing the APC model for this theoretical outcome requires specification of 

the error terms, represented by: 

𝜀!,%..(,%./(0%./1 = 𝛽%..( + 𝛾%./(0%./1 + 𝑒!,%..(,%./(0%./1,	for	𝑖 = 1, 2, … ,5. (10) 

The resulting model specified above is a single-level, fixed-effects regression model that breaks 

the linear dependency among the age, period, and cohort variables via the inclusion of the 

squared age parameter.  

Importantly, the errors in this model are hypothesized as fixed, or constant, deviations 

from the regression intercept where 𝛽%..( represents the fixed time-period effect and 𝛾%./(0%./1 

represents the fixed 1960-1964 birth-cohort effect. Statistically, modeling these effects as fixed 

results in one overall time period effect, where the period effect represents a constant deviation 

from the regression intercept from year to year, and one overall cohort effect, where the cohort 

effect represents a constant deviation from the regression intercept from cohort to cohort. Shar-

ing this between-cluster common deviation from the intercept assumes that each cohort or survey 

year is conceptually similar to one another and not likely to change over time, instead of taking 

into account the potential that each cluster might have its own unique effect (Yang & Land, 

2006). Moreover, the use of a fixed effects approach may produce biased results given that these 

models derive parameter estimates and standard errors only from within-cluster information, ig-

noring and not taking into account between-cluster variability (Allison, 2009). A mixed model, 

therefore, includes both fixed and random effects to surpass these limitations (Carson, 2013). 

Considering these issues, Yang and Land propose the use of a multilevel mixed models approach 

that takes into account the possibility of both fixed and random effects for the estimation of pe-

riod and cohort effects. 
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An Overview of Multilevel Models and their Extensions 
The use of a multilevel model is critical to the estimation of age-period-cohort effects as 

put forth by Yang and Land. Accordingly, an overview of two-level hierarchical linear models 

and their extensions is necessary before describing the multilevel approach advocated by Yang 

and Land. Multilevel models have long been utilized in the educational, social science, and 

public health arenas to analyze data collected from observations grouped by clusters. For 

example, in the field of education perhaps the most commonly encountered naturally occuring 

clustering mechanism is that of students nested in classrooms, or classrooms nested within 

schools. Single-level models that ignore these clusters violate the assumption in ordinary least 

squares regression (OLS) of independence of error terms, given that an outcome of interest is 

likely to be correlated with cluster membership (Snijders & Bosker, 2012; Woltman et al., 2012). 

The simplest multilevel model is a two-level unconditional model. In Raudenbush and 

Bryk (2002) notation, the model at level one is specified as: 

	𝑌!" = 𝛽(" + 𝑒!" ,			𝑒!"~𝑁(0, 𝜎&), (11) 

where 𝑌!" represents the outcome for observation 𝑖 nested in the level-two cluster j, 𝛽(" is the 

regression intercept, or the average value of Y for all level-one units nested within the level-two 

cluster j, and 𝑒!" is the level-one residual term associated with each observation i nested in the 

level-two cluster j, assumed normally distributed with mean 0 and variance 𝜎&. The level-two 

unconditional model specification is: 

𝛽(" = 𝛾(( + 𝑢2" , 	𝑢2" 	~	𝑁(0, 𝜏((). (12) 

The level-one intercept term 𝛽(" is modeled as an outcome at level-two, where 𝛾(( represents the 

grand mean, or the overall average value of Y across all level-one observations and level-two 

clusters, and 𝑢2" represents the level-two residuals, or the random effect of each level-two cluster 
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j. Importantly, the random effect is assumed to be normally distributed with mean 0 and variance 

𝜏((. 

The unconditional multilevel model can be extended to a conditional model by including 

variables of interest at level-one, such as: 

𝑌!" = 𝛽(" + 𝛽%𝑋!" + 𝑒!" ,	 𝑒!"~𝑁(0, 𝜎&), (13) 

and at level-two as: 

P
𝛽(" = 𝛾(( + 𝛾(%𝑊" + 𝑢2"
𝛽%" = 𝛾%( + 𝛾%%𝑊" + 𝑢%"

, R
𝑢("
𝑢%"S ~𝑀𝑉𝑁 VR

0
0S , R

𝜏(( 𝜏(%
𝜏%( 𝜏%%SW	 	 .

(14) 

In the conditional model, 𝑌!" represents the outcome for observation 𝑖 nested in the level-two 

cluster j. The 𝑢2" term represents the unique increment to the intercept associated with cluster j, 

conditional upon the variables included in the model and the 𝑢%" term represents the unique in-

crement to the slope associated with cluster j, also conditional upon the variables included in the 

model. The level-one residual term 𝑒!" represents the difference in the observed outcome for ob-

servation i and the predicted outcome in cluster j, conditional upon the variables included in the 

model. The additional parameters can be described as follows. The 𝛽(" term represents the level-

one intercept, which is modeled as an outcome at level-two. The 𝛾(( term is the regression inter-

cept, or the expected value of 𝑌 for all level-one units when the values of 𝑋!" and 𝑊" equal zero. 

The 𝛽%" term represents the coefficient for the level-one predictor variable, which is modeled as 

randomly varying across level-two units through the 𝑢%" parameter. The 𝛾%( term therefore rep-

resents the average regression slope across the level-two units holding constant 𝑊". The 𝛾(% term 

is the regression coefficient for the level-two variable that is regressed on the level-one intercept 

and the 𝛾%% term represents a cross-level interaction between the level-one and level-two predic-

tor variables. Additionally, the dispersion of the level-two random effects is assumed 
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multivariate normally distributed with means of 0 and variances specified in the variance-covari-

ance matrix 𝚻, where 𝜏(( represents the conditional variance in the level-one intercepts, 𝜏%% rep-

resents the conditional variance in the level-one slopes, and 𝜏(% represents the covariance be-

tween the level-two intercepts and slopes. Note that the provided level-two specification repre-

sents all theoretical modeling possibilities for the level-one parameters (randomly varying level-

one intercept, randomly varying level-one slope, and a cross-level interaction for the level-two 

predictor that is regressed on both the level-one intercept and slope). 

The two-level model described above has been extended to a variety of other relevant re-

search designs. One particular extension of the two-level model as it relates to the mixed models 

approach for estimating age-period-cohort effects is the cross-classified random effects model 

(CCREM) proposed by Raudenbush (1993). The two-level model described above is predicated 

on the assumption of a pure nesting structure such as students nested within classrooms, or stu-

dents nested within classrooms nested within schools. However, this assumption is not always 

tenable, nor have researchers only been interested in examining the effects of variables that fall 

within purely nested structures such as the ones described above (Goldstein, 1994). Cross-classi-

fied models allow for the analysis of impurely clustered data structures by taking into account 

that observations can be nested within higher order levels, but these levels are not necessarily 

nested within one another (Beretvas, 2011).  

Following Raudenbush and Bryk (2002) notation, an unconditional CCREM can be spec-

ified at level one as: 

𝑌!"# = 𝜋("# + 𝑒!"# ,	 𝑒!"#~𝑁(0, 𝜎&), (15) 

where 𝑌!"# represents the outcome for observation 𝑖 cross classified by clusters j and k, 𝜋("# is 

the average value of the outcome for observations nested in cluster jk, and 𝑒!"# is the level-one 
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residual, assumed normally distributed with mean 0 and variance 𝜎&. The level-two 

unconditional CCREM is represented as: 

𝜋("# = 𝜃( + 𝑏((" + 𝑐((# + 𝑑("# ,
𝑏(("~𝑁(0, 𝜏3((),
𝑐((#~𝑁(0, 𝜏4((),
𝑑("#~𝑁(0, 𝜏5((),

(16) 

where 𝜋("# represents the level-one intercept model as an outcome at level-two that randomly 

varies across clusters j and k and 𝜃( represents the grand mean of the outcome across all 

observations. The 𝑏((" parameter is the random main effect for cluster j, averaged over all k 

clusters, assumed normally distributed with mean 0 and variance 𝜏3((. Similarly, 𝑐((# represents 

the random main effect for cluster k, averaged over all j clusters, assumed normally distributed 

with mean 0 and variance 𝜏4((.  

In the unconditional CCREM, 𝑑("# is a random interaction effect, calculated as the 

deviation of a cell mean from the predicted grand mean and the two main effects 𝑏((" and 𝑐((#, 

assumed normally distributed with mean 0 and variance 𝜏5((. Conceptually, 𝑑("# can be thought 

of as a moderation effect for the clustering variables. In practice this random interaction is almost 

never estimated (that is, the effect is set to 0) given small within-cell sample sizes that make it 

difficult to partition variance between the level-one within-cell variance component 𝜎& and the 

level-two between-cell variance component 𝜏5(( (Beretvas, 2008; Rasbash & Goldstein, 1994; 

Raudenbush & Bryk, 2002, p. 378). Although simulation studies indicate that excluding this 

effect can bias random effect estimates at level-two (Lee & Hong, 2019; Y. Shi et al., 2010), 

some argue that the assumption of simple additive random effect parameters without the 

inclusion of a multiplicative effect suffices in most applied research studies (Fielding & Gold-

stein, 2006, pp. 29–30). 
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Similar to the conditional two-level model, a conditional CCREM can readily be 

implemented, but a “general” set of equations is not plausible given the multitude of possible 

effects to be modeled. That is, the introduction of two level-two clusters, instead of one purely 

structed clustering mechanism, results in many possible combinations for specifying fixed and 

random effects. Generally speaking, the following options apply. At level-one of the CCREM, 

independent variables of interest can be modeled in the conventional way, but decisions must 

now be made regarding if these effects will be fixed across both cross-classified level-two 

clusters, randomly varying at only one level-two cluster, or randomly varying across both level-

two clusters. Independent variables at either or both of the level-two clusters may also be 

specified, and these predictors can be regressed on any combination of the level-one intercept or 

slopes. Considering the multitude of parameters that can be included in the CCREM, a priori 

theoretical and statistical consideration should be exercised with the entering of both level-one 

and level-two variables in the model. This holds especially true with the inclusion of random 

effects, where higher numbers of random effects result in more complex estimation procedures 

that may result in model convergence issues (Beretvas, 2011). 

Specifying APC Effects as CCREM 
Having provided an overview of two-level models and their extension to cross-classified 

random effects models, I now return to the utilization of mixed models in the estimation of age, 

period, and cohort effects. Yang and Land (2006) contend that data collected from a repeated 

cross-sectional study design, described above, results in a naturally occurring cross-classified 

data structure. Specifically, observations from individuals can be nested into clusters aligned 

with the year in which they were surveyed (period effects), which can then be cross-classified 

into specific birth-cohorts (cohort effects) of interest for analysis. Specifically, the age effects are 

modeled at level-one with linear and quadratic regression coefficients, and the period and cohort 
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effects are derived through the random effects estimates of the cross-classified clusters. Yang 

and Land termed their model the hierarchical age-period-cohort cross-classified random effects 

model (HAPC-CCREM). Using their notation (2006), the model can statistically be represented 

at level one as: 

𝑌!"# = 𝛽("# + 𝛽%Age!"# + 𝛽&Age!"#
& +C𝛽6𝑋!"#

+

6

+ 𝑒!"# ,			𝑒!"#~𝑁(0, 𝜎&) (17) 

where 𝑌!"# represents the outcome for observation i cross-classified by cohort j and period k, 𝛽("# 

is the mean of the outcome for an individual belonging to cohort j and period k, 𝛽% and 𝛽& 

represent the linear and quadratic age effects, 𝛽6 is a vector of regression coefficients of the other 

individual-level demographic control variables 𝑋!"#, and 𝑒!"# represents the level-one residual, 

assumed normally distributed with mean 0 and variance 𝜎&.  

The level-two specification of the CCREM applied to the estimation of age, period, and 

cohort effects is: 

𝛽("# = 𝛾( + 𝑢(" + 𝑣(# ,
𝑢("~𝑁(0, 𝜏7),
𝑣(#~𝑁(0, 𝜏8),

(18) 

where 𝛽("# is the level-one intercept modeled as an outcome at level-two and 𝛾( is the grand 

mean of the outcome across all individuals. The parameter 𝑢(" is the random effect parameter for 

the birth-cohorts, which conceptually is the contribution of cohort j to the intercept averaged 

over all periods, assumed normally distributed with mean 0 and variance 𝜏7. The parameter 𝑣(# 

is the random effect parameter for the survey years / time periods, which conceptually is the 

contribution of period k to the intercept averaged over all birth-cohorts, assumed normally 

distributed with mean 0 and variance 𝜏8.  
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The model put forth by Yang and Land (2006) is identical to the CCREM articulated by 

Raudenbush (1993), except that it excludes a multiplicative interaction effect between the period 

and cohort random effects (i.e., a 𝑤("# term). Importantly, the HAPC-CCREM breaks the linear 

dependency of the identification issue by including nonlinear parametric transformations for the 

age effects. Additionally, the cohort and period effects are coded as class memberships at level 

two, where the researcher must treat the effects as categorical variables into which individuals 

can be grouped. Estimating APC effects in the multilevel modeling framework  differs from the 

CG-APC approach in that dummy indicators are not utilized to represent the period and cohort 

effects, but instead an estimate is generated for each period and cohort that does not involve 

comparison to a referent period or cohort category left out of the model as in the CG-APC. 

Applications of the HAPC-CCREM 
Reflective of the utility found in the HAPC-CCREM, more than fifty studies have been 

published that utilize the method since its implementation by Yang and Land in 2006 (see 

Appendix A for a compendium of these studies). Researchers across diverse disciplines within 

the social sciences have taken advantage of the HAPC-CCREM to examine age, period, and 

cohort trends in topics such as attitudes toward controversial social issues, religious affiliation, 

gender ideology and sexual attitudes, and changes in health across the life course. Collectively, 

the studies have utilized a substantial amount of historical data, with many of the analyses 

spanning more than thirty years of historical life course trends. Almost all the studies have em-

ployed data from the General Social Survey, a popular repeated cross sections dataset used fre-

quently in the discipline of sociology, although a few studies have used data from Monitoring the 

Future and the National Health Interview Survey. 

One of the most frequent applications of the HAPC-CCREM has been to examine longi-

tudinal changes in attitudes toward controversial topics attributable to age, period, and cohort 
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effects. For example, in my own previous research (Attell, 2020), I examined how attitudes to-

ward euthanasia and suicide for terminally ill persons changed between 1977 and 2016. Other 

important issues that have been examined in this area include attendance at controversial protests 

and political events and participation in political activities like voting (Caren et al., 2011; Fuller-

ton & Stern, 2010, 2013; Horowitz, 2015), changing attitudes towards women’s work (Donnelly 

et al., 2016), changing political tolerance (Eisenstein et al., 2017; Schwadel & Garneau, 2014), 

trends in public approval for legalizing marijuana (Schwadel & Ellison, 2017), and changing atti-

tudes toward immigration and immigrants (Gorodzeisky & Semyonov, 2018; Wilkes & 

Corrigall-Brown, 2011), to name a few. A substantial portion of this research has specifically fo-

cused on issues related to gender, gender ideology, and sexuality (Donnelly et al., 2016; Pampel, 

2011, 2016; Shu & Meagher, 2018). 

A second major area of research using the HAPC-CCREM has been in the area of physi-

cal health, mental health, and wellbeing. In two separate studies Masters and colleagues analyzed 

trends in all-cause mortality attributable to gender, race, and education in conjunction with age, 

period, and cohort effects (Masters, 2012; Masters et al., 2012). To date, four studies have fo-

cused on explaining trends in happiness as a proxy for overall wellbeing and mental health 

(Bardo et al., 2017; Bardo, 2017; Twenge, Sherman, & Lyubomirsky, 2016; Yang, 2008), and 

one study examined changes in self-rated health (Zhang, 2017). Additionally, more narrowly fo-

cused health related outcomes such as prevalence of sexual activity (Twenge et al., 2017), mari-

juana use (Keyes et al., 2011), alcohol use (Keyes et al., 2012), and obesity (Reither et al., 2009) 

have also been examined using the HAPC-CCREM. 

Beyond the areas of attitudes toward controversial social topics and changes in physical 

health, mental health, and wellbeing, a significant area of inquiry has also been examining 



 

 
 

28 

perceptions of government spending and confidence in social institutions (e.g., Fullerton & 

Dixon, 2010). Additional HAPC-CCREM studies have shown consistent and steady period-

based declines in confidence in a variety of social institutions, including media, medicine, Con-

gress, and the Supreme Court (Twenge et al., 2017; Zheng, 2015), where some of these studies 

have focused on narrowing in on group differences in these trends over time (Gauchat, 2012). 

Somewhat related to the area of social institutions, several studies have applied the HAPC-

CCREM to examine various issues related to religion (Schwadel, 2010a, 2010b; Twenge, 

Sherman, Exline, et al., 2016). Additionally, some attention in the literature has been devoted to 

examining changing attitudes regarding religion in the public sphere (Schwadel, 2013a). 

Methodological Developments of the HAPC-CCREM 
Having provided an overview of age-period-cohort models including predecessors to the 

HAPC-CCREM, Yang and Land’s solution to the identification problem that has been informed 

by life course sociological theory, and the applied literature that has utilized the HAPC-CCREM, 

I now consider specific methodological advances that have been made in the development and 

subsequent refinement of the HAPC-CCREM. Many of these advances have been applied and 

conceptual discussions aimed at specific issues that arise when utilizing the model in real life, 

such as how to center variables in the model (Yang & Land, 2006) or how to assess the signifi-

cance of the period and cohort effects (Frenk et al., 2013). Additionally, a few simulation studies 

examining the accuracy of the HAPC-CCREM have been conducted. However, these simulation 

studies sparked considerable debate and were met with great skepticism among proponents of the 

HAPC-CCREM, who pointed out serious flaws in the design of the simulation studies critiquing 

the HAPC-CCREM. 

Centering Decisions in the HAPC-CCREM 
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While the main purpose of Yang and Land’s 2006 article was to propose and articulate 

the use of mixed models in the estimation of age, period, and cohort effects, they afford a brief 

amount of space to the methodological issue of centering in the HAPC-CCREM. The issue of 

centering is very important to the interpretation of all types of multilevel models and has been 

given considerable attention in the broader methodological literature (Enders & Tofighi, 2007; 

Hofmann & Gavin, 1998; Paccagnella, 2006). Just as the case with a single-level ordinary least 

squares (OLS) regression equation, in multilevel models the level-one intercept coefficient 

(usually specified as randomly varying across level-two units) can be interpreted as the average 

outcome for an individual when all predictor variables equal zero (Raudenbush & Bryk, 2002). 

Accordingly, when predictor variables do not contain a zero value in the actual data, these 

parameters must be rescaled, or “centered”, so that the intercept can be appropriately interpreted. 

The decision on which type of centering to use is not always straightforward, and 

depends on both theoretical and statistical considerations (Enders & Tofighi, 2007). In the case 

of utilizing CCREM to estimate age, period, and cohort effects, we must consider if level-one 

predictor variables will utilize their natural metric, be group-mean centered at the cohort or 

period clusters, or be grand-mean centered for the entire sample. In proposing their model, Yang 

and Land (2006) provide an applied example of the CCREM for analyzing age, period, and 

cohort trends in verbal ability in the United States from 1974-2000, controlling for education, 

gender, and race. They contend that previous research demonstrates “pure” age effects in verbal 

ability that do not depend on cohort membership, and therefore grand-mean center the age 

effects in their model. However, they cite previous research indicating between cohort 

differences in educational attainment over time, such that newer birth cohorts achieve higher 

levels of education, thereby justifying their use of group-mean centering the education variable 
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across cohort clusters. In the case of gender and race, dummy indicators are utilized to contrast 

differences in verbal ability between male (referent) and female respondents, and white (referent) 

and black respondents. Because a typical 0 / 1 coding scheme for the indicators was utilized, zero 

values were present in the variables and centering was not necessarily required. Note, however, 

that dummy indicators may still be group-mean or grand-mean centered, and these centering 

decisions influence the interpretation of the level-one intercept and its associated period and 

cohort variance components (see Enders & Tofighi, 2007, pp. 134–135). This discussion of 

centering in the HAPC-CCREM indicates that previous research and theory must be drawn upon, 

in addition to examining the actual values in the data, when making decisions about how to 

center. 

Accuracy of REML-EB Estimates in the HAPC-CCREM 
In the HAPC-CCREM, estimates of the fixed effects parameters for the age effects (and 

other level-one explanatory variables) are obtained by restricted maximum likelihood estimation, 

and the period and cohort effects are obtained by empirical Bayes estimates of the level-one 

fixed effects. Taken together, these procedures comprise the “REML-EB” estimates for age, 

period, and cohort effects. For multilevel modeling in general, REML-EB estimation is 

appropriate when there are a large number of level-two clusters that contain relatively equal 

sample sizes across clusters (Raudenbush & Bryk, 2002, pp. 410–411). In the HAPC-CCREM, 

however, existing datasets may not contain enough survey years and birth cohorts to meet the 

large number of clusters required by REML-EB estimation procedures to produce accurate 

estimates in the model. To address this issue, Yang (2006) conducted a simulation study to 

examine if the accuracy of the REML-EB estimates produced by the HAPC-CCREM depend on 

the number of survey years available for analysis. 
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The simulation study was informed by a real data analysis of trends in verbal intelligence 

(the “WORDSUM” test) in the United States between 1974 and 2000 based on fifteen repeated 

cross-sections of the General Social Survey. The WORDSUM test was used in a simple additive 

manner as the dependent variable by summing across the ten items in the test. In the model, 

verbal intelligence was regressed on linear and quadratic age terms that control for the effect of 

education, sex, and race. At level-two, the proportion of individuals in each five-year birth cohort 

who read newspapers on a daily basis and the average hours of TV watching per day within each 

five-year birth cohort were included as predictors. All predictor variables were treated as fixed 

effects in the model. The REML-EB parameter estimates from the real data study were then used 

in the data generating models for the simulation. 

One experimental condition with two levels was specified. For the first, “total sample” 

level of the experimental condition, the data generating model was used to generate 1000 

datasets with 19 five-year birth cohorts and 15 single-year periods, as this represented the cohort 

and period groupings in the real data. For the second, “thinned sample” level of the experimental 

condition, the data generating model was used to generate 1000 datasets with 5 five-year birth 

cohorts and 5 single-year periods. The rationale behind the second experimental condition was to 

examine the accuracy of the REML-EB estimates for datasets with a limited number of birth 

cohorts and survey years, that is, a smaller dataset. 

Several outcomes for the simulation study were of interest (Yang, 2006). In both the total 

sample and thinned sample, the mean fixed effects parameters from the data estimating models 

were almost identical to the true parameter values, lending preliminary support that the REML-

EB fixed effects estimates were accurate in large and small datasets. In the total sample, the 

means of the individual, period, and cohort random effects’ variance component estimates were 
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almost identical to their corresponding true variance component estimates. However, in the 

thinned sample, the mean of the individual random effect variance component was slightly 

smaller than the true value, and the means of the period and cohort random effects’ variance 

components were slightly larger than the true values.  

In addition to these qualitative, “eye-ball” comparisons, mean square error (MSE) was 

also examined. In the total sample, MSE was relatively minimal among the fixed effects and the 

cohort, period, and individual variance component estimates. However, in the thinned sample, 

MSE was large for the intercept, News, TV, and age parameter estimates and small for the 

remaining fixed effects estimates and cohort, period, and individual variance component 

estimates. For the fixed effects in the thinned sample where MSE was high, the magnitude of 

difference in their corresponding result from the total sample was substantial. For example, in the 

total sample the MSE for the TV parameter was 0.0622, while MSE for the TV parameter in the 

thinned sample was 3.9250. For each parameter estimated in the simulated datasets, coverage 

rates were also examined by calculating the proportion of 95 percent confidence intervals for 

each parameter that included the corresponding true value. Coverage rates for the coefficient 

estimates were close to 95 percent in the total sample but slightly lower than the nominal level in 

the thinned sample, ranging from 91% to 95%. Coverage rates were close to the nominal level 

for the individual, period, and cohort variance components in the total sample, ranging from 95% 

to 96%, but the coverage rates for the cohort and period variance components were much lower 

than 95 percent in the thinned sample (65% and 44%, respectively).  

Mean estimates, MSE, and coverage rates were also examined for the random effects 

estimates associated with each period and cohort cluster in the the total (19 cohorts and 15 

periods) and thinned (5 cohorts and 5 periods) samples. Regarding mean estimates for the period 
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and cohort random effects, almost all of the mean values in both the total and thinned samples 

greatly differed from the true values obtained from the real data study. The MSEs were also very 

large for each period and cohort random effect estimate across the total and thinned sample. 

Coverage rates associated with the random effects estimates in the total sample ranged from 40 

to 60 percent for the cohort effects and 50 to 60 percent for the period effects. Coverage rates 

associated with the random effects estimates in the thinned sample ranged from 48 percent to 73 

percent for the cohort effects and 54 to 57% for the period effects. Taken together, Yang (2006) 

concluded that the results of the simulation indicated that the HAPC-CCREM was not 

appropriate for datasets with a small number of birth cohorts and time periods. However, for 

larger datasets, the HAPC-CCREM produces accurate estimates for the fixed effects regression 

parameters and the period and cohort variance components, but the random effects parameters 

associated with each period and cohort cluster were not as accurate. 

Assumptions of Independence for the HAPC-CCREM 
After examining the accuracy of REML-EB estimates given the amount of data available 

for analysis, some of the more nuanced assumptions behind the model were examined. The first 

of these assumptions refers to the relationship between the level-one predictor variables and the 

level-two random period and cohort effects. In multilevel models, any level-two random effect is 

assumed to be independent of the set of level-one predictors (Grilli & Rampichini, 2015, 2018). 

Therefore, as it relates to the HAPC-CCREM, it is necessary to examine if this assumption of in-

dependence holds true. The independence assumption can be examined in one of two ways. One 

option is to visually inspect the relationship between the level-two random effects and each 

level-one predictor using a residual scatter plot and a corresponding Pearson correlation coeffi-

cient or smoothed spline to quantify the relationship (Snijders & Berkhof, 2008). If any extreme 

evidence of a linear or non-linear relationship exists, the independence assumption is violated, 
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the random effect parameters should not be estimated, and a fixed effects specification should be 

considered (Ebbes et al., 2004)  

A second, and perhaps more robust, statistical method of assessing the independence as-

sumption is the Hausman test (Ebbes et al., 2004; Fielding, 2004). The Hausman test is a Wald 

chi-square test that can be used to compare a competing fixed and random effect model. As it re-

lates to the HAPC-CCREM, the null hypothesis for the Hausman test is that the period and co-

hort random effects in the CCREM are independent of the level-one predictor variables. Per-

forming this test requires the specification of the age-period-cohort model as both a random and 

fixed effects model with an identical set of predictor variables between the two. Yang and Land 

(2008) used a HAPC-CCREM and a hierarchical age-period cohort cross-classified fixed effects 

model (HAPC-CCFEM) with the same set of level-one predictor variables present. However, the 

level-two specifications are quite different. In the HAPC-CCREM the cohort and period effects 

are estimated as random effects that are captured by 𝑢(" and 𝑣(#, whereas in the HAPC-CCFEM, 

a set of dummy indicators representing membership in five-year birth cohorts and one-year pe-

riod groups are specified at level-two. To avoid a fully saturated model, the last five-year cohort 

cluster and one-year period cluster were excluded as the referent groups of comparison. Regard-

ing the Hausman test, they failed to reject the null hypothesis of no systematic differences in the 

parameters (Yang & Land, 2008, p. 318). Accordingly, they contend in their study that the ran-

dom effects 𝑢(" and 𝑣(# are uncorrelated with the level-one predictors and that the HAPC-

CCREM is a preferred modeling procedure to the HAPC-CCFEM given this finding. 

Assessing the Significance of Period and Cohort Effects in the HAPC-CCREM 
The most recent methodological development provided by proponents of the HAPC-

CCREM was a general framework for assessing the significance of the period and cohort effects 

derived from the model (Frenk et al., 2013), which is helpful for applied researchers. Once the 
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HAPC-CCREM is estimated, we can examine the estimates of 𝑋 = 𝐽 + 𝐾 random effects, where 

𝐽 represents the number of level-two cohort clusters and 𝐾 represents the number of level-two 

period clusters. Each random effect estimate represents the respective cohort or period deviation 

from the intercept. Given the number of estimates produced by the model, a framework for as-

sessing each effect in isolation, as well the overall trend for the estimates is necessary. To ad-

dress these issues, Frenk et al. (2013) proposed a four step process, which is briefly described. 

First, an examination of any patterns or trends in the period and cohort effects is done by 

plotting each random effect estimate with an associated 95% confidence interval. This is accom-

plished by extracting each random effect estimate from the model, calculating a lower and upper 

bound for the confidence interval, and adding to the results the constant term from the estimated 

intercept. Second, the statistical significance of each cohort and period random effect estimate is 

conducted, where failing to reject the null hypothesis signifies a cohort or period effect that is not 

different from the overall average. Third, the deviance value and variance components are exam-

ined. Note that the analysis of the deviance value is more so related to the statistical significance 

of the overall model. On the other hand, the decomposition of variance components points to-

ward practical significance of the period and cohort effects by quantifying the proportion of total 

variability attributable to each effect. Fourth, a global F-test is conducted on the variance compo-

nents to assess the significance of the period and random effects’ variance components. Failure 

to reject the null hypothesis would indicate a situation in which the birth-cohort or time-period 

effects’ variance components do not significantly differ from zero. However, because the F-test 

only takes into account one variance component at a time, it should be performed with caution. 

Significance tests such as the likelihood ratio test, which takes into account all parameters in the 

model, would also a worthwhile analysis (Raudenbush & Bryk, 2002, pp. 63–65). Combining 
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steps one through four provide a great deal of insight regarding the results of the HAPC-CCREM 

and provide a compelling framework from which to assess the period and cohort effects derived 

from the model. 

Criticisms and Responses 
Innovation does not come without critique. In a series of papers, social scientists Bell and 

Jones (Bell & Jones, 2013, 2014a, 2014b, 2015) utilized various simulations to call into question 

the findings produced by studies that utilized the HAPC-CCREM. Broadly, their simulations 

were designed to address two main areas of concern. The first area of concern is related to how 

cohorts are treated as categorical variables that define cluster membership at level-two in the 

HAPC-CCREM. Bell and Jones contend that treating cohorts as categorical, cluster defining var-

iables represents a modeling choice that may not capture the true cohort effects that exist in the 

data (2014a). In Yang’s (2006) simulation discussed previously, datasets were generated using 

five-year birth cohorts, to which estimating models with five-year birth cohorts were also ap-

plied. Bell and Jones (2014a) were therefore motivated to examine the accuracy of estimates 

from the HAPC-CCREM when cohort groupings in the estimating model did not match cohort 

groupings used in the data generating model. The second area of concern is related to the 

model’s ability to detect period and cohort trends. Recall that the period and cohort effects in the 

HAPC-CCREM are estimated as random effects that are assumed to be normally distributed de-

viations from the model intercept. Given this normality assumption, Bell and Jones (2014a) 

tested the model’s ability to recover linear period and cohort trends when they were specified in 

the data generating model, an issue previously unexamined by Yang (2006). 

In one study, the primary interest was the accuracy of the parameter estimates and the 

values of the cohort and period random effects under several experimental conditions (Bell & 

Jones, 2014a). First, they examined the extent of biased estimates if an HAPC-CCREM was 
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estimated on a generated dataset where no linear period and cohort trends were present (scenario 

1). Second, they examined accuracy of the estimates when a linear cohort trend existed in the 

generated datasets (scenario 2). Third, they examined accuracy when a linear cohort trend with 

1-year cohort groups was specified in the generated data, but five-year cohorts were specified in 

the HAPC-CCREM fitted to the simulated dataset (scenario 3). They next examined the 

situations in which five and seven-year cohorts were present in the simulated dataset, but only 

five-year cohorts were specified in the HAPC-CCREM fitted to the simulated datasets (scenarios 

4 and 5, respectively). They then examined the scenario in which a linear cohort trend was 

specified in the simulated datasets and one-year cohort groups were specified as random effects 

and fixed effects in the HAPC-CCREM applied to the simulated datasets (scenario 6). Finally, 

they examined the impact of bias on the parameter estimates when a linear period trend was 

specified in the data generating model but no period effects were specified in the HAPC-

CCREM (scenario 7). For each simulation condition, 1,000 randomly generated datasets were 

created, each of which contained 20,000 respondents with randomly distributed ages between 20 

and 60 and randomly distributed periods between 1990 and 2010. In each dataset, cohorts were 

then calculated based on each respondents’ randomly assigned age and period values. 

The results of their simulations were as follows. For scenario 1, where no period and 

cohort trends existed in the data generating process, the HAPC-CCREM performed well with no 

exhibited biases in the model parameters. In scenario 2, where a linear cohort trend was specified 

in the data generating models, the parameters for cohorts and linear age effect were biased 

downwards, and the model produced an entirely linear period trend that was not present in the 

data generating process. In scenario 3, where a linear cohort trend existed in the data generating 

model and five-year cohorts were specified in the HAPC-CCREM, the linear age effects and 
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cohort terms were once again negatively biased. In scenario 4, where five-year cohorts were 

specified in both the data generating and estimating models, parameter estimates were unbiased. 

When the cohorts were mismatched in scenario 5, the same biased coefficients were found from 

scenarios 2 and 3. In scenario 6, when fixed and random effects were specified for the cohort 

effects in the estimating models, the bias in the age effect from scenarios 2 and 3 was resolved. 

Finally, in scenario 7, where a linear period trend was specified in the generating model but no 

fixed period effects were specified in the HAPC-CCREM, they found that the period trend in the 

simulated dataset was redistributed between the age and cohort effects, which were 

overestimated. Based on these findings, Bell and Jones concluded that the HAPC-CCREM per-

formed poorly. Notably, the model failed to detect linear period or cohort trends from the data 

generating models, and only produced unbiased estimates when the cohort groupings used in the 

estimating models matched the cohort groupings from the data generating models. 

In a second simulation study, Bell and Jones (2014b) used Reither et al.’s (2009) HAPC-

CCREM study related to trends in the prevalence of obesity to continue examining the issue of 

cohort groupings and recovery of the age, period, and cohort trends in the HAPC-CCREM. 

Similar to their previous study, they manipulated the cohort groupings in the data generating 

models and the HAPC-CCREMs applied to the simulated data. They examined three grouping 

scenarios. In scenario 1, no grouping was conducted in the data generating model or the fitted 

HAPC-CCREM. In scenario 2, no grouping was conducted in the data generating model but 5-

year cohorts were specified in the HAPC-CCREM estimating model. In scenario 3, 7-year birth 

cohorts were specified in the data generating model but 5-year birth cohorts were used in the 

HAPC-CCREM estimating model. Across all scenarios, a linear trend was specified for the 
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cohort effects in the data generating models. For each scenario, 1,000 randomly generated 

datasets were created.  

Across all scenarios, the outcome of interest was whether the HAPC-CCREM fit to the 

simulated data produced the same age, period, and cohort trends present in the simulated data. 

The results of the simulation study indicated that across all scenarios the HAPC-CCREM fit to 

the simulated data produced consistently lower probabilities of obesity based on age, that the real 

cohort trend was not detected, and that an erroneous linear period effect was produced that did 

not exist in the “true” data from the data generating models. For these reasons, Bell and Jones 

cautioned researchers against utilizing the HAPC-CCREM. 

Proponents of the HAPC-CCREM responded to these simulations with great skepticism. 

In a separate study, Reither and colleagues (2015) conducted their own simulations to counter 

those conducted by Bell and Jones. They hypothesized that Bell and Jones’ simulations produced 

erroneous and misleading results because the period and cohort trends specified in their data 

generating models were perfectly linear, a characteristic that does not reflect real world data and 

trends. Therefore, they specified new data generating models that did not rely on perfectly linear 

period and cohort trends. Their counter simulation consisted of three such scenarios. In one sce-

nario, seven-year cohorts were specified in the data generating models with a near linear cohort 

trend, and five-year cohorts were specified in the estimating models. In another scenario, three-

year cohorts were specified in the data generating models with a near linear cohort trend, while 

five-year cohorts were specified in the estimating models. Finally, the last scenario utilized 

seven-year cohorts in the data generating models with a near linear period trend, while five-year 

cohorts were specified in the estimating models. In their counter simulation study, they found 

that across all scenarios the HAPC-CCREM estimating models did in fact recover the true APC 
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effects from the data generating models, and that moreover the cohort groupings in the 

estimating model did not have to match the cohort groupings in the generating models to 

accurately recover the true APC effects (Reither et al., 2015). These findings highlight the im-

portance of using values reflective of real data and trends in simulation studies, and lead Reither 

and colleagues (2015) to conclude that the HAPC-CCREM is a robust model that can, in fact, de-

tect age, period, and cohort trends, even if we do not know the true cohort grouping that exists in 

the data used by the model. 

The Current Study 
Taken together, the previous methodological research on the HAPC-CCREM has pro-

vided meaningful insights to the model. The more demonstrative methodological research has 

aimed to provide guidelines for centering variables in the model (Yang & Land, 2006), assessing 

and visualizing the significance of the period and cohort effects (Frenk et al., 2013), and examin-

ing assumptions of independence between the level-one predictor variables and the level-two 

random period and cohort effects (Yang & Land, 2008). Simulation studies for the HAPC-

CCREM have focused on the accuracy of estimates from the model given the size of the dataset 

(Yang, 2006), and if the model can recover the age, period, and cohort trends in various scenar-

ios (Bell & Jones, 2014a, 2014b; Reither et al., 2015). However, important methodological ques-

tions remain that have not been examined but could potentially be very useful to applied re-

searchers.  

One such issue is related to the accuracy of the model parameters given the amount of 

data available for analysis. Recall that using the real data study of trends in verbal ability in the 

U.S., Yang (2006) simulated and applied the HAPC-CCREM to 19 five-year birth cohorts and 

15 single period survey years, derived from repeated cross-sectional data from the General Social 

Survey between 1974 and 2000. These were then compared to a sample of 5 five-year birth 
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cohorts and 5 single-year period effects, comprising a “thinned sample”. Broadly, the results of 

the simulation indicated that for datasets comprised of 15 repeated cross-sections, REML-EB 

estimates from the HAPC-CCREM were accurate in estimating the individual and cohort fixed 

effects regression parameters and the individual, period, and cohort variance components. For 

datasets comprised of 5 repeated cross-sections, REML-EB estimates from HAPC-CCREM were 

accurate in estimating most of the individual and cohort fixed effects regression parameters. 

However, in the smaller datasets the level-1 age effect, as well as the period and cohort variance 

components were overestimated, while the individual variance component was underestimated. 

Importantly, beyond Yang’s simulation, none of the other methodological studies examined the 

impact that the amount of survey years available for analysis may have on the accuracy of the 

model estimates. 

There are at least three reasons why re-examining how the number of repeated cross-

sections may influence the accuracy of model estimates is important. First, since Yang’s 

simulation was published, the data collected by the General Social Survey and other repeated 

cross sectional datasets have grown, which is reflected in more recently published analyses. For 

example, Anderson et. al’s (2017) analysis of changing attitudes towards the death penalty 

utilized 27 repeated cross-sections from the GSS, and Carlisle and Clark’s (2018) analysis of the 

associations between religion and environmentalism utilized 29 repeated cross-sections from the 

GSS. As publicly available datasets like the GSS continue to grow, what constitutes a “large” 

dataset will continue to evolve with the availability of more repeated cross-sections. Given that 

certain analyses using GSS data have, in fact, almost doubled the number of repeated cross-

sections used in Yang’s (2006) simulation study, it is worthy of investigation to revisit and 

expand Yang’s study to examine the accuracy of model estimates given larger datasets. 
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Second, the findings of Yang’s study imply that applied researchers should only specify 

the HAPC-CCREM on datasets with at least 15 repeated cross-sections. It may be the case that a 

dataset with the number of repeated cross-sections between five and 15 may also accurately 

recover model parameters, but currently this has not been examined in the methodological 

literature. Third, Yang’s simulation did not include a level-2 period predictor variable, instead 

only focusing on a level-2 cohort predictor variable. In the applied literature, the use of period-

level predictor variables may be of interest. For example, Anderson et. al’s analysis of attitudes 

towards the death penalty included period-level predictors for the annual violent crime rate and 

unemployment rate (Anderson et al., 2017) and Johson and Schwadel’s (2019) analysis of 

support for environmental spending included period-level predictors for the number of New 

York Times articles on the enviroment and years in which a democrat was president. The 

accuracy of coefficient estimates of period-level predictors such as these may be directly 

impacted by the number of survey years included in the analysis, but to date this issue has not 

been explored. Considering these three issues, the first aim of this dissertation is to answer the 

following question: 

RQ1: What is the accuracy of REML-EB estimates at all levels in the HAPC-CCREM 

given the number of survey years available for analysis? 

One of the interesting methodological decisions required in the HAPC-CCREM is the 

selection of cohorts to be used in the model, hereafter referred to as the cohort selection 

mechanism. Recall that previous research focused on the ability of the HAPC-CCREM to 

recover age, period, and cohort trends when the cohort selection mechanism used in the 

estimating model did not match the data generating model. The findings of Reither et al. (2015) 

indicated that the HAPC-CCREM could detect age, period, and cohort trends even if the cohort 
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selection mechanism between the estimating model and data generating model did not match. 

Considering that the cohort selection mechanisms do not have to match, questions remain about 

which cohort selection mechanism should be used, and if one cohort selection mechanism 

produces more accurate estimates than the others. 

In the applied literature that utilizes the HAPC-CCREM, the most commonly utilized 

cohort selection mechanisms are the three-, five-, or ten-year birth cohorts. To date, these 

decisions have been arbitrary and appear to be left to personal preference, when the decision of 

which cohort selection mechanism to uptake is even described or justified. Indeed, 27 out of the 

57 applied studies using the HAPC-CCREM, or just 47%, provide justification for the cohort 

selection mechanism. The most common explanation, when one exists, references Yang’s study 

of APC-based social inequalities in happiness in the United States, where she claimed “we can 

use single years of age, time periods corresponding to years in which the surveys are conducted, 

and birth cohorts defined by five-year intervals, which are conventional in demography” (Yang, 

2008, p. 210). Beyond “convention”, some researchers contend that the cohort selection 

mechanism should be based on substantial theoretical interests. For example, two separate 

studies (Kowske et al., 2010; Shu & Meagher, 2018) drew on generational theory to drive their 

cohort selection mechanism, abandoning the five-year birth cohort approach for much wider 

generational cohorts that grouped individuals into cohorts such as the GI Generation (those born 

between 1901-1924), Baby Boomers (those born between 1943-1960), Gen Xers (those born 

between 1961-1981), and Millenials (those born between 1982-2003). 

The last justification for the cohort selection mechanisms used in the applied literature 

has included reference to statistical consideration of sample sizes within cross-classified cells. 

Consider the following justifications for the cohort selection mechanism: 
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Data collected over time can be analyzed in many ways, including grouping by 
20-year generation blocks, by decades, or by individual year. We believe that 
separating the data into 5-year intervals provides the best compromise between 
specificity and breadth. (Donnelly et al., 2016, p. 45) 

 
We grouped people by birth decade as a compromise between breadth and depth. 
Using a larger span (for example, a 20-year generation) risks losing 
discriminatory power, and a smaller span (such a 5-year groups) risks low sample 
size. (Twenge et al., 2017, p. 435) 

 
As is typical in cohort analyses, five-year birth cohorts are used, providing a 
range that is wide enough to provide reliable statistical estimates but narrow 
enough to ensure that members of a group have had relatively similar life 
experiences. (Stockard et al., 2009, p. 1456) 

 
The grouping of cohorts is also of concern, as it determines the number of 
observations on the group-level. Distinguishing only a few cohorts would not 
yield enough variation on the cohort-level, increasing the risk of conducting 
Type-II errors. (Smets & Neundorf, 2014, p. 44) 

 
These diverging justifications indicate a lack of consensus in the applied literature about which 

cohort selection mechanism produces ideal statistical estimates. Interestingly, selecting a range 

of cohort years for grouping presents unique problems not faced in other multilevel modeling 

scenarios. In the case of students nested within schools, for example, researchers cannot a poste-

riori manipulate the student/school nesting structure by altering what schools students belong to. 

In the HAPC-CCREM, however, the grouping is up for interpretation and to date there is no 

methodological guidance on that topic. 

This conundrum has important implications for statistical estimation of the model, espe-

cially in the context of life course sociological theory. There is indeed a tradeoff. Wider birth co-

horts, like the ten-year cohort, will have larger sample sizes and greater statistical power to de-

tect cohort-based differences. However, parameter estimates in multilevel modeling are greatly 

affected by not only the within cluster sample size, but also the number of overall level-two clus-

ters (McNeish & Stapleton, 2016a), an issue that also holds true in cross-classified random 
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effects modeling as well (Luo & Kwok, 2009; Meyers & Beretvas, 2006; Ye & Daniel, 2017). 

Creating wider birth cohort ranges results in fewer level-two clusters, which may affect model 

stability (McNeish & Stapleton, 2016a). Although, creating a greater number of level-two clus-

ters by using three- or five-year birth cohorts may result in unequal sample sizes across the co-

horts (i.e., unbalanced data), especially for those groups that fall at the tail ends of the sequence 

of cohorts where cohort sample size is likely much lower than cohorts falling in the middle of the 

sequence. To address these lingering issues, the second research question for this dissertation is: 

RQ2: Even if the cohort selection mechanism used in the estimation of an HAPC-

CCREM does not have to match the true cohort selection mechanism underlying the data, 

does one cohort selection mechanism produce less-biased REML-EB estimates than 

another?  

From a theoretical perspective, the somewhat artificial manipulation of people into these 

level-two period and cohort groups may be challenging. Societal change, especially on attitudinal 

measures, takes a long time to enact and become realized. The ten-year cohorts may contain 

more heterogeneous people and therefore exhibit a wider range of variability in the outcome of 

interest. However, the three- or five-year cohorts may be more homogenous in the anchoring of 

historical events that shaped their birth cohort, resulting in less variability in the outcome within 

these groups. Previous simulation studies have ignored this issue, and to date there has been no 

examination of the accuracy of estimates from the HAPC-CCREM considering the variability in 

the period and cohort effects. Taken together, these issues present unique challenges that need 

further exploration. Statistical simulation studies alongside theoretical development is needed to 

further explicate how the cohort groupings may impact any detected age, period, or cohort ef-

fects, if any detected effects depend on the variability of the period and cohort effects, and how 
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these effects should be interpreted in light of the cohort selection mechanism taken up by the re-

searcher. To answer these important questions, the third research question for this dissertation 

builds on RQ2 by asking: 

RQ3: Does any potential bias exhibited across cohort selection mechanisms depend on 

the amount of variability in the period or cohort effect? 

The last area of investigation for the current study is related to the use of model fit indi-

ces in detecting the ideal cohort selection mechanism. Information criteria, such as Akaike’s in-

formation criteria (AIC) and Bayesian information criterion (BIC), are indices used in the model 

building process to examine the fit of competing models, where lower values generally represent 

better fitting models. In practice, researchers typically select as final models those with the low-

est value for a particular model fit index. As previously discussed, those using the HAPC-

CCREM in practice must make a choice about which cohort selection mechanism to use in the 

model. Ideally, the cohort selection mechanism used would match the cohort selection mecha-

nism underlying the data, but in reality, we will never know the true cohort selection mechanism 

underlying the data. Model fit indices, however, may help us determine the cohort selection 

mechanism that is closest to the truth. In practice, a researcher would specify a baseline HAPC-

CCREM only containing predictor variables for the age effect using several competing cohort 

selection mechanisms. If model fit indices work as intended, the cohort selection mechanism 

with the lowest fit value would represent the cohort selection mechanism closest to the truth. 

The use of model fit indices in this way has not been investigated in the previous simula-

tion studies focused on the HAPC-CCREM. However, for the broader class of cross-classified 

random effects models in general, Beretvas and Murphy (2013) examined the ability of AIC, 

BIC, and modifications to these indices to select the best fitting model among a correctly 
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specified model, an under-parameterized model, and an over-specified model. In their simulation 

study, 48 experimental conditions were examined that varied several experimental factors, 

including the total sample size, the maximum number of clusters in the cross-classification, the 

number of non-empty cross-classified cells, and the intraunit correlation coefficient. They found 

that modifying the AIC to account for the overall sample size and modifying the BIC to account 

for the number of level-two clusters generally improved the ability to detect the best fitting 

model. Considering these findings, it is worthwhile to examine the ability of a variety of model 

fit indices to detect the best fitting model. Accordingly, the final research question for this disser-

tation is: 

RQ4: Given competing cohort selection mechanisms, can model fit indices detect the 

model that is closest to the true cohort selection mechanism underlying the data? 

  



 

 
 

48 

3  METHODOLOGY 

This dissertation aims to investigate two broad areas of methodological issues related to 

the performance of the hierarchical age-period-cohort cross-classified random effects model 

(HAPC-CCREM) using a Monte Carlo simulation study. The first area of investigation relates to 

the accuracy of REML-EB estimates obtained in the HAPC-CCREM. Research questions one 

through three, outlined in Chapter 2, established four factors that may influence the accuracy of 

the model estimates: the number of survey years available for analysis, the cohort selection 

mechanism employed in the model, the variability of the period effect, and the variability of the 

cohort effect. The second area of investigation in this dissertation, motivated by research ques-

tion four, is the extent to which model fit indices can be used to help applied researchers in iden-

tifying an ideal cohort selection mechanism. 

This chapter describes the methodology underlying the Monte Carlo simulation and is 

structured as follows. First, as a preparatory step for both studies, the results of a real data study 

analyzing changing attitudes toward abortion are presented. The real data study was a necessary 

step to generate plausible values for the generating parameters and sampling distributions used in 

the simulation study (Burton et al., 2006). Following the real data study, separate sections are 

provided to discuss the study conditions, data generating models, and estimating models relevant 

to the simulation study design. The chapter concludes with a description of the evaluation criteria 

associated with the simulation study, which includes model convergence rates, relative absolute 

bias, coverage rates of the 95% confidence intervals, and analyses of model fit indices. 

A Preparatory Step – A Real Data Study 
Data Source and Analysis Sample 

The real data study utilized the GSS 1972-2016 Cross-Sectional Cumulative Data file 

(Smith et al., 2017). The GSS was conducted annually from 1972 to 1977, annually or biennially 
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from 1978 to 1993, and biennially from 1994 to 2016. The cumulative data file contained 62,466 

respondents across 30 repeated cross-sections. The target population for the 1972 to 2004 survey 

years was non-institutionalized English-speaking individuals 18 years of age or older living in 

the United States. From 2006 onward, the target population was expanded to also include Span-

ish-speaking individuals. GSS provides sampling weights derived from block quota sampling in 

several of the earlier years and full probability sampling for the majority of the years to extrapo-

late from the sample to the target population. Following the precedent of previous applications of 

the HAPC-CCREM to GSS data, the current study was an unweighted analysis. 

To arrive at a final sample for analysis, several exclusions were applied to the full sam-

ple. The six abortion questions used to construct the dependent variable were not included in the 

1986 survey year, resulting in 1,470 individuals (2.35% of the original sample) removed from 

the analysis. The GSS interview protocol utilizes a split-ballot design to reduce survey admin-

istration costs, so that not every participant is asked every question. An additional 45,007 ineligi-

ble participants (72.05%) of the original sample were removed because they were not on the bal-

lot to receive the questions used to construct the independent variables. GSS survey protocol al-

lows participants to refuse to answer questions, therefore an additional 2,744 participants (4.39% 

of the original sample) were removed who refused to answer all questions used to construct the 

independent variables described below. Finally, 178 participants (0.28% of the original sample) 

were list-wise deleted because they were missing data on the birth year variable. The final sam-

ple size for the real data study was 13,067 individuals (20.92% of the original sample). 

Variables of Interest 
The dependent variable of interest for the real data study was support for abortion as 

measured by six abortion ideology questions asked by the GSS. During data collection, partici-

pants were asked to report if they thought it should be possible for a pregnant woman to obtain a 
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legal abortion in the following six circumstances: if there is a strong chance of serious defect in 

the baby; if the woman’s own health is seriously endangered by the pregnancy; if she is married 

and does not want any more children; if the family has a very low income and cannot afford any 

more children; if she became pregnant as a result of rape; and if she is not married and does not 

want to marry the man. Responses to the scenarios were coded so that 1 represents yes and 0 rep-

resents no. To create the dependent variable, responses to all six scenarios were summed and 

then multiplied by 100. Therefore, a score of 0 would represent an individual who responded no 

to all six questions, while a score of 600 would represent an individual who responded yes to all 

six questions. The dependent variable was scaled in this manner to place the model’s parameters 

in a large enough parameter space to reduce the magnification of otherwise minimal differences 

in the values of the parameters in the successfully converged models used in the calculation of 

relative absolute bias (discussed later in this chapter). 

Four independent variables were of interest in the real data study:  age, sex, the percent-

age of individuals ever divorced in each cohort, and the percentage of individuals that support 

divorce laws in each survey year. Respondent age was calculated at the time of the interview by 

subtracting the respondent’s birth year from the year in which they were surveyed. Because the 

GSS samples adults, the lower limit of the age distribution in the analysis sample was 18. In the 

data management process, GSS administrators censor the age of respondents who are 90 years of 

age and older by top-coding their age as 89. Therefore, the last age category represented individ-

uals 89 and older, and technically makes the age variable ordered categorical rather than continu-

ous. However, the age variable was treated as continuous considering that it has 72 categories, 

each representing an age between 18 and 89 and older. Respondent sex was categorized as male 
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or female, and for the purposes of the current study a dummy indicator was created such that 0 

represents males and 1 represents females.  

The percentage of individuals ever divorced in each cohort was calculated by aggregating 

responses of “yes” from the individual-level to the following question: have you ever been di-

vorced or legally separated? Responses were aggregated to the cohort-level using five-year co-

horts. The percentage of individuals in each survey year that support divorce laws was calculated 

by aggregating responses of “easier” to the following question: should divorce in this country be 

easier or more difficult to obtain than it is now? When such aggregation techniques as these are 

employed in multilevel models, it is common to calculate contextual effects by leaving the indi-

vidual-level variable(s) in the model (Raudenbush & Bryk, 2002, pp. 139–141). In the current 

real data study only the aggregated variables were included to simplify the number of overall pa-

rameters examined. Descriptive statistics for all study variables are displayed in Table 1. 

Table 1. Descriptive Statistics for Real Data Study Variables 
 M SD Min Max 
Individual Level     
   Abortion 381.85 201.92 0.00 600.00 
   Age 48.71 16.98 18.00 89.00 
   Female 0.56 0.50 0.00 1.00 
Cohort Level     
   Divorce 15.67 6.71 0.00 25.31 
Period Level     
   Divorce Law 23.30 3.63 17.97 30.25 

Note. N = 13,067. 

Analysis and Results 
Two HAPC-CCREMs were estimated to examine longitudinal changes in support for 

abortion. First, a baseline model was estimated, which contained linear and quadratic age terms 

as fixed-effects at level one. Second, a conditional model was estimated that included the age ef-

fects from the baseline model and introduced fixed-effects for sex at level one, the cohort-level 

divorce variable, and the period-level divorce law variable. All models were estimated using 
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restricted maximum likelihood with the lme4 package (Bates et al., 2015) in R version 3.6.0 (R 

Core Team, 2019). Age was grand-mean centered and scaled by dividing by the standard devia-

tion of age to be within the same parameter space as the other predictor variables. Curvilinear 

age effects were accounted for by squaring the centered and scaled linear age variable. The pe-

riod- and cohort-level predictor variables were both grand-mean centered. The female indicator 

at level one was left uncentered. Across all models, cohorts were grouped using the five-year co-

hort selection mechanism. 

Results of the two HAPC-CCREMs are displayed in Table 2. The baseline APC model 

that introduced the age effects at level one indicates a negative curvilinear relationship between 

age and support for abortion. In the conditional model that introduced the individual-, period-, 

and cohort-level predictors, the negative curvilinear relationship remains. Regarding gender ef-

fects, compared to men, women are expected to score 11.071 points lower in support for abortion 

(p = .002). There was a positive relationship between the prevalence of divorce and support for 

abortion, such that for every one-point increase in the percentage of divorced individuals in a co-

hort, support for abortion increased by 3.660 points (p = .002). As the percentage of individuals 

in a given survey year that believed divorces should be easier to obtain increased, so too did sup-

port for abortion (𝛾& = 3.335, p = .002). The additional predictor variables added in the condi-

tional model reduced the amount of explained variability at the individual, period, and cohort 

levels. However, in both models most of the variability in support for abortion occurred at the 

individual level. 
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Table 2. Fixed Effects and Variance Components Estimates for the HAPC-CRREM of Changing 
Support for Abortion 
 Baseline 

APC 
Conditional 

APC 
Fixed Effects   
   Intercept (𝛾() 378.37*** 373.01*** 
   Age (𝛽%) –4.79 –5.93* 
   Age2 (𝛽&) –7.75*** –5.74** 
   Female (𝛽')  –11.07** 
   Divorce (𝛾%)  3.66** 
   Divorce Law (𝛾&)  3.34** 
Variance Components   
   Individual (𝜎&) 40120.49 40078.84 
   Period (𝜏8) 303.04 137.94 
   Cohort (𝜏7) 321.92 257.79 

Note. N = 13,067. *p < .05. **p < .01. ***p < .001. 

Simulation Study Design 
This simulation study was designed to answer the following research questions proposed 

in Chapter 2: 

RQ1: What is the accuracy of REML-EB estimates at all levels in the HAPC-CCREM 
given the number of survey years available for analysis? 
 
RQ2: Even if the cohort selection mechanism used in the estimation of an HAPC-
CCREM does not have to match the true cohort selection mechanism underlying the data, 
does one cohort selection mechanism produce less-biased REML-EB estimates than an-
other? 
 
RQ3: Does any potential bias exhibited across cohort selection mechanisms depend on 
the amount of variability in the period or cohort effect? 
 
RQ4: Given competing cohort selection mechanisms, can model fit indices detect the 
model that is closest to the true cohort selection mechanism underlying the data? 

 

Simulation Conditions 
Answering research question 1 required manipulating the number of available repeated 

cross-sections for analysis in the HAPC-CCREM. The most recent Monte Carlo simulation study 

examining the accuracy of REML-EB estimates in the HAPC-CCREM evaluated datasets con-

sisting of 15 cross-sections and a thinned sample of 5 cross-sections (Yang, 2006). This study 
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builds on this previous research by examining the accuracy of REML-EB estimates given 10, 20, 

and 30 cross-sections of available data. Accordingly, the first study condition consisted of three 

levels. The 10 cross-sections level was selected as the midpoint between the 5 cross-sections and 

15 cross-sections levels used by Yang (2006) to determine if a dataset slightly larger than 5 

cross-sections could accurately estimate the model parameters. The levels associated with 20 and 

30 cross-sections were selected to reflect real world use of the HAPC-CCREM commonly found 

in the applied literature (see Appendix A). For example, Meuleman (2019) and Schwadel and 

Garneau (2014) utilized 22 cross-sections from the GSS to examine changing attitudes towards 

the redistribution of income and changes in political tolerance, respectively. Additionally, 

Carlisle and Clark’s (2018) analysis of the associations between religion and environmentalism 

utilized 29 cross-sections from the GSS, while Twenge et al. (2016) utilized 30 cross-sections of 

GSS data to examine changes in religious participation and beliefs. 

Answering research questions 2 and 4 required manipulating the cohort selection mecha-

nism underlying the data. Therefore, the second study condition consisted of three levels, which 

included the three-year, five-year, and ten-year birth cohort. These condition levels were selected 

to reflect the cohort selection mechanisms commonly utilized in the applied literature. Answer-

ing research question 3 required manipulating the variability in the period and cohort effects. 

Therefore, the third manipulated condition accounted for the amount of variability in the period 

effect and has two levels, low period variability and high period variability. Low period variabil-

ity was operationalized as 2% of the total variability in the study outcome occurring at the period 

level, while high period variability was operationalized as 10% of the total variability in the 

study outcome occurring at the period level. These values were designed to reflect the range of 

period-level variability present in HAPC-CCREM analyses from the applied literature. For 
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example, Anderson et al. (2017) found that 1.67% of the variability in support for the death pen-

alty was at the period level while Schwadel and Ellison (2017) found that 9.82% of the variabil-

ity in support for the legalization of marijuana was at the period level. 

The fourth manipulated condition accounted for the amount of variability in the cohort 

effect and consisted of two levels, low cohort variability and high cohort variability. Similar to 

the third study condition, low cohort variability was operationalized as 2% of the total variability 

in the study outcome occurring at the cohort level, and high cohort variability was operational-

ized as 10% of the variability in the study outcome occurring at the cohort level. These values 

were also designed to reflect the range of cohort-level variability found in HAPC-CCREM anal-

yses from the applied literature. For example, in his analysis of changing civic participation, 

Horowitz (2015) found that 1.91% of the variability in signing a petition was at the cohort level. 

Additionally, in their analysis of changing political tolerance, Schwadel and Garneau (2014) 

found that 9.71% of the variability in support for anti-religionists making public speeches was at 

the cohort level.  

In summary, this simulation used a total of four conditions to answer research questions 

one through four: the number of survey years available for analysis, the cohort selection mecha-

nism underlying the data, the amount of variability in the period effect, and the amount of varia-

bility in the cohort effect. To fully explore how these conditions work together to influence the 

accuracy of estimates in the HAPC-CCREM, a fully-crossed design was utilized. Crossing the 

levels of all four study conditions resulted in a total of 36 unique study conditions (3 x 3 x 2 x 2), 

which are displayed in Table 3. 
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Table 3. Simulation Study Conditions 
Manipulated Condition 

Condition Years 

Cohort 
Selection 

Mechanism 
Period 

Variability 
Cohort 

Variability 
1 10 3-Year Low Low 
2 20 3-Year Low Low 
3 30 3-Year Low Low 
4 10 5-Year Low Low 
5 20 5-Year Low Low 
6 30 5-Year Low Low 
7 10 10-Year Low Low 
8 20 10-Year Low Low 
9 30 10-Year Low Low 
10 10 3-Year High Low 
11 20 3-Year High Low 
12 30 3-Year High Low 
13 10 5-Year High Low 
14 20 5-Year High Low 
15 30 5-Year High Low 
16 10 10-Year High Low 
17 20 10-Year High Low 
18 30 10-Year High Low 
19 10 3-Year Low High 
20 20 3-Year Low High 
21 30 3-Year Low High 
22 10 5-Year Low High 
23 20 5-Year Low High 
24 30 5-Year Low High 
25 10 10-Year Low High 
26 20 10-Year Low High 
27 30 10-Year Low High 
28 10 3-Year High High 
29 20 3-Year High High 
30 30 3-Year High High 
31 10 5-Year High High 
32 20 5-Year High High 
33 30 5-Year High High 
34 10 10-Year High High 
35 20 10-Year High High 
36 30 10-Year High High 
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Data Generating Models and Estimating Models 
To answer research question 4 regarding the use of model fit indices, baseline models 

were necessary. Specifically, for each condition, a baseline model was generated such that the 

expected outcome for individual i in cohort j and period k was calculated as a function of linear 

and quadratic age effects. The values used in the baseline data generating models for these varia-

bles directly correspond to the parameter estimates associated with the fixed effects in the base-

line model of the real data study (see Table 2). Note that for all equations in this chapter, super-

scripts associated with the cohort variance components indicate the chosen value of the cohort 

selection mechanism, while superscripts associated with the period variance components reflect 

the presence of single-year periods (that is, that periods were not grouped), borrowing from the 

notation used by Bell and Jones (2014a).  

The sum of the individual, period, and cohort variance components estimates from the 

baseline model in the real data study (see Table 2) was used to reallocate the amount of variabil-

ity in the outcome across the individual, period, and cohort levels in the simulation study. These 

reallocated values, in turn, became the generating parameters used to account for individual-level 

variability in the outcome, denoted 𝜀!"#, cohort-level variability for the three-year (denoted 𝑢("
(')), 

five-year (denoted 𝑢("
())), and ten-year (denoted 𝑢("

(%()) cohorts, and period-level variability (de-

noted 	𝑣(#
(%)) in the data generating models. For example, study condition 10 accounts for the sce-

nario in which a 3-year cohort selection mechanism is used in the data generating process, the 

period effect accounts for 10% of the total variability in the outcome, and the cohort effect ac-

counts for 2% of the total variability in the outcome, leaving 88% of the variability at the indi-

vidual level. The reallocation of variability in this scenario is therefore calculated as (40,745.70 x 

0.88) = 35,856.22 at the individual level, (40,745.70  x 0.10) = 4,074.57 at the period level, and 
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(40,745.70 x 0.02) = 814.914 at the cohort level. In turn, in the baseline data generating model 

for condition 10, 𝜀!"#~𝑁(0, 35856.22), 𝑢("
(')~𝑁(0, 814.914), and 	𝑣(#

(%)~𝑁(0, 4074.57). 

To answer research questions one through three regarding the accuracy of estimates in 

the HAPC-CCREM, conditional models were necessary. Specifically, for each condition, a con-

ditional model was generated such that the expected outcome for individual i in cohort j and pe-

riod k was calculated as a function of linear and quadratic age effects, level-1 predictor, cohort-

level predictor, and period-level predictor. The values used in the conditional data generating 

models for these variables directly correspond to the parameter estimates associated with the 

fixed effects in the conditional model of the real data study (see Table 2). Following the same 

process as the baseline data generating models, the sum of the individual, period, and cohort var-

iance components estimates from the conditional model in the real data study (see Table 2) was 

used to reallocate the amount of variability in the outcome across the individual, period, and co-

hort levels in the conditional data generating models. 

Across the baseline and conditional data generating models, in study conditions desig-

nated for 10 repeated cross-sections, data were generated for 15,000 individuals, while in the 20-

year conditions data were generated for 30,000 individuals and in the 30-year conditions data 

were generated for 45,000 individuals. For each study condition 1,000 datasets were generated, 

resulting in 36,000 total baseline datasets and 36,000 conditional datasets. Sampling distributions 

necessary for the data generating models associated with the simulation study are as follows. For 

both the baseline and conditional data generating models, the individual-level age variable was 

drawn from a discrete probability distribution designed to match the corresponding distribution 

in the real data study. Formally, for any level X of age, 0 ≤ 𝑃(𝑋) ≤ 1 and ∑𝑃(𝑋) = 1. The 
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indicator for the level-1 predictor, X, was drawn from the Bernoulli distribution and was de-

signed to match the respondent distribution of the level-1 predictor from the real data study, 

where: 

 𝑃(X) = d0.44 for	X = 0
0.56 for	X = 1. (19) 

The cohort-level predictor variable, Z, was generated by first drawing from the Bernoulli distri-

bution to specify the individual-level probability for the predictor, matching the individual-level 

distribution from the real data study, where: 

 𝑃(Z) = d0.80 for	Z = 0
0.20 for	Z = 1. (20) 

Next, cohort-level percentages were calculated by aggregating the data from the individual-level 

to the cohort-level. The period predictor, 𝑊, was generated at the period-level drawing from a 

four-parameter beta distribution designed to match the period predictor from the real data study, 

where: 

𝑊~beta(𝛼 = 	3, 𝛽 = 8). (21) 

The beta distribution was bound at the lower end of 18 and the upper end of 30 to match the pa-

rameter space of the real data study. 

Estimating models for the 36 study conditions were as follows. Across all study condi-

tions, the following set of three baseline estimating models were applied to the baseline datasets, 

where the outcome was modeled at level-one as a function of linear and quadratic age effects. 

The first baseline estimating model utilized the three-year cohort selection mechanism, specifi-

cally: 

Level	1:	𝑌!"# = 𝛽("# + 𝛽%Age!"# + 𝛽&Age!"#& + 𝜀!"# , 𝜀!"#~𝑁(0, 𝜎&)

Level	2:	𝛽("# = 𝛾( + 𝑢("
(') + 𝑣(#

(%), 𝑢("
(')~𝑁V0, 𝜏7

(')W, 𝑣(#
(%)~𝑁(0, 𝜏8

(%)) (22)
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The second baseline estimating model utilized the five-year cohort selection mechanism, specifi-

cally: 

Level	1:	𝑌!"# = 𝛽("# + 𝛽%Age!"# + 𝛽&Age!"#& + 𝜀!"# , 𝜀!"#~𝑁(0, 𝜎&)

Level	2:	𝛽("# = 𝛾( + 𝑢("
()) + 𝑣(#

(%), 𝑢("
())~𝑁V0, 𝜏7

())W, 𝑣(#
(%)~𝑁(0, 𝜏8

(%)) (23)
 

The third baseline estimating model utilized the ten-year cohort selection mechanism, specifi-

cally: 

Level	1:	𝑌!"# = 𝛽("# + 𝛽%Age!"# + 𝛽&Age!"#& + 𝜀!"# , 𝜀!"#~𝑁(0, 𝜎&)

Level	2:	𝛽("# = 𝛾( + 𝑢("
(%() + 𝑣(#

(%), 𝑢("
(%()~𝑁V0, 𝜏7

(%()W, 𝑣(#
(%)~𝑁(0, 𝜏8

(%)) (24)
 

Note that all baseline estimating models were fit to the data using single-year periods, where 

𝑣(#
(%)	~	𝑁V0, 𝜏8

(%)W. Across all baseline estimating models, age was grand-mean centered and 

scaled by dividing by the standard deviation of age. All baseline models were estimated using 

restricted maximum likelihood with the lme4 package (Bates et al., 2015) in R version 3.6.0 (R 

Core Team, 2019). 

The three, five, and ten-year cohort selection mechanism were selected for use in the 

baseline estimating models to specifically answer research question 4 concerned with the use of 

model fit indices to detect an ideal cohort selection mechanism. Applying the three baseline esti-

mating models would mimic the real-world process followed by an applied researcher to con-

sider several competing cohort groupings. Accordingly, across all study conditions, there was 

one baseline estimating model where the cohort selection mechanism matched the baseline data 

generating model, and two baseline estimating models where the cohort selection mechanisms 

did not match. 

Across all study conditions, the following set of three conditional estimating models were 

applied to the conditional datasets, where the outcome was modeled at level-one as a function of 
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linear and quadratic age effects and the individual-level predictor, and at level-two as a function 

of the cohort-level predictor and period-level predictor. The first conditional estimating model 

utilized the three-year cohort selection mechanism, specifically: 

Level	1:	𝑌!"# = 𝛽("# + 𝛽%Age!"# + 𝛽&Age!"#& + 𝛽'X!"#+	𝜀!"# , 𝜀!"#~𝑁(0, 𝜎&)

Level	2:	𝛽("# = 𝛾( + 𝛾%𝑍" + 𝛾&𝑊# + 𝑢("
(') + 𝑣(#

(%),

𝑢("
(')~𝑁V0, 𝜏7

(')W, 𝑣(#
(%)~𝑁(0, 𝜏8

(%)) (25)
 

The second conditional estimating model utilized the five-year cohort selection mechanism, spe-

cifically: 

Level	1:	𝑌!"# = 𝛽("# + 𝛽%Age!"# + 𝛽&Age!"#& + 𝛽'X!"#+	𝜀!"# , 𝜀!"#~𝑁(0, 𝜎&)

Level	2:	𝛽("# = 𝛾( + 𝛾%𝑍" + 𝛾&𝑊# + 𝑢("
()) + 𝑣(#

(%),

𝑢("
())~𝑁V0, 𝜏7

())W, 𝑣(#
(%)~𝑁(0, 𝜏8

(%)) (26)
 

The third conditional estimating model utilized the ten-year cohort selection mechanism, specifi-

cally: 

Level	1:	𝑌!"# = 𝛽("# + 𝛽%Age!"# + 𝛽&Age!"#& + 𝛽'X!"#+	𝜀!"# , 𝜀!"#~𝑁(0, 𝜎&)

Level	2:	𝛽("# = 𝛾( + 𝛾%𝑍" + 𝛾&𝑊# + 𝑢("
(%() + 𝑣(#

(%),

𝑢("
(%()~𝑁V0, 𝜏7

(%()W, 𝑣(#
(%)~𝑁(0, 𝜏8

(%)) (27)
 

Note that all conditional estimating models were fit to the data using single-year periods, where 

𝑣(#
(%)	~	𝑁V0, 𝜏8

(%)W. Across all conditional estimating models, age was grand-mean centered and 

scaled by dividing by the standard deviation of age. Additionally, the cohort and period predic-

tors were grand mean centered. All conditional models were estimated using restricted maximum 

likelihood with the lme4 package (Bates et al., 2015) in R version 3.6.0 (R Core Team, 2019). 

The three, five, and ten-year cohort selection mechanism were selected for use in the con-

ditional estimating models to specifically answer research question 2, which is partly concerned 

with accuracy of REML-EB estimates when the cohort selection mechanism used in the 
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estimating model differs from the underlying data. By applying the three estimating models to 

each study condition, there was one matching and two non-matching cohort selection mecha-

nisms per study condition. 

Analyses for Simulation Studies 
Research questions one through three are concerned with the accuracy of REML-EB esti-

mates obtained in the HAPC-CCREM. Analyses to assess the accuracy of these estimates across 

the various study conditions included model convergence rates, relative absolute bias, and cover-

age rates of the 95% confidence intervals. These analyses are described in more detail below. 

Model Convergence Rates 
Model convergence rates were evaluated as the percentage of estimated models that 

failed convergence across the 1,000 iterations associated with each study condition. REML-EB 

estimation in the HAPC-CCREM is made possible by implementing the expectation-maximiza-

tion (EM) algorithm. Briefly and conceptually, EM “works” by using an iterative process to de-

rive parameter estimates by choosing the values that maximize the likelihood of the parameters 

given the observed data (Myung, 2003; Raudenbush & Bryk, 2002, pp. 438–439). When a model 

does not converge, the EM algorithm fails to find the solution for the maximum likelihood esti-

mate of the parameters in the model, and the model results should not be used. 

Relative Absolute Bias 
Evaluation of parameter recovery included the intercept, 𝛾(; the linear and quadratic age 

effects, 𝛽% and 𝛽&; the level-one predictor fixed effect, 𝛽'; the level-two cohort predictor fixed 

effect, 𝛾%, the level-two period predictor fixed effect, 𝛾&; and the variance component estimates 

at the individual, 𝜎&, period, 𝜏8, and cohort, 𝜏7, levels. 

Parameter recovery was evaluated using relative absolute bias, defined as: 

𝐵 V𝜃r̅!W = t
𝜃r̅! − 𝜃!
|𝜃!|

v ∗ 100, (25) 
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where 𝜃! represents the generated true value of the ith parameter, and 𝜃r̅! represents the average of 

the estimates 𝜃r! for the ith parameter across n successfully converged models per simulation con-

dition. Acceptable boundaries for the value of the relative absolute bias range from −5.00 to 5.00 

(Hoogland & Boomsma, 1998). Values outside this range indicate substantial bias, where posi-

tive values indicate the overestimation of a parameter and negative values indicate the underesti-

mation of a parameter. 

Coverage Rates of the 95% Confidence Intervals 
Precision of the fixed effects described above were evaluated using coverage rates of the 

95% confidence intervals for each parameter as defined by Morris et al. (2019): 

x
1
𝑛sim

C4𝜃rlow,! ≤ 𝜃! 	≤ 𝜃rupp,!;
Csim

!D%

z ∗ 100	, (26) 

where 𝑛sim represents the total number of successfully converged models for a given study con-

dition, 𝜃! represents the generated true value of the ith parameter, 𝜃rlow,! represents the value of 

the lower bound of the 95% confidence interval for the estimated ith parameter, and 𝜃rupp,! repre-

sents the value of the upper bound of the 95% confidence interval for the estimated ith parameter. 

Lower and upper boundaries for the 95% confidence interval were calculated using the Wald 

method, specifically: 

𝜃r! ± 1.96 ∗ 𝑆𝐸4𝜃r!;	, (27) 

where 𝜃r! represents the estimated ith parameter and 𝑆𝐸4𝜃r!; represents the standard error of the 

estimated ith parameter. Acceptable boundaries for the value of the coverage rates range from 

92.5% to 97.5% (Bradley, 1978).  

Model Fit Indices to Identify a Cohort Selection Mechanism 
The final analysis was specifically related to research question 4 regarding the use of 

model fit indices to identify the best fitting cohort selection mechanism. Given competing 
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HAPC-CCREMs estimated using different cohort selection mechanisms, an ideal model fit index 

would correctly identify the model with the cohort selection mechanism that is either identical or 

closest to the “true” cohort selection mechanism underlying the data. For example, in study con-

dition 1 (see Table 3), a 3-year cohort selection mechanism was used in the baseline data gener-

ating model. As discussed previously, baseline estimating models using the three-, five-, and ten-

year cohort selection mechanisms were applied for the study condition. In this scenario, an ideal 

model fit index would correctly identify the estimating model using the 3-year cohort selection 

mechanism as the one that best fits the data. 

The following model fit indices were specifically evaluated for their ability to identify the 

best fitting cohort selection mechanism. Akaike’s information criterion (Akaike, 1998), or AIC, 

is calculated as: 

𝐴𝐼𝐶 = 	−2𝐿𝐿 + 2𝑞, (28) 

where LL represents the value of the log-likelihood of the model upon convergence and q repre-

sents the number of fixed effects and variance components in the estimated model. The Bayesian 

information criterion (Schwarz, 1978), or BIC, is calculated as: 

𝐵𝐼𝐶 = 	−2𝐿𝐿 + ln(𝑁) 𝑞, (29) 

where N represents the number of level-one units used in the estimated model. The AIC and BIC 

model fit indices were selected for evaluation because they are readily available in statistical 

software and were commonly employed in the applied literature using the HAPC-CCREM re-

viewed in Chapter 2. 

 Previous research on multilevel models in general (Gurka, 2006) and cross-classified ran-

dom effects models in particular (Beretvas & Murphy, 2013) have shown that modifications to 

AIC and BIC improve the ability of the indices to select the best fitting model. Therefore, the 
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following modified indices were also evaluated. AIC was modified to correct for sample size us-

ing the finite sample-corrected AIC (AICC, Hurvich & Tsai, 1989),  and is calculated as 

𝐴𝐼𝐶𝐶 = 	
−2𝐿𝐿 + (2𝑞𝑁)
(𝑁 − 𝑞 − 1) . (30) 

Given that BIC already accounts for sample size, it will be modified to account for the number of 

level-two units in the analysis: 

𝐵𝐼𝐶𝐶 = 	−2𝐿𝐿 + ln(𝑀) 𝑞, (31) 

where M represents the number of cross-classified period by cohort cells present in the data used 

by the model. Performance of the model fit indices described above were evaluated as the per-

centage of correct model identifications made for the n successfully converged models associated 

with each study condition. 

Scientific Reproducibility 
Appendix B contains the R program written to conduct the real data study and Monte 

Carlo simulation described in this chapter. For the Monte Carlo simulation study, seeds are set  

where necessary to ensure the random distributions used in the data generating models are fully 

reproducible (Morris et al., 2019). 
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4  RESULTS 

This chapter describes the results of the Monte Carlo simulation study designed to assess 

the accuracy of estimates in hierarchical age-period-cohort models of repeated cross-sectional 

data as well as the extent to which model fit indices can be used to help applied researchers in 

identifying an ideal cohort selection mechanism. Recall from Chapter 3 that four factors are un-

der investigation: the number of repeated cross-sections available for analysis (10, 20, and 30 

years), the cohort selection mechanism employed (3-year, 5-year, and 10-year), the amount of 

variability for the period clusters (low and high), and the amount of variability for the cohort 

clusters (low and high). The fully crossed study design results in a total of 36 unique study con-

ditions, and for each simulation outcome results are presented tabularly along these lines. As dis-

cussed in Chapter 3, for both the baseline and conditional models, 1,000 datasets were generated, 

resulting in 72,000 total datasets.  

The structure of this chapter is organized as follows. First, the percentage of estimating 

models that failed maximum likelihood convergence is discussed. Second, the implementation of 

model fit indices to identify the correct cohort selection mechanism used to generate the data is 

discussed. Third, relative absolute bias and coverage rates of the 95% confidence intervals are 

described for each of the following fixed effects parameters: the model intercept, linear and cur-

vilinear age terms, the level-1 predictor variable, the level-2 cohort predictor variable, and the 

level-2 period predictor variable. Finally, relative absolute bias for the level-1 individual vari-

ance component, level-2 period variance component, and level-2 cohort variance component is 

discussed. 

Model Convergence Rates 
 The percentage of models that failed convergence are displayed in Table 4 by study con-

dition and estimating model. There were no study conditions in which all estimating models  
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Table 4. Percentage of Models across the 1,000 Replications that Failed Convergence by Study 
Condition and Estimating Model. 

Manipulated Condition  CSM in Estimating Model 

Condition Years 
CSM 
DGM 

Period 
Variability 

Cohort 
Variability 

 
3-Year 5-Year 10-Year 

1 10 3-Year Low Low  7.1 4.3 10.4 
2 20 3-Year Low Low  8.0 5.7 10.3 
3 30 3-Year Low Low  6.6 4.5 8.5 
4 10 5-Year Low Low  7.1 5.9 9.3 
5 20 5-Year Low Low  7.0 6.7 11.9 
6 30 5-Year Low Low  6.5 4.8 10.7 
7 10 10-Year Low Low  7.4 6.3 6.5 
8 20 10-Year Low Low  5.1 6.4 5.8 
9 30 10-Year Low Low  7.0 4.8 7.6 
10 10 3-Year High Low  4.3 4.9 8.1 
11 20 3-Year High Low  6.5 5.2 10.5 
12 30 3-Year High Low  4.7 3.4 6.8 
13 10 5-Year High Low  5.7 6.1 10.9 
14 20 5-Year High Low  4.6 5.6 12.2 
15 30 5-Year High Low  4.9 4.1 10.2 
16 10 10-Year High Low  4.8 3.6 5.3 
17 20 10-Year High Low  5.1 5.9 6.3 
18 30 10-Year High Low  4.8 3.8 8.1 
19 10 3-Year Low High  9.8 7.5 9.1 
20 20 3-Year Low High  7.6 7.3 11.0 
21 30 3-Year Low High  4.3 4.3 10.0 
22 10 5-Year Low High  8.8 7.0 9.3 
23 20 5-Year Low High  7.0 5.3 8.7 
24 30 5-Year Low High  5.4 5.0 8.3 
25 10 10-Year Low High  9.6 7.9 5.6 
26 20 10-Year Low High  6.8 5.8 6.6 
27 30 10-Year Low High  5.0 3.7 5.7 
28 10 3-Year High High  11.4 6.4 9.3 
29 20 3-Year High High  9.2 6.9 11.3 
30 30 3-Year High High  6.4 7.9 10.9 
31 10 5-Year High High  9.2 4.3 10.7 
32 20 5-Year High High  6.2 5.5 12.5 
33 30 5-Year High High  7.0 4.4 12.0 
34 10 10-Year High High  7.9 5.6 4.3 
35 20 10-Year High High  6.1 6.2 7.5 
36 30 10-Year High High  5.9 4.2 7.5 

Note. Shaded table cells indicate conditions where there is a match between the cohort selection 
mechanism in the data generating and estimating models. CSM DGM = cohort selection mecha-
nism used in the data generating model.  
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successfully converged. The estimating model with the smallest percentage of models (3.4%) 

that failed convergence was the 5-year cohort selection mechanism used in condition 12, where 

the data was generated using a 3-year cohort selection mechanism with high period variability, 

low cohort variability, and thirty years of data. The estimating model with the highest percentage 

of models (12.5%) that failed convergence was the 10-year cohort selection mechanism used in 

condition 32, where the data was generated using a 5-year cohort selection mechanism with high 

period variability, high cohort variability, and twenty years of data. 

 In 29 of the 36 conditions (81%), the 10-year estimating model had a higher percentage 

of models that failed convergence compared to the 3-year and 5-year estimating models. The 

seven conditions that did not follow this pattern tended to be scenarios in which a 10-year cohort 

selection mechanism was used to generate the data, and the 3-year estimating model had a higher 

percentage of models that failed convergence compared to the 5-year and 10-year estimating 

models (for example, see conditions 7, 25, 26, and 34). One notable exception was condition 28, 

where 10 years of data were generated using a 3-year cohort selection mechanism with high pe-

riod and cohort variability. In this condition, the 3-year estimating model had the greatest per-

centage of models that failed convergence (11.40%). 

 In 27 of the 36 conditions (75%), the 5-year estimating model had the lowest percentage 

of models that failed converge across the estimating models, which may help to explain why 

five-year cohorts were so commonly utilized in the applied literature (see Appendix A). In four 

of the nine conditions that did not follow this pattern, the estimating model with the lowest per-

centage of models that failed convergence were those where the cohort selection mechanism 

used in the data generating model matched the cohort selection mechanism used in the estimating 

model (see conditions 10, 25, 30, and 34). In the remaining five conditions, the 3-year estimating 
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model had the lowest percentage of models that failed convergence (see conditions 8, 13, 14, 17, 

and 35), although the accompanying data generating model used either the 5-year or 10-year co-

hort selection mechanism. 

 There was no readily apparent relationship between the number of repeated cross-sec-

tions used in the data generating model and the percentage of models that failed convergence. In 

fact, in many of the study conditions, the percentage of models that failed convergence was 

greater in datasets generated with 20 repeated cross-sections compared to their corresponding 

study conditions generated with 10 or 30 repeated cross-sections where the remaining condition 

levels were identical (for example, see conditions 1, 2, and 3). Generally, there appeared to be a 

greater difference in the percentage of models that failed convergence between the cohort selec-

tion mechanism utilized in the estimating model compared to how many repeated cross-sections 

were used to generate the difference. For example, in study conditions 4, 5, and 6, the difference 

between the percentage of models that failed to converge was upwards of five percentage points 

when comparing the cohort selection mechanisms in the estimating model within a given condi-

tion. When comparing the number of survey years in the data generating model (i.e., moving 

across each condition but examining the percentage using the same cohort selection mechanism 

used in the estimating model), these differences decrease to one to two percentage points. 

Model Fit Indices to Identify a Cohort Selection Mechanism 
 Correct model identification rates by model fit index are presented in Table 5 by study 

condition. Cell values under each model fit index column header represent the percentage of  

successfully converged models where the corresponding fit index correctly identified the esti-

mating model with the cohort selection mechanism that was used to generate the data. All of the 

model fit indexes performed very well. In 29 of the 36 study conditions (81%), all of the fit  

indexes correctly identified the cohort selection mechanism used in the data generating model for  
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Table 5. Correct Model Identification Rates by Model Fit Index and Study Condition 
Manipulated Condition   Model Fit Index 

Condition Years 
CSM 
DGM 

Period 
Variability 

Cohort 
Variability 

  
AIC BIC AICC BICC 

1 10 3-Year Low Low   100.00 100.00 100.00 100.00 
2 20 3-Year Low Low   100.00 100.00 100.00 100.00 
3 30 3-Year Low Low   100.00 100.00 100.00 100.00 
4 10 5-Year Low Low   99.37 99.37 99.37 99.37 
5 20 5-Year Low Low   99.74 99.74 99.74 99.74 
6 30 5-Year Low Low   100.00 100.00 100.00 100.00 
7 10 10-Year Low Low   98.77 98.77 98.77 99.75 
8 20 10-Year Low Low   99.88 99.88 99.88 100.00 
9 30 10-Year Low Low   100.00 100.00 100.00 100.00 
10 10 3-Year High Low   100.00 100.00 100.00 100.00 
11 20 3-Year High Low   100.00 100.00 100.00 100.00 
12 30 3-Year High Low   100.00 100.00 100.00 100.00 
13 10 5-Year High Low   99.62 99.62 99.62 99.49 
14 20 5-Year High Low   100.00 100.00 100.00 100.00 
15 30 5-Year High Low   100.00 100.00 100.00 100.00 
16 10 10-Year High Low   99.54 99.54 99.54 100.00 
17 20 10-Year High Low   99.76 99.76 99.76 99.88 
18 30 10-Year High Low   100.00 100.00 100.00 100.00 
19 10 3-Year Low High   100.00 100.00 100.00 100.00 
20 20 3-Year Low High   100.00 100.00 100.00 100.00 
21 30 3-Year Low High   100.00 100.00 100.00 100.00 
22 10 5-Year Low High   100.00 100.00 100.00 100.00 
23 20 5-Year Low High   100.00 100.00 100.00 100.00 
24 30 5-Year Low High   100.00 100.00 100.00 100.00 
25 10 10-Year Low High   100.00 100.00 100.00 100.00 
26 20 10-Year Low High   100.00 100.00 100.00 100.00 
27 30 10-Year Low High   100.00 100.00 100.00 100.00 
28 10 3-Year High High   100.00 100.00 100.00 100.00 
29 20 3-Year High High   100.00 100.00 100.00 100.00 
30 30 3-Year High High   100.00 100.00 100.00 100.00 
31 10 5-Year High High   100.00 100.00 100.00 100.00 
32 20 5-Year High High   100.00 100.00 100.00 100.00 
33 30 5-Year High High   100.00 100.00 100.00 100.00 
34 10 10-Year High High   100.00 100.00 100.00 100.00 
35 20 10-Year High High   100.00 100.00 100.00 100.00 
36 30 10-Year High High   100.00 100.00 100.00 100.00 

Note. CSM DGM = cohort selection mechanism used in the data generating model.  
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100% of the successfully converged models. In the remaining seven conditions, the performance 

of the indexes only slightly decreased, usually between one to two percentage points. In three 

study conditions (conditions 8, 16, and 17), the BICC index marginally outperformed the other 

indexes. The common factor across these three conditions was that the 10-year cohort selection 

mechanism was used to generate the data. In two study conditions, the AIC, BIC, and AICC in-

dexes marginally outperformed the BICC index. The commonalities in the data generating mod-

els for these two study conditions were that 10 repeated cross-sections were used to generate the 

data with low variability placed on the cohort clusters. 

Relative Absolute Bias and Coverage Rates of Fixed Effects Estimates 
Intercept Parameter, 𝜸𝟎 

Relative absolute bias and coverage rates of the intercept parameter, 𝛾(, are displayed in 

Table 6. Across all study conditions the intercept was recovered within the acceptable boundaries 

for relative absolute bias. In fact, in only one condition was relative absolute bias greater than 

half a percentage point. In condition 34, which was generated using 10 repeated cross-sections, a 

10-year cohort selection mechanism, and high variability placed on the period and cohort clus-

ters, the intercept was overestimated between 0.50% to 0.66% across the three estimating models 

but this was still within the acceptable threshold (Hoogland & Boomsma, 1998). 

Coverage of the intercept appeared to be mainly driven by the cohort selection mecha-

nism in the estimating model matching the data generating model. Generally, when the cohort  

selection mechanism in the estimating model matched the data generating model, the intercept 

was appropriately covered, ranging from 92.51% to 95.53%. The exception to this pattern, which 

occurred for several conditions, was when the cohort selection mechanism in the estimating 

model matched the data generating model and the data was generated using 10 repeated cross-

sections (see conditions 7, 10, 13, 16, and 34). In all of these scenarios, the intercept was slightly  
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Table 6. Relative Absolute Bias (RAB) and Coverage Rates of Intercept Parameter, g0  

Manipulated Condition  
RAB by CSM 

in Estimating Model  
Coverage Rates by CSM 

in Estimating Model 

Con. Years 
CSM in 
DGM 

Period 
Var. 

Cohort 
Var.  

 
3-Year 5-Year 10-Year  3-Year 5-Year 10-Year 

1 10 3-Year Low Low  –0.08 –0.03 –0.03  93.72 91.84 90.25 
2 20 3-Year Low Low  –0.03 –0.10 –0.11  94.31 93.12 93.68 
3 30 3-Year Low Low  –0.06 –0.21 –0.08  94.93 93.86 94.07 
4 10 5-Year Low Low  0.01 0.13 –0.03  88.62 94.07 90.22 
5 20 5-Year Low Low  0.06 0.02 –0.01  85.31 93.29 93.22 
6 30 5-Year Low Low  –0.12 –0.06 –0.05  87.13 94.63 94.18 
7 10 10-Year Low Low  0.17 0.03 0.16  80.02 86.38 92.13 
8 20 10-Year Low Low  0.07 –0.01 0.06  82.77 88.53 94.28 
9 30 10-Year Low Low  0.04 –0.25 –0.08  79.45 84.59 92.02 
10 10 3-Year High Low  –0.17 –0.24 –0.31  91.99 91.02 92.07 
11 20 3-Year High Low  0.13 0.07 0.08  94.29 93.45 93.90 
12 30 3-Year High Low  –0.06 –0.11 –0.03  93.80 93.17 94.25 
13 10 5-Year High Low  0.07 –0.11 0.20  89.60 91.75 92.37 
14 20 5-Year High Low  –0.08 –0.04 –0.03  90.84 93.87 94.43 
15 30 5-Year High Low  –0.02 –0.05 –0.01  92.48 94.45 96.63 
16 10 10-Year High Low  –0.16 –0.17 –0.16  86.55 87.95 92.00 
17 20 10-Year High Low  –0.17 –0.40 –0.25  89.50 91.12 93.91 
18 30 10-Year High Low  0.19 0.10 0.23  90.33 91.96 93.17 
19 10 3-Year Low High  0.21 0.12 0.01  95.21 92.54 86.80 
20 20 3-Year Low High  0.05 –0.02 –0.10  94.73 94.04 96.16 
21 30 3-Year Low High  –0.20 –0.32 –0.29  93.20 92.29 96.61 
22 10 5-Year Low High  –0.14 –0.12 0.06  85.78 94.29 87.67 
23 20 5-Year Low High  0.34 0.35 0.40  84.20 93.16 95.15 
24 30 5-Year Low High  0.05 0.08 0.11  84.34 95.07 98.11 
25 10 10-Year Low High  0.30 0.14 0.10  74.73 85.19 93.18 
26 20 10-Year Low High  0.08 0.03 0.07  72.25 82.96 92.59 
27 30 10-Year Low High  0.08 0.02 0.10  71.43 83.39 92.46 
28 10 3-Year High High  –0.01 0.10 0.22  92.51 91.45 93.05 
29 20 3-Year High High  0.13 –0.11 –0.05  94.93 94.77 95.22 
30 30 3-Year High High  –0.17 –0.18 0.00  95.53 96.32 96.89 
31 10 5-Year High High  0.01 0.26 –0.05  89.97 93.70 90.47 
32 20 5-Year High High  0.08 0.05 0.08  87.78 94.58 96.85 
33 30 5-Year High High  0.07 0.04 0.20  88.46 93.79 97.66 
34 10 10-Year High High  0.66 0.52 0.50  83.44 87.22 92.39 
35 20 10-Year High High  –0.15 –0.31 –0.18  83.14 87.79 94.19 
36 30 10-Year High High  –0.17 –0.21 –0.17  79.68 85.73 93.49 

Note. Items in bold indicate results outside of the acceptable boundaries for relative absolute bias or cov-
erage. Shaded table cells indicate conditions where there is a match between the cohort selection mecha-
nism in the data generating and estimating models. Con. = study condition; CSM = cohort selection 
mechanism; DGM = data generating model; Var. = variability.  
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under-covered (range of coverage rates = 91.75% to 92.39%). There were two additional condi-

tions where the cohort selection mechanism in the estimating model matched the data generating 

model, but the intercept was slightly under-covered. These were conditions 9 (coverage = 

92.02%) and 27 (coverage = 92.46%), both of which were generated using 30 repeated cross-sec-

tions and the 10-year cohort selection mechanism in the data generating model. 

 An additional finding regarding coverage of the intercept was as follows. In study condi-

tions where the data were generated using the 3-year cohort selection mechanism, the intercept 

was frequently covered appropriately by the estimating models using the 5-year or 10-year co-

hort selection mechanism (see conditions 28, 29, and 30). However, in the conditions where the 

data were generated using the 5-year cohort selection mechanism, the estimating model using the 

3-year cohort selection mechanism always under-covered the intercept by 84.20% to 92.48% (for 

example, see conditions 31, 32, and 33). Interestingly, when the data were generated using 10-

year cohorts, the estimating models using 3-year and 5-year cohorts were always under-covered 

(for example, see conditions 16, 17, and 18), and the degree of under-coverage was more sub-

stantial (range = 71.43% to 90.33% for 3-year estimating models and 82.96% to 91.96% for 5-

year estimating models). Also of note is that only two scenarios existed where the intercept was 

over-covered. These occurred in the 10-year estimating model in conditions 24 (coverage = 

98.11%) and 33 (coverage = 97.66%), each of which had data generated using 30 repeated cross-

sections with a 5-year cohort selection mechanism. Across all study conditions, there was no 

readily apparent relationship between the amount of variability at the period and cohort levels 

and coverage of the intercept. 

Level-1 Linear Age Parameter, 𝜷𝟏 
 Relative absolute bias and coverage rates of the level-1 linear age parameter, 𝛽%, are dis-

played in Table 7. Regarding relative absolute bias, there was one condition for which the 
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Table 7. Relative Absolute Bias (RAB) and Coverage Rates of Level-1 Linear Age Parameter, b1 

Manipulated Condition  
RAB by CSM 

in Estimating Model  
Coverage Rates by CSM 

in Estimating Model 

Con. Years 
CSM in 
DGM 

Period 
Var. 

Cohort 
Var.  

 
3-Year 5-Year 10-Year  3-Year 5-Year 10-Year 

1 10 3-Year Low Low  –2.49 –4.21 –8.17  95.74 88.45 62.59 
2 20 3-Year Low Low  1.76 0.26 0.62  94.63 85.70 52.99 
3 30 3-Year Low Low  –0.60 –0.93 –7.69  96.52 88.55 59.78 
4 10 5-Year Low Low  –4.86 –4.07 1.01  82.61 93.23 44.73 
5 20 5-Year Low Low  –2.94 –3.03 9.00  83.91 94.99 38.56 
6 30 5-Year Low Low  –1.66 –3.16 –0.30  85.15 95.16 40.11 
7 10 10-Year Low Low  –7.68 –8.44 –3.39  65.59 80.15 92.03 
8 20 10-Year Low Low  0.46 1.28 –1.15  67.65 80.00 91.21 
9 30 10-Year Low Low  1.14 1.07 0.44  68.81 82.60 92.96 
10 10 3-Year High Low  –2.09 –6.84 –8.16  94.31 86.20 58.92 
11 20 3-Year High Low  –0.07 0.41 –0.22  94.81 85.41 52.66 
12 30 3-Year High Low  1.75 1.58 –5.13  94.23 84.44 52.71 
13 10 5-Year High Low  –2.81 –3.57 –2.70  81.10 93.03 43.88 
14 20 5-Year High Low  –1.49 –2.74 –9.25  81.48 92.18 33.85 
15 30 5-Year High Low  –5.72 –5.50 –25.17  82.78 94.45 34.79 
16 10 10-Year High Low  2.35 2.45 1.08  63.88 79.02 91.47 
17 20 10-Year High Low  –2.45 –2.49 –2.96  68.80 83.19 92.83 
18 30 10-Year High Low  –1.23 –1.39 1.43  67.09 81.73 93.17 
19 10 3-Year Low High  0.94 –4.39 –34.86  93.91 56.93 26.61 
20 20 3-Year Low High  –6.49 5.31 51.12  94.19 53.25 21.30 
21 30 3-Year Low High  –1.48 –12.44 36.85  94.25 54.70 22.21 
22 10 5-Year Low High  –10.40 –4.92 –0.85  76.08 92.81 16.74 
23 20 5-Year Low High  1.74 –1.74 –71.60  74.13 94.84 13.55 
24 30 5-Year Low High  –5.29 0.10 –73.84  76.83 93.50 13.43 
25 10 10-Year Low High  11.76 9.69 4.35  64.93 83.28 92.34 
26 20 10-Year Low High  7.05 –0.48 –4.15  63.03 83.71 92.70 
27 30 10-Year Low High  4.62 5.32 1.73  69.66 87.88 93.31 
28 10 3-Year High High  0.07 –40.54 –18.61  94.22 55.97 24.70 
29 20 3-Year High High  –1.72 31.81 40.92  93.96 42.70 21.98 
30 30 3-Year High High  –2.15 26.55 15.58  95.10 44.85 20.56 
31 10 5-Year High High  8.75 14.24 –3.20  74.39 93.60 18.29 
32 20 5-Year High High  –0.12 0.81 –12.46  70.20 94.69 14.27 
33 30 5-Year High High  –4.09 –3.40 –22.33  72.06 93.16 11.82 
34 10 10-Year High High  –14.50 –8.90 –2.27  63.35 84.03 93.01 
35 20 10-Year High High  –3.72 1.16 0.18  59.54 80.21 94.30 
36 30 10-Year High High  6.96 6.19 1.53  59.37 84.68 95.55 

Note. Items in bold indicate results outside of the acceptable boundaries for relative absolute bias or cov-
erage. Shaded table cells indicate conditions where there is a match between the cohort selection mecha-
nism in the data generating and estimating models. Con. = study condition; CSM = cohort selection 
mechanism; DGM = data generating model; Var. = variability.  
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linear age parameter was estimated with bias across all three estimating models. In study condi-

tion 15, where data were generated using 30 repeated cross-sections using a 5-year cohort selec-

tion mechanism with high period variability and low cohort variability, all three estimating mod-

els underestimated the linear age parameter (6% underestimation for the 3-year and 5-year cohort 

selection mechanisms, and 25% underestimation for the 10-year). Otherwise, there appeared to 

be two determinants of relative absolute bias for the linear age parameter. The first was the ex-

tent to which the cohort selection mechanism in the data generating model matched the estimat-

ing model. Generally, when the two matched, the linear age parameter was recovered without 

bias. The second determinant occurred in study conditions where the cohort selection mecha-

nisms between the data generating and data estimating models did not match and cohorts were 

generated with high variability (conditions 19 through 36). In almost all of these study condi-

tions, the 10-year estimating model recovered the linear age parameter with bias, underestimat-

ing by as much as 74% (condition 24) and overestimating by as much as 51% (condition 20). 

This finding also extended to the 5-year estimating models when high variability was placed on 

the periods in addition to the cohorts (conditions 28 through 36), where the linear age parameter 

was underestimated by as much as 41% and overestimated by as much as 32%.  

The impact of these factors on relative absolute bias for the linear age parameter is dis-

played in Figure 1. Figure 1 shows the dispersion of the estimated linear age parameter by study 

condition and estimating model for conditions 3, 21, and 30. Each blue point represents the esti-

mate of the age parameter for each successfully converged model among each cohort selection 

mechanism, and the red vertical line represents the mean of the estimates among each cohort se-

lection mechanism. Each of the three conditions in the figure were generated using 30-repeated 

cross sections of data with a 3-year cohort selection mechanism. In condition 3, where low 
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Figure 1. Dispersion Plot of Level-1 Linear Age Parameter, b1, for Three Study Conditions 

Note. Blue points represent the estimate of the age parameter for each successfully converged model. Red vertical 
lines represent the mean of the estimates among each cohort selection mechanism. Values under the estimating 
model label indicate the value of the relative absolute bias. CSM = cohort selection mechanism; DGM = data gener-
ating model; Var. = variability; EM = estimating model.  
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variability was placed on the period and cohorts, only the 10-year estimating model exhibited pa-

rameter bias, underestimating the linear age effect by 8%. When high variability is placed on the 

cohorts, as in condition 21, the magnitude of relative absolute bias increases for the non-match-

ing cohort selection mechanisms. This pattern holds true when high variability is placed on both 

the period and cohorts, as exhibited in the plot for condition 30, which visualizes the wider dis-

persion of the age parameter for the 5-year and 10-year estimating models, which overestimated 

the age parameter by 27% and 16%, respectively. 

 Coverage rates of the 95% confidence interval for the level-1 linear age parameter also 

appeared to be driven by mismatching cohort selection mechanisms between the data generating 

and data estimating models and the amount of variability placed on the period and cohort clus-

ters. Generally, when the cohort selection mechanisms matched, the age effect was appropriately 

covered. One notable exception was the 10-year cohort selection mechanism. There were four 

conditions where the 10-year cohort selection mechanism consistently under-covered the age pa-

rameter even though the data were generated using 10-year cohorts (see conditions 7, 8, 16, and 

25). In these four conditions, the linear age parameter was slightly under-covered, ranging from 

91.21% to 92.34%. The issue appears to be influenced by the number of repeated cross-sections 

used to generate the data; in three of the four conditions, the data were generated using the small-

est amount of (i.e., 10) repeated cross-sections. Across all of the study conditions, when the co-

hort selection mechanisms used in the data generating models and estimating models did not 

match, the age parameter was always under-covered. For 5-year estimating models that did not 

match the generating models, coverage rates ranged from 42.70% to 88.55%. The magnitude of 

the under-coverage was particularly high for the 10-year estimating models (coverage rates = 

11.82% to 62.59%), especially when high variability was placed on the cohorts (conditions 19 
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through 36). 

 The impact of these factors on coverage rates for the linear age parameter is displayed as 

a zipper plot in Figure 2. In the figure, grey vertical lines represent the true parameter value for 

the linear age parameter used in the data generating model. Each red horizontal line represents 

one 95% confidence interval for a successfully converged model that did not contain the true lin-

ear age parameter, while each blue horizontal line indicates a confidence interval that did contain 

the true parameter value. Each of the three study conditions in the figure were generated using 30 

repeated cross-sections of data with a 5-year cohort selection mechanism. Across all conditions 

in the figure, when 5-year cohorts were used in the estimating model the linear age parameter 

was sufficiently covered. However, in condition 6, where the periods and cohorts were generated 

with low variability, both the 3-year and 10-year estimating models under-covered the age pa-

rameter (coverage = 85.15% and 40.11%, respectively). Coverage rates for the 3-year and 5-year 

estimating models decreased further when cohorts were generated with high variability (condi-

tion 24, coverage = 76.83% and 13.43%). Finally, when both period and cohorts were generated 

with high variability, coverage of the 10-year estimating model drastically decreased to 11.82. 

Level-1 Curvilinear Age Parameter, 𝜷𝟐 
Relative absolute bias and coverage rates of the level-1 curvilinear age parameter, 𝛽&, are 

displayed in Table 8. There were four study conditions where the level-1 curvilinear age parame-

ter was estimated with moderate bias (conditions 19, 22, 25, and 28). There were two common 

factors across these four conditions: the data were generated using 10 repeated cross-sections and 

the cohorts were generated with high variability. In three of the four conditions, a 10-year cohort 

selection mechanism was applied in the estimating model that did not match the cohort selection 

mechanism used in the data generating model, resulting in underestimation as low as 6% and  
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Figure 2. Zipper Plot of Level-1 Linear Age Parameter, b1, for Three Study Conditions 

Note. CSM = cohort selection mechanism; DGM = data generating model; Var. = variability; EM = esti-
mating model.  
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Table 8. Relative Absolute Bias (RAB) and Coverage Rates of Level-1 Curvilinear Age Parame-
ter, b2 

Manipulated Condition  
RAB by CSM 

in Estimating Model  
Coverage Rates by CSM 

in Estimating Model 

Con. Years 
CSM in 
DGM 

Period 
Var. 

Cohort 
Var.  

 
3-Year 5-Year 10-Year  3-Year 5-Year 10-Year 

1 10 3-Year Low Low  2.82 3.06 2.47  94.25 88.24 68.27 
2 20 3-Year Low Low  0.09 –0.77 1.27  95.60 93.66 78.27 
3 30 3-Year Low Low  –0.15 –0.37 0.06  95.25 94.17 90.11 
4 10 5-Year Low Low  –0.61 –2.99 0.90  85.46 94.92 59.23 
5 20 5-Year Low Low  0.32 0.12 0.93  93.30 95.53 73.33 
6 30 5-Year Low Low  0.19 0.73 –0.19  94.56 95.05 88.35 
7 10 10-Year Low Low  –3.06 –1.01 –3.35  73.74 87.22 93.91 
8 20 10-Year Low Low  –0.32 –0.22 –0.34  89.01 92.84 94.60 
9 30 10-Year Low Low  –0.86 –0.54 –0.81  92.41 94.13 94.96 
10 10 3-Year High Low  1.33 3.73 4.22  93.47 86.52 64.76 
11 20 3-Year High Low  –0.66 –1.20 –1.25  95.34 92.07 77.83 
12 30 3-Year High Low  –0.43 –0.35 –0.02  94.55 94.53 91.49 
13 10 5-Year High Low  –3.53 –2.31 –2.72  87.05 93.25 55.78 
14 20 5-Year High Low  –0.66 –0.29 0.09  93.03 95.77 71.27 
15 30 5-Year High Low  0.46 0.29 0.18  93.32 94.55 84.96 
16 10 10-Year High Low  2.33 3.43 3.34  75.32 89.20 93.60 
17 20 10-Year High Low  –0.35 0.35 1.10  88.55 93.23 94.13 
18 30 10-Year High Low  0.11 0.58 0.74  92.95 94.89 95.09 
19 10 3-Year Low High  –0.08 3.37 10.33  95.21 74.16 38.39 
20 20 3-Year Low High  0.38 –0.14 –0.71  94.73 85.94 52.36 
21 30 3-Year Low High  0.45 0.55 1.20  96.44 93.66 75.49 
22 10 5-Year Low High  0.25 –0.47 –8.03  87.07 94.29 29.85 
23 20 5-Year Low High  –0.17 –1.26 2.20  93.00 96.00 37.44 
24 30 5-Year Low High  0.34 –0.01 1.80  93.63 95.07 63.82 
25 10 10-Year Low High  –7.14 –4.38 –2.46  80.17 92.28 94.54 
26 20 10-Year Low High  –0.13 –0.04 –0.13  91.95 95.31 95.27 
27 30 10-Year Low High  0.07 –0.32 –0.14  92.39 93.21 94.27 
28 10 3-Year High High  0.43 0.09 –5.67  94.65 70.43 37.71 
29 20 3-Year High High  –1.14 –0.08 –1.15  94.17 83.77 51.37 
30 30 3-Year High High  –0.96 –1.42 –2.30  95.42 93.39 76.44 
31 10 5-Year High High  –1.38 –2.97 3.24  89.11 95.62 26.29 
32 20 5-Year High High  0.79 1.00 –2.00  92.93 94.79 37.42 
33 30 5-Year High High  0.36 0.38 1.25  93.74 94.42 61.98 
34 10 10-Year High High  –1.98 –0.31 0.91  81.73 92.33 95.31 
35 20 10-Year High High  –0.15 0.41 0.32  92.52 95.58 93.87 
36 30 10-Year High High  0.23 0.44 0.68  94.39 94.75 94.79 

Note. Items in bold indicate results outside of the acceptable boundaries for relative absolute bias or cov-
erage. Shaded table cells indicate conditions where there is a match between the cohort selection mecha-
nism in the data generating and estimating models. Con. = study condition; CSM = cohort selection 
mechanism; DGM = data generating model; Var. = variability.  
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overestimation as high as 10%.  

Coverage rates for the level-1 curvilinear age parameter were largely driven by the cohort 

selection mechanism. Across all study conditions, when the cohort selection used in the data gen-

erating models and data estimating models matched, the curvilinear age effect was appropriately 

covered. Across all study conditions where the 10-year estimating model did not match the co-

hort selection mechanism in the data generating model, the curvilinear age parameter was under-

covered (range = 26.29% to 91.49%), the magnitude of which increased as the number of re-

peated cross-sections decreased. There were many conditions in which the 3-year and 5-year es-

timating models could acceptably cover the curvilinear age parameter without needing to match 

the cohort selection mechanism in the data generating model (for example, see conditions 3 and 

18). The general exception to this trend tended to occur when the data were generated using 10 

repeated cross-sections. In these scenarios, the curvilinear age parameter was under-covered 

(range = 70.43% to 92.33%). 

Coefficient of the Level-1 Predictor, 𝜷𝟑 
Relative absolute bias and coverage rates of the level-1 predictor coefficient, 𝛽', are dis-

played in Table 9. Across all study conditions, the coefficient of the level-1 predictor was esti-

mated without bias. Additionally, across all study conditions there was no evidence of under-

coverage or over-coverage of the 95% confidence interval. Accordingly, the coefficient of the 

level-1 predictor was not impacted by any of the manipulated study conditions. 

Coefficient of the Level-2 Cohort Predictor, 𝜸𝟏 
Relative absolute bias and coverage rates of the coefficient of the level-2 cohort predic-

tor, 𝛾%, are displayed in Table 10. Relative absolute bias for the cohort predictor was most nota-

bly determined by the cohort selection mechanism. Across all study conditions where the 3-year  
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Table 9. Relative Absolute Bias (RAB) and Coverage Rates of the Coefficient of the Level-1 
Predictor, b3 

Manipulated Condition  
RAB by CSM 

in Estimating Model  
Coverage Rates by CSM 

in Estimating Model 

Con. Years 
CSM in 
DGM 

Period 
Var. 

Cohort 
Var.  

 
3-Year 5-Year 10-Year  3-Year 5-Year 10-Year 

1 10 3-Year Low Low  0.92 0.79 0.68  95.42 95.34 95.07 
2 20 3-Year Low Low  0.09 0.18 0.13  96.03 95.38 95.34 
3 30 3-Year Low Low  0.16 0.21 0.65  93.88 94.28 94.18 
4 10 5-Year Low Low  1.35 1.59 1.01  95.47 95.03 94.95 
5 20 5-Year Low Low  –0.12 –0.17 –0.42  94.82 95.42 95.44 
6 30 5-Year Low Low  –0.40 –0.59 –0.81  95.08 94.74 95.05 
7 10 10-Year Low Low  0.69 0.35 0.02  94.56 94.51 94.86 
8 20 10-Year Low Low  0.34 0.12 0.30  95.24 95.16 95.02 
9 30 10-Year Low Low  0.11 0.29 0.36  94.31 93.92 94.43 
10 10 3-Year High Low  1.33 1.46 1.85  94.20 94.22 94.49 
11 20 3-Year High Low  –0.31 –0.44 –0.92  95.87 96.41 96.23 
12 30 3-Year High Low  –0.33 –0.41 –0.36  95.09 95.48 95.47 
13 10 5-Year High Low  0.16 0.45 0.14  95.65 95.18 95.06 
14 20 5-Year High Low  –0.05 –0.21 0.04  95.32 95.88 94.43 
15 30 5-Year High Low  –0.80 –0.83 –0.97  95.41 95.08 94.61 
16 10 10-Year High Low  0.75 0.75 0.57  95.55 95.64 95.52 
17 20 10-Year High Low  –0.05 0.06 –0.36  94.22 94.40 94.24 
18 30 10-Year High Low  0.02 –0.09 –0.10  92.95 92.90 93.06 
19 10 3-Year Low High  1.13 1.12 0.81  95.10 95.06 94.33 
20 20 3-Year Low High  –0.42 –0.67 –0.48  95.05 94.99 94.62 
21 30 3-Year Low High  0.77 0.72 0.73  94.56 94.30 93.98 
22 10 5-Year Low High  0.38 –0.08 0.04  95.15 95.35 95.59 
23 20 5-Year Low High  0.39 0.23 0.14  95.44 95.16 95.37 
24 30 5-Year Low High  0.00 –0.04 –0.14  94.78 94.76 96.00 
25 10 10-Year Low High  –0.05 –0.10 –0.17  94.24 94.29 94.65 
26 20 10-Year Low High  0.10 –0.42 0.19  94.70 94.78 94.84 
27 30 10-Year Low High  0.51 0.34 0.33  94.99 95.09 95.44 
28 10 3-Year High High  –0.08 –0.48 0.30  93.58 93.77 94.49 
29 20 3-Year High High  0.08 0.25 0.40  96.12 96.08 95.90 
30 30 3-Year High High  0.06 –0.04 –0.27  94.14 93.82 93.22 
31 10 5-Year High High  0.26 –0.06 –0.01  95.20 94.56 95.07 
32 20 5-Year High High  –0.03 –0.07 0.11  93.35 93.73 94.04 
33 30 5-Year High High  0.29 –0.10 0.15  93.96 94.21 94.43 
34 10 10-Year High High  –2.05 –2.14 –1.82  95.94 95.95 96.14 
35 20 10-Year High High  0.02 0.26 0.05  96.10 96.11 96.02 
36 30 10-Year High High  –0.06 –0.11 0.02  96.30 95.80 95.44 

Note. Items in bold indicate results outside of the acceptable boundaries for relative absolute bias or cov-
erage. Shaded table cells indicate conditions where there is a match between the cohort selection mecha-
nism in the data generating and estimating models. Con. = study condition; CSM = cohort selection 
mechanism; DGM = data generating model; Var. = variability.   
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Table 10. Relative Absolute Bias (RAB) and Coverage Rates of the Coefficient of the Level-2 
Cohort Predictor, g1 

Manipulated Condition  
RAB by CSM 

in Estimating Model  
Coverage Rates by CSM 

in Estimating Model 

Con. Years 
CSM in 
DGM 

Period 
Var. 

Cohort 
Var.  

 
3-Year 5-Year 10-Year  3-Year 5-Year 10-Year 

1 10 3-Year Low Low  1.00 –25.89 –40.55  94.14 91.10 86.07 
2 20 3-Year Low Low  0.46 –32.87 –6.66  94.95 90.00 87.92 
3 30 3-Year Low Low  –2.07 –29.12 –25.55  95.04 91.68 89.01 
4 10 5-Year Low Low  –54.94 9.76 23.14  82.30 93.44 89.34 
5 20 5-Year Low Low  –56.11 –3.74 –8.14  82.40 94.99 85.89 
6 30 5-Year Low Low  –59.62 0.84 –8.29  82.53 94.11 86.15 
7 10 10-Year Low Low  –82.29 –45.47 4.48  66.63 89.65 90.56 
8 20 10-Year Low Low  –77.84 –63.97 0.50  69.87 84.42 93.11 
9 30 10-Year Low Low  –78.08 –55.19 9.01  70.60 86.69 92.33 
10 10 3-Year High Low  -3.08 –31.49 –33.36  95.15 90.59 87.89 
11 20 3-Year High Low  -1.36 –36.40 –9.13  94.29 89.43 87.25 
12 30 3-Year High Low  -0.76 –28.63 –21.74  92.20 90.75 86.63 
13 10 5-Year High Low  –55.93 2.84 1.59  81.21 93.89 88.78 
14 20 5-Year High Low  –53.90 2.86 6.41  82.00 92.60 83.74 
15 30 5-Year High Low  –57.13 0.99 3.12  81.11 93.93 87.21 
16 10 10-Year High Low  –81.10 –45.41 7.77  64.41 89.10 93.18 
17 20 10-Year High Low  –77.46 –62.51 0.33  72.27 85.62 92.72 
18 30 10-Year High Low  –80.52 –60.44 –7.40  67.19 86.12 93.81 
19 10 3-Year Low High  –4.97 –29.00 –37.36  94.12 90.02 82.99 
20 20 3-Year Low High  –2.11 –49.47 6.73  93.86 85.94 79.91 
21 30 3-Year Low High  0.38 –27.30 16.86  93.41 91.24 82.60 
22 10 5-Year Low High  –59.42 –4.07 –13.15  89.01 93.87 83.37 
23 20 5-Year Low High  –62.51 5.57 39.31  90.24 94.32 79.74 
24 30 5-Year Low High  –59.94 0.66 22.50  87.16 94.23 80.24 
25 10 10-Year Low High  –76.83 –41.77 –4.87  83.69 91.64 91.19 
26 20 10-Year Low High  –74.33 –77.87 27.05  85.28 87.22 91.62 
27 30 10-Year Low High  –77.39 –67.83 –23.94  85.40 88.40 93.31 
28 10 3-Year High High  5.25 –21.84 –22.84  94.43 88.81 82.58 
29 20 3-Year High High  1.35 –53.24 2.24  93.31 88.67 79.95 
30 30 3-Year High High  1.04 –43.80 –29.89  95.21 89.06 83.56 
31 10 5-Year High High  –56.97 6.89 –10.75  89.01 93.60 82.26 
32 20 5-Year High High  –62.77 6.48 –28.13  89.60 94.79 82.02 
33 30 5-Year High High  –63.57 –0.97 –72.85  88.03 91.47 78.37 
34 10 10-Year High High  –76.83 –38.19 –6.99  83.97 91.69 92.18 
35 20 10-Year High High  –80.50 –58.91 –14.46  85.35 89.79 93.12 
36 30 10-Year High High  –79.97 –67.07 –6.46  84.13 89.19 92.62 

Note. Items in bold indicate results outside of the acceptable boundaries for relative absolute bias or cov-
erage. Shaded table cells indicate conditions where there is a match between the cohort selection mecha-
nism in the data generating and estimating models. Con. = study condition; CSM = cohort selection 
mechanism; DGM = data generating model; Var. = variability.  
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estimating model matched the data generating model, the cohort variable was recovered without 

bias. Trends for the 5-year and 10-year estimating models were less consistent. For conditions 

where the 5-year estimating model matched the data generating model (conditions 4-6, 13-15, 

22-24, and 31-33), the model consistently recovered the cohort predictor when the data were 

generated with 30 repeated cross-sections. However, there were two conditions where the param-

eter was moderately overestimated when the data were generated using 10 repeated cross-sec-

tions (conditions 4, with 9.76% overestimation, and 31, with 6.89% overestimation), and two 

conditions where the parameter was moderately overestimated when the data were generated us-

ing 20 repeated cross-sections (conditions 23, with 5.57% overestimation, and 32, with 6.48% 

overestimation).  

For conditions where the 10-year estimating model matched the data generating model  

(conditions 7-9, 16-18, 25-27, and 34-36), there were many scenarios where the cohort predictor 

was recovered with bias. When high variability was placed on both the period and cohort trends 

(conditions 34, 35, and 36), the cohort predictor was always underestimated, ranging from 6.99% 

to 14.46% underestimation. The 10-year estimating model also exhibited negative parameter bias 

in condition 18 (−7.40%) and condition 27 (−23.94%). Positive parameter bias was found in con-

ditions 9, 16, and 26, where the cohort predictor variable was overestimated by 9.01%, 7.77%, 

and 27.05%, respectively. There was no readily apparent trend among the manipulated study 

conditions that explained these scenarios. 

One interesting finding was that, generally, when the cohort selection mechanism be-

tween the data generating model and data estimating model did not match, the resulting cohort 

predictor was substantially biased. As an example, consider the dispersion plot pictured in Figure 

3 for study conditions 14, 22, and 33. The data in all three conditions were generated using 5-



 

 
 

85 

year cohort selection mechanisms. As visualized by the figure, when the estimating models uti-

lized the 5-year cohort selection mechanism, the coefficient of the cohort predictor was recov-

ered without bias. When the 3-year cohort selection mechanism was utilized in the estimating 

model, the level-2 cohort parameter was consistently underestimated by more than 50%, with 

very little variability in the estimated parameters. However, the estimates of the cohort parameter 

obtained using the 10-year estimating model exhibited more variability and resulted in the effect 

being underestimated as much as 73% (condition 33) and overestimated upwards of 6% (condi-

tion 14).  

Coverage rates for the coefficient of the level-2 cohort predictor followed the same gen-

eral pattern discovered for relative absolute bias. Generally, when the cohort selection mecha-

nisms matched between the data generating and data estimating models, the cohort parameter 

was appropriately covered. The main exception to this finding was the 10-year estimating model, 

which had five conditions where the cohort selection mechanisms matched but the cohort param-

eter was slightly under-covered (conditions 7, 9, 25, 26, and 34, coverage range = 90.56% to 

92.33%). Among these scenarios there was no readily apparent theme among the manipulated 

conditions that explained the under-coverage. Interestingly, across all study conditions, when the 

cohort selection mechanism in the data generating and data estimating models did not match, the 

cohort-level parameter was always under-covered, ranging from 64.41% under-coverage to 

91.69% under-coverage. These results are displayed visually in a zipper plot in Figure 4 for 

study conditions 13, 22, and 31, all of which were generated using 10 repeated cross-sections and 

5-year cohorts in the data generating model. 

Coefficient of the Level-2 Period Predictor, 𝜸𝟐 
Relative absolute bias and coverage rates of the level-2 period predictor coefficient, 𝛾&,  
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Figure 3. Dispersion Plot of the Coefficient of the Level-2 Cohort Predictor, g1, for Three Study 
Conditions 
 
Note. Blue points represent the estimate of the cohort parameter for each successfully converged model. Red vertical 
lines represent the mean of the estimates among each cohort selection mechanism. Values under the estimating 
model label indicate the value of the relative absolute bias. CSM = cohort selection mechanism; DGM = data gener-
ating model; Var. = variability; EM = estimating model.  
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Figure 4. Zipper Plot of Coefficient of the Level-2 Cohort Predictor, g1, for Three Study 
Conditions 
 
Note. CSM = cohort selection mechanism; DGM = data generating model; Var. = variability; EM = esti-
mating model.  
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are displayed in Table 11. Relative absolute bias was largely influenced by the number of re-

peated cross-sections used to generate the data. Biased estimates of the period predictor’s coeffi-

cient most commonly occurred when only 10 repeated cross-sections were used in the analysis, 

resulting in underestimation as much as 26.66% and overestimation as much as 30.99% of the 

effect, even when the cohort selection mechanism in the data estimating models and data gener-

ating models matched. Generally, for the datasets with 20 and 30 years of data, the estimating 

model was able to successfully recover the period-level parameter without bias. An exception to 

this pattern occurred in study conditions 28 through 36, where both the period and cohorts were 

generated with high variability. In these scenarios, the coefficient of the period-level predictor 

was recovered with relatively high bias, with the coefficient being underestimated by as much as 

21.01% (condition 29). Notably, within these conditions the degree of bias improved as the num-

ber of repeated cross-sections increased. These findings are displayed visually in Figure 5. 

Coverage rates of the level-2 period parameter were also predominately determined by 

the number of repeated cross-sections used to generate the data. Generally, for the datasets con-

taining 20 and 30 years of data, the coefficient of the period predictor was acceptably covered  

regardless of the cohort selection mechanism and the amount of variability placed on the period 

and cohort clusters. However, in all of the conditions using 10 repeated cross-sections of data, 

the period predictor’s coefficient was under-covered. Notably, the amount of under-coverage 

was small, generally falling between one to two percentage points outside of the acceptable 

range (the most severe under-coverage was 89.64%, occurring in study condition 22). There 

were two study conditions using 20 repeated cross-sections of data where the period predictor’s 

coefficient was under-covered (conditions 5 and 20). Importantly, under-coverage only occurred 

in one of the three estimating models in these conditions, and the coverage rate was just outside  
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Table 11. Relative Absolute Bias (RAB) and Coverage Rates of the Coefficient of the Level-2 
Period Predictor, g2 

Manipulated Condition  
RAB by CSM 

in Estimating Model  
Coverage Rates by CSM 

in Estimating Model 

Con. Years 
CSM in 
DGM 

Period 
Var. 

Cohort 
Var.  

 
3-Year 5-Year 10-Year  3-Year 5-Year 10-Year 

1 10 3-Year Low Low  9.08 9.49 7.44  90.95 90.25 90.68 
2 20 3-Year Low Low  5.09 3.66 3.87  94.41 94.62 94.12 
3 30 3-Year Low Low  4.78 4.61 5.43  94.30 94.28 94.40 
4 10 5-Year Low Low  18.48 17.98 15.85  91.57 91.01 90.44 
5 20 5-Year Low Low  1.03 3.48 3.78  92.44 92.65 92.67 
6 30 5-Year Low Low  –1.81 –1.51 –2.78  93.83 94.21 94.84 
7 10 10-Year Low Low  0.01 1.82 0.23  91.53 92.29 91.40 
8 20 10-Year Low Low  –1.49 –1.31 –0.80  92.71 93.16 93.01 
9 30 10-Year Low Low  –2.25 –2.51 –2.96  94.94 94.76 94.54 
10 10 3-Year High Low  –8.01 –8.47 –13.32  91.04 91.66 91.08 
11 20 3-Year High Low  0.38 0.72 1.95  93.02 93.02 93.02 
12 30 3-Year High Low  –0.61 –5.20 –1.79  93.80 93.80 93.26 
13 10 5-Year High Low  –15.67 –17.40 –24.84  91.30 91.10 91.69 
14 20 5-Year High Low  –5.14 –6.06 –0.69  93.86 93.87 93.76 
15 30 5-Year High Low  4.22 6.77 3.57  93.84 93.61 93.94 
16 10 10-Year High Low  20.31 25.87 16.82  90.68 90.86 90.09 
17 20 10-Year High Low  1.90 1.24 –5.03  93.28 93.55 93.59 
18 30 10-Year High Low  –5.83 –1.28 –5.26  92.53 92.80 92.74 
19 10 3-Year Low High  6.60 8.77 9.48  91.08 91.07 90.29 
20 20 3-Year Low High  –2.69 –5.06 –1.06  92.79 92.44 92.54 
21 30 3-Year Low High  3.24 3.12 –2.46  93.62 93.45 93.98 
22 10 5-Year Low High  –15.32 –14.11 –12.86  90.09 89.64 90.53 
23 20 5-Year Low High  0.12 –1.74 5.13  94.06 94.21 93.94 
24 30 5-Year Low High  2.57 1.04 7.41  93.63 93.50 93.67 
25 10 10-Year Low High  5.71 5.51 2.63  90.30 90.79 91.19 
26 20 10-Year Low High  0.06 –1.72 0.50  93.11 92.97 93.77 
27 30 10-Year Low High  2.38 2.77 4.27  93.64 93.94 92.78 
28 10 3-Year High High  –19.48 –26.66 –25.43  90.47 91.02 91.07 
29 20 3-Year High High  –15.50 –21.01 –24.32  93.85 93.90 94.53 
30 30 3-Year High High  –5.33 –9.02 –3.58  92.55 93.28 93.56 
31 10 5-Year High High  8.14 14.39 9.01  91.46 92.00 92.11 
32 20 5-Year High High  1.09 –0.39 –10.58  93.35 93.73 92.92 
33 30 5-Year High High  2.99 1.30 –7.57  93.74 94.42 93.76 
34 10 10-Year High High  25.98 28.24 30.99  90.17 89.99 90.09 
35 20 10-Year High High  –5.08 –5.16 –2.97  93.78 93.58 93.23 
36 30 10-Year High High  –5.71 –5.86 0.95  93.97 93.70 93.92 

Note. Items in bold indicate results outside of the acceptable boundaries for relative absolute bias or cov-
erage. Shaded table cells indicate conditions where there is a match between the cohort selection mecha-
nism in the data generating and estimating models. Con. = study condition; CSM = cohort selection 
mechanism; DGM = data generating model; Var. = variability.  
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Figure 5. Relative Absolute Bias of the Coefficient of the Level-2 Period Predictor, g2 

Note. Grey dashed lines represent acceptable boundaries of relative absolute bias (−5 to 5). CSM = cohort 
selection mechanism; DGM = data generating model; EM = estimating model. 
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the acceptable coverage range (92.44% in both conditions). 

Relative Absolute Bias of Variance Components Estimates 
Level-1 Variance Component, 𝝈𝟐 

Relative absolute bias of the level-1 individual variance component, 𝜎&, is displayed in 

Table 12. There were only eight conditions where the level-1 variance component was recovered 

with moderate bias. The common factor across these conditions was that the cohorts were gener-

ated with high variability and the cohort selection mechanism in the data generating model did 

not match the data estimating model. In these conditions, the level-1 variance component was 

overestimated between 5.71% to 8.72%. Otherwise, recovery of the level-1 variance component 

did not appear to be influenced by any of the other manipulated study conditions. 

Level-2 Cohort Variance Component, 𝝉𝒖 
Relative absolute bias of the level-2 cohort variance component, 𝜏7, is displayed in Table 

13. Successful recovery of the cohort variance component was determined by the cohort selec-

tion mechanism used in the estimating model matching the cohort selection mechanism used to 

generate the data. Across all study conditions, when the cohort selection mechanisms matched, 

the cohort variance component was estimated without bias. One interesting finding is that the 

magnitude of the relative absolute bias appeared to be influenced by the degree of mismatch be-

tween the cohort selection mechanisms. Most notably, when the data were generated using 5-

year cohorts, the 3-year estimating models always underestimated the cohort variance component 

(between 16.29% to 25.38% under-estimation). At the same time, the 10-year estimating models 

drastically overestimated the cohort variance component, especially when the cohorts were gen-

erated with high variability. Indeed, when the cohorts were generated with low variability, the 

cohort variance component was overestimated between 210.71% (condition 4) and 315.85% 

(condition 15). Over-estimation of the cohort variance component increased to as much as  
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Table 12. Relative Absolute Bias of Level-1 Variance Component, s2 

Manipulated Condition  CSM in Estimating Model 

Condition Years 
CSM 
DGM 

Period 
Variability 

Cohort 
Variability 

 
3-Year 5-Year 10-Year 

1 10 3-Year Low Low  0.00 1.10 1.50 
2 20 3-Year Low Low  –0.03 1.06 1.46 
3 30 3-Year Low Low  0.04 1.12 1.54 
4 10 5-Year Low Low  0.39 0.01 0.91 
5 20 5-Year Low Low  0.40 0.02 0.92 
6 30 5-Year Low Low  0.34 –0.03 0.90 
7 10 10-Year Low Low  0.20 0.00 0.02 
8 20 10-Year Low Low  0.18 0.00 0.00 
9 30 10-Year Low Low  0.19 0.01 0.00 
10 10 3-Year High Low  0.05 1.22 1.64 
11 20 3-Year High Low  0.01 1.17 1.63 
12 30 3-Year High Low  0.03 1.19 1.63 
13 10 5-Year High Low  0.41 –0.01 0.97 
14 20 5-Year High Low  0.36 –0.04 0.95 
15 30 5-Year High Low  0.43 0.01 1.03 
16 10 10-Year High Low  0.17 –0.02 –0.03 
17 20 10-Year High Low  0.21 –0.01 –0.01 
18 30 10-Year High Low  0.25 0.04 0.03 
19 10 3-Year Low High  0.03 5.83 7.90 
20 20 3-Year Low High  0.02 5.71 7.91 
21 30 3-Year Low High  –0.01 5.72 7.99 
22 10 5-Year Low High  1.89 –0.09 4.47 
23 20 5-Year Low High  2.05 –0.01 4.98 
24 30 5-Year Low High  2.04 0.01 5.04 
25 10 10-Year Low High  0.93 –0.07 –0.07 
26 20 10-Year Low High  1.06 0.02 0.02 
27 30 10-Year Low High  0.96 –0.04 –0.04 
28 10 3-Year High High  0.02 6.17 8.49 
29 20 3-Year High High  0.00 6.17 8.70 
30 30 3-Year High High  0.00 6.23 8.72 
31 10 5-Year High High  2.22 0.03 5.12 
32 20 5-Year High High  2.32 –0.02 5.64 
33 30 5-Year High High  2.19 0.01 5.46 
34 10 10-Year High High  1.00 –0.05 –0.06 
35 20 10-Year High High  1.13 0.00 0.00 
36 30 10-Year High High  1.10 0.01 0.01 

Note. Items in bold indicate results outside of the acceptable boundaries for relative absolute bias. Shaded 
table cells indicate conditions where there is a match between the cohort selection mechanism in the data 
generating and estimating models. CSM DGM = cohort selection mechanism used in the data generating 
model.  
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Table 13. Relative Absolute Bias of Level-2 Cohort Variance Component, tu 

Manipulated Condition  CSM in Estimating Model 

Condition Years 
CSM 
DGM 

Period 
Variability 

Cohort 
Variability 

 
3-Year 5-Year 10-Year 

1 10 3-Year Low Low  0.92 –49.26 –2.73 
2 20 3-Year Low Low  –0.38 –49.85 10.95 
3 30 3-Year Low Low  0.43 –49.80 –8.29 
4 10 5-Year Low Low  –22.81 1.50 210.71 
5 20 5-Year Low Low  –21.82 –0.25 255.75 
6 30 5-Year Low Low  –21.66 –0.39 269.09 
7 10 10-Year Low Low  –33.95 –16.46 0.88 
8 20 10-Year Low Low  –28.20 –14.08 –2.70 
9 30 10-Year Low Low  –25.03 –11.24 –2.78 
10 10 3-Year High Low  –0.88 –49.22 22.44 
11 20 3-Year High Low  –0.54 –49.50 31.51 
12 30 3-Year High Low  –0.69 –49.95 32.32 
13 10 5-Year High Low  –24.76 –0.33 248.14 
14 20 5-Year High Low  –22.65 –0.03 337.24 
15 30 5-Year High Low  –21.53 –0.01 315.85 
16 10 10-Year High Low  –35.68 –18.37 –4.51 
17 20 10-Year High Low  –25.42 –9.99 2.95 
18 30 10-Year High Low  –21.99 –7.52 1.75 
19 10 3-Year Low High  0.34 24.31 97.86 
20 20 3-Year Low High  –0.18 56.64 114.99 
21 30 3-Year Low High  –0.82 18.16 115.62 
22 10 5-Year Low High  –25.38 –0.83 355.61 
23 20 5-Year Low High  –20.79 0.57 414.81 
24 30 5-Year Low High  –20.27 0.62 509.42 
25 10 10-Year Low High  –25.88 –9.34 2.31 
26 20 10-Year Low High  –21.43 –6.22 1.99 
27 30 10-Year Low High  –20.43 –6.98 0.83 
28 10 3-Year High High  –0.99 48.78 98.39 
29 20 3-Year High High  0.12 90.26 117.30 
30 30 3-Year High High  –0.55 96.90 142.10 
31 10 5-Year High High  –23.43 –0.98 347.99 
32 20 5-Year High High  –16.29 3.07 447.47 
33 30 5-Year High High  –19.67 –0.76 531.50 
34 10 10-Year High High  –30.39 –13.43 0.27 
35 20 10-Year High High  –21.17 –9.59 1.20 
36 30 10-Year High High  –19.91 –8.13 0.72 

Note. Items in bold indicate results outside of the acceptable boundaries for relative absolute bias. Shaded 
table cells indicate conditions where there is a match between the cohort selection mechanism in the data 
generating and estimating models. CSM DGM = cohort selection mechanism used in the data generating 
model.  
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531.50% (condition 33) when the cohorts were generated with high variability. This relationship 

is displayed visually using a dispersion plot in Figure 6 for three study conditions where the 10-

year cohort selection mechanism used in the estimating model drastically overestimated the co-

hort variance component. 

When moving in the opposite direction for the degree of mismatch between the cohort 

selection mechanism in the data estimating and data generating models, the same pattern occurs, 

but the magnitude of the biased parameter recovery is much less severe. Specifically, when 10-

year cohorts were used to generate the data, the cohort variance component was always underes-

timated by the 3-year and 5-year estimating models, but the 3-year estimating models more 

greatly underestimated the cohort variance component compared to the 5-year models. In these 

scenarios, the 5-year estimating models underestimated the cohort variance component between 

6.22% to 18.37%, while the 3-year estimating models underestimated between 20.43% to 

35.68%. 

Level-2 Period Variance Component, 𝝉𝒗 
Relative absolute bias of the level-2 period variance component, 𝜏8 , is displayed in Table 

14. Overestimation of the period variance component occurred when the cohort selection mecha-

nism in the data generating models did not match the data estimating models, but only for the 5-

year and 10-year estimating models (the 3-year estimating models exhibited no relative absolute 

bias across all study conditions). In the study conditions where the 5-year and 10-year  

estimating models resulted in overestimation of the period variance component, the degree of 

overestimation increased as the number of repeated cross-sections used to generate the data in-

creased. For example, in study conditions 19 through 21, where 3-year cohorts were used to gen-

erate the data, the 5-year cohort selection mechanism overestimated the period variance  
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Figure 6. Dispersion Plot of Level-2 Cohort Variance Component, tu, for Three Study 
Conditions 
 
Note. Blue points represent the estimate of the cohort parameter for each successfully converged model. Red vertical 
lines represent the mean of the estimates among each cohort selection mechanism. Values under the estimating 
model label indicate the value of the relative absolute bias. CSM = cohort selection mechanism; DGM = data gener-
ating model; Var. = variability; EM = estimating model.  
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component by 7.62%, 39.33%, and 57.38% as the number of repeated cross-sections increased 

from 10 to 20 to 30 years, respectively. The corresponding overestimation for the 10-year esti-

mating model in the same study conditions was 20.26%, 69.30%, and 151.36%.  

There were many more study conditions where the 10-year estimating models overesti-

mated the period variance component compared to the 5-year estimating models, and generally 

the magnitude of the overestimation was higher for the 10-year estimating models. Specifically, 

for only five study conditions was the period variance component overestimated when 5-year co-

horts were used in the estimating models (coverage range = 7.62% to 57.38%), while the 10-year 

estimating models overestimated the period variance component in 17 study conditions (cover-

age range = 5.86% to 443.95%). Overestimation of the period variance component using 10-year 

cohorts was particularly large when the cohorts were generated with high variability. For exam-

ple, in study conditions 23, 24, and 33, the period variance component was overestimated by 

174.12%, 443.95%, and 94.22%, respectively. 
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Table 14. Relative Absolute Bias of Level-2 Period Variance Component, tv 

Manipulated Condition  CSM in Estimating Model 

Condition Years 
CSM 
DGM 

Period 
Variability 

Cohort 
Variability 

 
3-Year 5-Year 10-Year 

1 10 3-Year Low Low  –0.80 –0.65 0.67 
2 20 3-Year Low Low  0.80 0.29 5.53 
3 30 3-Year Low Low  0.17 0.91 10.24 
4 10 5-Year Low Low  –0.78 –1.73 3.93 
5 20 5-Year Low Low  –0.19 0.05 20.31 
6 30 5-Year Low Low  –0.23 –0.79 49.23 
7 10 10-Year Low Low  0.24 0.38 0.38 
8 20 10-Year Low Low  1.30 1.05 0.47 
9 30 10-Year Low Low  0.01 –0.56 –0.93 
10 10 3-Year High Low  0.40 1.10 1.23 
11 20 3-Year High Low  –1.89 –1.98 –0.31 
12 30 3-Year High Low  0.60 0.71 3.47 
13 10 5-Year High Low  –0.39 –0.62 1.65 
14 20 5-Year High Low  0.09 0.13 5.86 
15 30 5-Year High Low  0.18 –0.51 10.40 
16 10 10-Year High Low  –1.41 –1.12 –1.34 
17 20 10-Year High Low  –1.57 –2.00 –1.80 
18 30 10-Year High Low  0.82 1.01 0.70 
19 10 3-Year Low High  –1.15 7.62 20.26 
20 20 3-Year Low High  1.10 39.33 69.30 
21 30 3-Year Low High  –1.03 57.38 151.36 
22 10 5-Year Low High  –1.50 –1.60 42.26 
23 20 5-Year Low High  –1.43 –3.37 174.12 
24 30 5-Year Low High  1.48 –0.82 443.95 
25 10 10-Year Low High  0.60 –0.39 –0.37 
26 20 10-Year Low High  1.36 –1.12 –1.75 
27 30 10-Year Low High  4.22 1.57 0.71 
28 10 3-Year High High  –0.87 1.17 3.01 
29 20 3-Year High High  0.59 10.63 13.80 
30 30 3-Year High High  0.38 22.79 33.72 
31 10 5-Year High High  0.41 –0.16 9.81 
32 20 5-Year High High  0.43 –0.01 35.43 
33 30 5-Year High High  1.55 0.90 94.22 
34 10 10-Year High High  2.39 1.51 1.07 
35 20 10-Year High High  1.99 0.90 0.65 
36 30 10-Year High High  1.34 –0.05 0.14 

Note. Items in bold indicate results outside of the acceptable boundaries for relative absolute bias. Shaded 
table cells indicate conditions where there is a match between the cohort selection mechanism in the data 
generating and estimating models. CSM DGM = cohort selection mechanism used in the data generating 
model.  
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5  DISCUSSION 

Proponents of life course theory contend that longitudinal analyses of social change 

should account for three important temporal forces: age, period, and cohort effects. However, 

simultaneous estimation of these three effects in the same model poses an identification problem 

because the three effects are linear derivates of one another, resulting in a perfectly specified 

model. For the past few decades, social scientists have utilized several different modeling tech-

niques to overcome or work around the identification problem. One of the more recent solutions 

that has been particularly popular in the applied literature is the hierarchical-age-period-cohort 

cross-classified random effects model (HAPC-CCREM). Proposed by Yang and Land (2006), 

the HAPC-CCREM provides a unique solution to the identification problem by taking advantage 

of the multilevel modeling framework to specify age effects using individual-level data at level 

one, which are then cross-classified by period and cohort clusters at level two. To date, more 

than fifty studies have utilized the HAPC-CCREM to analyze social change in a variety of out-

comes. 

Despite the increasing popularity of the HAPC-CCREM in the applied literature, compar-

atively fewer methodological studies exist on the model. Utilizing a Monte Carlo simulation 

study, the purpose of this dissertation was to expand our methodological research on the HAPC-

CCREM by examining several factors that may influence the accuracy of the estimates in the 

model. Furthermore, this dissertation also explored the performance of various model fit indices 

in identifying the underlying data structure used in the model. This chapter discusses the findings 

and implications of the Monte Carlo simulation study and is structured as follows. First, a sum-

mary of findings for each area investigated in the simulation study is provided, with specific at-

tention devoted to explaining why the results may have occurred and how they relate to previous 
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methodological research. Second, implications of the study findings are discussed, including im-

plications for applied researchers, implications for administrators and funders of datasets used in 

HAPC-CCREM analyses, and implications for life course theory. Third, the chapter concludes 

with a discussion of important limitations of the study and highlights a variety of areas for future 

methodological research on the model. 

The Influence of the Number of Repeated Cross-Sections 
 To date, only one previous study has examined the impact that the number of repeated 

cross-sections has on the accuracy of the model’s estimates. Yang (2006) examined if the accu-

racy of the model estimates differed between datasets comprised of 5 repeated cross-sections 

compared to 15 repeated cross-sections, finding that in the smaller datasets the level-1 age effect, 

period variance component, and cohort variance component were all overestimated and the level-

1 individual variance component was underestimated. For three reasons, this dissertation ex-

panded on the Yang study. First, since the time of Yang’s study, datasets used in HAPC-CCREM 

analyses have substantially grown, and while she found that larger datasets accurately recovered 

parameters in the model, this assumption remained untested in datasets with more than 15 years 

of data. Second, the findings of Yang’s simulation imply that applied researchers should only use 

the HAPC-CCREM on datasets with at least 15 repeated cross-sections; however, a dataset of 

size between 5 and 15 years may accurately produce model estimates. Third, Yang’s study did 

not examine the impact that the number of repeated cross-sections has on the coefficient estimate 

of a period-level predictor. 

 For these reasons, this dissertation examined the influence of the number of repeated 

cross-sections on the accuracy of parameter estimates in the HAPC-CCREM. Specifically, da-

tasets with 10, 20, and 30 repeated cross-sections were examined. The number of repeated cross-

sections most directly influenced the accuracy of the coefficient estimate of the level-2 period 
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predictor. The findings of the simulation study indicated that the level-2 period predictor coeffi-

cient was underestimated by as much as 27%, overestimated by as much as 31%, and slightly un-

der-covered (worst under-coverage = 90% coverage rate) when the datasets were generated using 

10 repeated cross-sections. Otherwise, for datasets generated with 20 and 30 repeated cross-sec-

tions, the coefficient estimate of the level-2 period predictor was unaffected. 

 The number of repeated cross-sections partially impacted the following parameters. Cov-

erage of the intercept was partially influenced; there were five conditions in which the intercept 

was slightly under-covered when 10 repeated cross-sections were used to generate the data (cov-

erage range = 91.75% to 92.39%). Coverage of the level-1 linear age parameter was partially in-

fluenced as well. There were three conditions where the data were generated and estimated using 

10-year cohorts, in which the level-1 linear age parameter was slightly under-covered (91.21% to 

92.34%) for datasets generated with 10 repeated cross-sections. The level-1 curvilinear age pa-

rameter was partially influenced by the number of repeated cross-sections in 10-year estimating 

models that did not match the data generating models, for which datasets with 10 and 20 re-

peated cross-sections consistently exhibited lower coverage rates. Finally, the level-2 period var-

iance component was partially influenced. Specifically, in conditions where the 5-year and 10-

year cohort selection mechanisms used in the estimating models did not match the cohort selec-

tion mechanisms in the data generating models, overestimation of the period variance component 

appeared to increase as the number of repeated cross-sections increased. 

 The finding that the number of repeated cross-sections directly influences the accuracy of 

coefficient estimates of the level-2 period predictor and partially influences some of the other pa-

rameters in the HAPC-CCREM is an unsurprising finding. This is because the number of re-

peated cross-sections directly changes the number of level-2 period clusters used in the 
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estimation of the model’s parameters. As more years are available for analysis, the number of 

level-2 period clusters increases. Importantly, the number of clusters used in the estimation of a 

multilevel model is ultimately an issue of sample size, which has been of great concern to multi-

level modelers. Multilevel models estimated using maximum-likelihood are asymptotically unbi-

ased, meaning they perform well as their sample sizes approach infinity but perform compara-

tively worse with smaller samples (McNeish & Stapleton, 2016a). From a design perspective, it 

is generally recommended that in multilevel models the number of level-two clusters is at least 

fifty (Maas & Hox, 2002). However, previous simulation studies for a simple two-level model 

have indicated that for continuous outcomes the level-2 fixed effects can be accurately estimated 

with as few as 15 clusters, level-1 fixed effects can be accurately estimated with as few as five 

clusters, and level-1 and level-2 variance components can be estimated with as few as ten clus-

ters (McNeish, 2014; McNeish & Harring, 2017; McNeish & Stapleton, 2016a, 2016b). Simula-

tion studies of the cross-classified random effects model typically set the number of level-two 

clusters for one of the cross-classified factors at 20, 30, or 50 clusters and have found that with 

those numbers of clusters the model parameters could be accurately estimated (Kim et al., 2021; 

Luo & Kwok, 2009; Meyers & Beretvas, 2006; Ye & Daniel, 2017). Accordingly, the findings of 

this dissertation are in line with the previous simulation studies on the broader class of multilevel 

models. 

The Influence of the Cohort Selection Mechanism 
 A small handful of simulation studies have previously examined the impact that the co-

hort selection mechanism has on the accuracy of the model estimates. These previous studies 

mostly focused on the ability of the model to accurately recover the age, period, and cohort 

trends when the cohorts used in the estimating model did not match the data generating model 

(Bell & Jones, 2014b, 2014c, 2015; Reither et al., 2015). Some of these simulation studies found 
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that the model could not recover the age, period, and cohort trends, but the simulation conducted 

by Reither et al. (2015) indicated that these findings were erroneous because in the simulation 

design perfectly linear trends were specified in the data generating models, and that when more 

realistic, linear monotonic trends were specified the model could accurately recover the trends, 

even if the cohort groupings in the estimating model did not match the data generating model.  

This dissertation shifted attention away from the impact of the cohort selection mechanism on 

recovery of the age, period, and cohort trends, and instead examined accuracy of the model pa-

rameter estimates (intercept, age predictors, level-1 predictor, level-2 predictor, and variance 

components) given the cohort selection mechanism employed in the model. Specific attention 

was devoted to the impact of the cohort selection mechanism when the cohort groupings in the 

estimating model did and did not match those used in the data generating model. Motivated by 

common cohort groupings used in the applied research literature, groups of 3-year, 5-year, and 

10-year cohorts were specifically analyzed. 

 Of the various factors examined in this simulation study, the cohort selection mechanism 

appeared to be the most influential in determining accuracy of the estimates in the HAPC-

CCREM. While the cohort selection mechanism did not impact the accuracy of the coefficient 

estimates of the level-1 predictor or the level-2 period predictor, it did impact the other model 

parameters. Most notably, the cohort selection mechanism heavily impacted the accuracy of the 

level-1 linear age parameter, the level-2 cohort predictor coefficient, and the level-2 cohort vari-

ance component. For these three parameters, when the cohort selection mechanism in the esti-

mating models did not match the data generating models the parameter was generally estimated 

with bias, and for the linear age parameter and cohort predictor the 95% confidence intervals of 

the estimate were generally under-covered. Moreover, for the cohort variance component, the 



 

 
 

103 

magnitude of the parameter bias was driven by the degree of the mismatch between the cohort 

selection mechanism used in the estimating model versus the data generating model. However, 

when the cohort selection mechanism used in the estimating model matched the data generating 

model, the parameters were recovered without bias and the 95% confidence intervals (for the lin-

ear age parameter and cohort predictor) were appropriately covered. The findings are likely ex-

plainable by the direct connection between cohorts and these specific parameters. It makes sense 

for the cohort-level predictor coefficient and the cohort variance component to be directly influ-

enced by the structure of the cohorts in the underlying dataset, and for these cohort-related varia-

bles to perform well when they match. 

 To a lesser extent, the cohort selection mechanism impacted the intercept, level-1 curvi-

linear age parameter, the level-1 variance component, and the level-2 period variance compo-

nent. Relative absolute bias of the intercept was not influenced by the cohort selection mecha-

nism, but when the cohort selection mechanism in the estimating models did not match the data 

generating models, the 95% confidence intervals of the intercept were consistently under-cov-

ered. A somewhat similar effect was found for the level-1 curvilinear age parameter. For the cur-

vilinear age parameter, relative absolute bias was only apparent in four of the 36 study condi-

tions, and in three of these four conditions, the models were estimated with 10-year cohort 

groupings that did not match the data generating model. For coverage of the curvilinear age pa-

rameter, many of the 3-year and 5-year estimating models that did not match the data generating 

model could appropriately cover the curvilinear age parameter, but 10-year estimating models 

that did not match exhibited significant under-coverage of the curvilinear age parameter. For the 

level-1 variance component, there were 10 study conditions where bias of this parameter was 

driven by the cohort selection mechanism in the estimating models not matching the data 
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generating models, but these conditions were also all generated with high cohort variability. Fi-

nally, one interesting finding was that for the level-2 period variance component, the 3-year esti-

mating models could accurately recover this parameter regardless of the cohort selection mecha-

nism in the underlying data. However, 5-year and 10-year estimating models that did not match 

the data generating model consistently overestimated the period variance component, with the 

10-year estimating models performing especially poor (overestimation ranged from 6% to 

444%). 

 Taken together, the results of this simulation study indicate that the cohort selection 

mechanism can ultimately create model misspecification issues for estimation of the HAPC-

CCREM. Model misspecification occurs when an estimated model fails to capture an important 

or meaningful aspect of the underlying data used by the model (Dennis et al., 2019). For exam-

ple, in multilevel growth curve models model misspecification would occur when the underlying 

functional form of time is non-linear, but the model is estimated with a linear time effect 

(McCoach & Kaniskan, 2010; Singer & Willett, 2003); the model is mis-specified because the 

researcher failed to capture the non-linear time effect. As it relates to the HAPC-CCREM, the 

model misspecification occurs when the cohort selection mechanism used in the estimating 

model does not match the cohort structure of the underlying data set. For the HAPC-CCREM, 

model misspecification in this regard is likely so influential because membership in the level-2 

cohort cluster is directly influenced by how the researcher decides to group individuals into the 

cluster, and this decision must be made for every individual in the dataset. While previous re-

search indicates that the cohort grouping does not impact the ability of the model to recover the 

age, period, and cohort trends in the data (Reither et al., 2015), the findings of this dissertation 

indicate that failure to capture the cohort groupings underlying the data heavily impacts the 
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accuracy of many of the parameters in the HAPC-CCREM. 

The Influence of Variability in the Period and Cohort Effects 
To date, none of the previous simulation studies on the HAPC-CCREM have examined 

the influence of the variability in the period and cohort effects on accuracy of the model’s esti-

mates. Therefore, this dissertation expanded on previous research by examining relative absolute 

bias and coverage rates of estimates in the HAPC-CCREM when the period effect exhibited low 

and high variability, as well as when the cohort effect exhibited low and high variability. Low 

variability was operationalized as 2% of the total variability in the outcome occurring for the pe-

riod or cohort effect, and high variability was operationalized as 10% of the total variability in 

the outcome occurring for the period or cohort effect. The results of the simulation study indi-

cated that variability in the period and cohort effects most clearly impacted the coefficient esti-

mate of the level-2 period predictor. When both effects were generated with high variability, the 

period predictor coefficient was underestimated by as much as 21% in datasets with 10 repeated 

cross-sections. In datasets with 20 and 30 repeated cross-sections, the period predictor coefficient 

was underestimated by as much as 27% and overestimated by as much as 31% when variability 

in both the period and cohort effects was high. Additionally, the coefficient estimate of the level-

2 cohort predictor was impacted by the period and cohort variability. Specifically, when the peri-

ods and cohorts were generated with high variability and a 10-year cohort selection mechanism, 

the cohort predictor coefficient was underestimated across all the estimating models, even when 

the cohort groupings in the estimating models matched the data generating models. 

The intercept, level-1 curvilinear age parameter, and the level-1 predictor coefficient 

were not influenced by the period and cohort variability in any study conditions. Otherwise, the 

remaining parameters in the HAPC-CCREM were only influenced by the period and cohort vari-

ability when the cohort selection mechanism used in the estimating models did not match the 
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data generating models. This trend was most prominent for the level-2 cohort variance compo-

nent and the level-2 period variance component. When the estimating models with a 10-year co-

hort selection mechanism did not match the data generating models, overestimation of the cohort 

variance component increased as the cohort variability increased. Specifically, when the cohort 

variability was low, the cohort variance component was overestimated between 211% to 315%, 

which increased to as much as 532% when cohort variability was high. When the cohort selec-

tion mechanism used in the estimating models did not match the data generating models and the 

cohort variability was high, the period variance component was especially overestimated, rang-

ing from 10% overestimation to 444% overestimation. The level-1 linear age parameter and the 

level-1 variance component were also impacted by period and cohort variability when the cohort 

selection mechanism in the estimating model did not match the data generating model, but com-

paratively less than the period and cohort variance component. 

The findings of this simulation study that the coefficient estimates of the period and co-

hort-level predictors were impacted by variability in the period and cohort effects are interesting 

given the results of previous simulation studies of cross-classified random effects models. In 

terms of multilevel modeling, manipulating the variability of the period and cohort effects ulti-

mately impacts the total level of variability at level one of the model and level two of the model. 

In the current study, the specific combinations of the manipulated period and cohort variability 

results in models with the total variability at level two ranging from 4% (periods and cohort both 

generated with low variability) to 20% (periods and cohorts both generated with high variabil-

ity). Three previous simulation studies have examined the ability of a CCREM to recover param-

eters given the total variability at level two (Kim et al., 2021; Meyers & Beretvas, 2006; Ye & 

Daniel, 2017). All three studies evaluated the model with 5% and 15% of the total variability set 
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at level two, and all three studies found that none of the level-1 or level-2 predictor variables’ co-

efficients and variance components were impacted by the amount of variability occurring at level 

two.  

One important difference in the design of the current simulation study and previous re-

search on the CCREM is the number of level-2 clusters created in the data generating models. 

While Kim et al. (2021) generated their data with 30 level-2 clusters and Meyers and Beretvas 

(2006) and Ye and Daniel (2017) generated their data with 30 and 50 clusters, the current simu-

lation study generated comparatively fewer level-2 clusters in certain scenarios. Specifically, 

conditions generated with 10, 20, and 30 repeated cross-sections resulted in 10, 20, and 30 pe-

riod-level clusters. Cohort-level cluster sizes depended on the number of repeated cross-sections 

used to generate the data. Datasets generated with 10 repeated cross-sections resulted in 28 three-

year cohort clusters, 17 five-year cohort clusters, and nine ten-year cohort clusters. Datasets gen-

erated with 20 repeated cross-sections resulted in 32 three-year cohort clusters, 20 five-year co-

hort clusters, and ten ten-year cohort clusters. Datasets generated with 30 repeated cross-sections 

resulted in 39 three-year cohort clusters, 24 five-year cohort clusters, and 12 ten-year cohort 

clusters. It may therefore be the case that these small cluster sample sizes amplified the impact of 

the variability in the period and cohort effects to influence the accuracy of the parameters in the 

study conditions discussed above (Stegmueller, 2013). 

The Use of Model Fit Indices to Identify a Cohort Selection Mechanism 
This dissertation investigated the performance of the AIC, BIC, AICC, and BICC model 

fit indices to correctly identify the cohort selection mechanism underlying the structure of the 

data used in the HAPC-CCREM. The results of the simulation study found that all four indices 

performed extremely well in identifying the cohort selection mechanisms used in the data gener-

ating models. Based on previous simulation research about the performance of model fit indices 
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in cross-classified random effects models (Beretvas & Murphy, 2013), it was anticipated that 

modifications to the AIC and BIC fit indices may result in better performance, but this study 

found that these corrections were not necessary. Indeed, there was no practically meaningful dif-

ference in the performance of the fit indices across all the study conditions evaluated in the 

Monte Carlo simulation. The successful performance of these fit indices is likely attributable to 

the model misspecification issues created by the cohort selection mechanisms discussed above. 

The most plausible explanation is that the cohort groupings underlying the dataset create such a 

unique data structure that the fit indices can easily target when the cohort groupings used in the 

estimating model do not match the cohort groupings underlying the dataset (Reither et al., 2015; 

Wu et al., 2009; Yang & Land, 2013, pp. 15–19). 

Implications of Findings 
The findings of this dissertation have several implications for applied researchers seeking 

to use the HAPC-CCREM in practice. First, the number of survey years used in the analysis 

should be of concern when seeking to employ the model. The findings of previous research 

(Yang, 2006) certainly indicate that the model should not be estimated on datasets with five re-

peated cross-sections under the simulation conditions investigated. If the impact of a period-level 

predictor is of interest, the findings of this dissertation indicate that 10 repeated cross-sections 

may be inadequate to accurately estimate the coefficient of the period-level predictor, but 20 re-

peated cross-sections may be sufficient. If a period-level predictor is not to be included in the 

model, the findings of this simulation study in concert with previous research (Yang, 2006) indi-

cate that the model parameters can be accurately estimated with 15, 20, or 30 repeated cross-sec-

tions under the conditions investigated in the simulations.  

Importantly, several published studies have estimated the HAPC-CCREM on datasets 

with less than 15 repeated cross-sections. For example, gender egalitarianism was examined 
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using three repeated cross-sections (F. Pampel, 2011a); anti-immigrant attitudes were examined 

using four repeated cross-sections (Gorodzeisky & Semyonov, 2018); self-rated health 

(Delaruelle et al., 2015), fear of crime among older adults (Koeber & Oberwittler, 2019), and at-

tendance at protests and the signing of petitions (Caren et al., 2011) was examined using 8 re-

peated cross-sections of data; gender differences in political participation were examined using 

11 repeated-cross sections (Andrew S. Fullerton & Stern, 2013); gender differences in attitudes 

toward racial equality was examined using 12 repeated cross-sections (A. K. Clark, 2017), to 

name a few (see Appendix A for more studies). Findings of these studies may need to be taken 

with caution considering the low number of survey years employed in the analyses. It may be ad-

visable to re-estimate the models used in these publications if the questions used in the analyses 

have continued to be asked since the time of the analysis, where additional years of data were 

collected by the survey administrators. 

The simulation study results related to the effect of the cohort selection mechanism on the 

accuracy of estimates in the HAPC-CCREM and the use of model fit indices to correctly identify 

a cohort selection mechanism also have meaningful implications for applied researchers. In this 

study it was found that when the cohort selection mechanism used in the analysis matched the 

underlying data structure, the various model parameters were generally estimated accurately. 

However, when the cohort groupings used did not match, many of the model parameters were 

inaccurately estimated, especially when 10-year cohort groupings were used in the estimation. 

Fortunately, this study found that model fit indices commonly employed in most statistical soft-

ware performed extremely well in identifying the cohort groupings underlying the data. Accord-

ingly, applied researchers could take advantage of these model fit indices early on in the estima-

tion of their model to help ensure that they have not mis-specified the cohort grouping. 
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Specifically, several competing baseline models with only the age effects at level-1 could be esti-

mated using several different cohort groupings, and the one with the lowest model fit index 

would indicate the cohort grouping closest to the underlying data structure. In turn, the cohort 

grouping with the best model fit index would then be used in a conditional model, where addi-

tional predictor variables at the individual, period, and cohort levels would be included. 

The findings of this dissertation also have important implications for those who fund and 

manage the datasets used in HAPC-CCREM analyses. To date, the majority of studies using the 

HAPC-CCREM in practice have utilized the General Social Survey (GSS). The GSS is perhaps 

the most well-known and frequently used dataset among sociologists, especially given that many 

items have consistently been asked to respondents using the same question format for more than 

thirty years. The findings of this dissertation related to the influence of the number of repeated 

cross-sections on the accuracy of parameters in the HAPC-CCREM should convince GSS ad-

ministrators to continue to ask the same questions in the same format. If current GSS questions 

were removed or reworded, not only would historical trend analysis be compromised, but it 

would be many years before those interested in APC analyses on the new questions using 

HAPC-CCREM could be employed. For example, the finding of this dissertation that compared 

to 10 repeated cross-sections, 20 repeated cross-sections produced more accurate coefficient esti-

mates of a period-level predictor would mean that if a new outcome variable is introduced, it 

would likely be at least 40 years before the HAPC-CCREM could be estimated, considering that 

a new GSS cross-section is conducted every two calendar years. 

Importantly, there are also implications for other datasets as well. For example, compara-

tively smaller datasets with fewer years of data than the GSS have been utilized in HAPC-

CCREM analyses such as the National Travel Survey in England, the European Social Survey, 
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the American National Election Survey, the International Social Survey Program, and the Ameri-

can Public Opinion and Foreign Policy Study (see Appendix A). Administrators and funders of 

these datasets should be aware that social scientists are using them for HAPC-CCREM analyses 

and should therefore consider continuing to ask the questions in the same format and for a con-

siderable amount of time to come. Doing so would likely enable accurate model estimates to be 

obtained in the HAPC-CCREM once the question was consistently asked in 15 repeated cross-

sections. A plausible alternative would be for administrators of these datasets to consider releas-

ing a more detailed indicator for when the participant was surveyed, for example the survey 

month, instead of the survey year. Doing so would readily increase the number of period-level 

clusters in the analysis and make the employment of HAPC-CCREM analyses more quickly 

achievable. 

Finally, the findings of this dissertation have important implications for life course the-

ory. Decades of prior research has been concerned with solving the identification issue or finding 

convenient workarounds to the linear dependency between age, period, and cohort effects. When 

initially introduced, the HAPC-CCREM was mainly put forth as a viable solution to accurately 

and simultaneously estimate age, period, and cohort effects in one model (Yang & Land, 2006). 

Most of the applied literature using the model to date has mainly been concerned with account-

ing for the age, period, and cohort effects in concert with various individual-level predictor varia-

bles. However, a growing number of studies are beginning to include predictor variables at the 

period and cohort levels to examine how they might influence individual-level outcomes. Under 

the conditions investigated, the findings of this dissertation indicated that for datasets with 20 or 

more repeated cross-sections, period and cohort level predictors could be accurately estimated, 
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especially when the cohort selection mechanism in the estimating model matched the data gener-

ating model.  

Applied researchers and life course theorists should consider taking advantage of the 

multilevel modeling framework offered by the HAPC-CCREM to answer new and more com-

plex questions about age, period, and cohort processes by including relevant predictors at the pe-

riod and cohort levels. For example, previous HAPC-CCREM analyses have examined individ-

ual-level predictors of attitudes towards gender egalitarianism while controlling for differences 

in periods and cohorts (A. K. Clark, 2017; Donnelly et al., 2016). These analyses could be up-

dated and expanded to include period-level predictors for the percentage of women entering the 

paid labor force over time or the percentage of women earning college degrees across cohorts. 

Importantly, measures occurring at the period and cohort level could be linked from other da-

tasets beyond the one used for the individual-level data, a process known as data integration. For 

example, individual-level measures from the General Social Survey could be linked to period 

and cohort level information from the World Bank, American Community Survey, or the Current 

Population Survey. Such novel use of various datasets linked together would greatly expand the 

types of research questions life course theorists could answer using the HAPC-CCREM, and po-

tentially further enhance our understanding of the nuanced ways that age, period, and cohort ef-

fects influence individual-level outcomes and longitudinal social change. At the same time, how-

ever, life course scholars answering these types of questions should carefully consider the inclu-

sion of period-level predictors in their model if high variability is occurring for both the period 

and cohort effects, as this dissertation indicated that in those scenarios the period-level predictor 

tended to be overestimated under the simulation conditions examined. 
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Limitations and Areas for Future Research 
As with any study, this dissertation has important limitations that should be considered. 

Research from a variety of disciplines indicate that human capacity is limited in its ability to cog-

nitively process, store, and understand complex information, especially when many factors are 

interacting with one another (Cowan, 2001; Saaty & Ozdemir, 2003; Sterman, 2006). Therefore, 

in Monte Carlo simulation studies boundaries must be drawn on the number of study conditions 

under investigation and the levels of these study conditions, especially when fully crossed study 

designs are employed, as in this dissertation (Beaujean, 2018). One of the main areas of investi-

gation in this dissertation was the impact that the number of survey years has on the accuracy of 

estimates in the HAPC-CCREM, specifically focusing on 10, 20, and 30 years of data availabil-

ity. As discussed in Chapter 2, these specific values were selected for analysis mainly to deter-

mine if a dataset with the number of survey years between five and 15 could accurately estimate 

the model parameters, and to further examine how the model performed with larger datasets, es-

pecially in the presence of a period predictor.  

One of the interesting findings of this dissertation was that datasets with 10 repeated 

cross-sections exhibited varying degrees of bias in model estimates, and that if the impact of a 

period predictor was of interest, at least 20 repeated cross-sections of data would be recom-

mended to accurately estimate the coefficient of the period-level parameter. While these findings 

are helpful, future research could more fully explore the required minimum number of survey 

years to accurately estimate the parameters in the HAPC-CCREM. For the reasons discussed 

above, the number of survey years in this dissertation was limited to 10, 20, and 30 repeated 

cross-sections. It would be useful, however, to conduct a simulation study that expanded on these 

levels to determine a more specific number of survey years to use to estimate the model without 

a period predictor (for example, 10, 11, 12, 13, 14, or 15 years), as well as a more specific 
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number of survey years recommended to estimate a period predictor (for example, somewhere 

between 10 to 20 years of data).  

This study was also limited considering several other factors that could have been ex-

plored but were left uninvestigated to manage the total number of manipulated conditions. For 

example, the within-cluster sample sizes were not investigated for the number of repeated cross-

sections available in the analysis. The simulation study used in this dissertation was designed to 

reflect the overall sample size of the General Social Survey, which is roughly 1500 respondents 

in each repeated cross section. However, as mentioned in Chapter 3 the GSS reduces survey ad-

ministration costs by employing a split ballot design so that not all respondents are asked all 

questions. The split ballot design, in addition to participants refusing to answer a particular ques-

tion or responding “don’t know” to a particular question very quickly reduces the number of par-

ticipants in each repeated cross-section when list-wise deletion procedures are utilized to derive 

the final sample for the analysis. Future Monte Carlo simulation studies on the HAPC-CCREM 

should therefore consider the impact that smaller within-cluster sample sizes may have on the ac-

curacy of the model’s estimates. This would be especially interesting for using a 3-year cohort 

selection mechanism, which would result in a larger number of cohort clusters but a smaller sam-

ple size within the cohort clusters. 

While one of the strengths of this study was that it evaluated the inclusion of a period-

level predictor in the model, which was unexamined by previous research, it did not consider 

many other modeling choices that could be made by applied researchers. As discussed in the pre-

vious section, the multilevel modeling framework of the HAPC-CCREM will allow life course 

researchers to examine more complex and nuanced period- and cohort-level processes that im-

pact social change on outcomes of interest. In particular, researchers could specify individual-



 

 
 

115 

level predictors that randomly vary across periods and/or cohorts and could also specify cross-

level interaction effects between individual-level variables and the period- and cohort-level pre-

dictors. Future simulation studies of the HAPC-CCREM could build on the current research by 

examining the ability of the model to accurately estimate these types of effects. 

Future simulation studies could also evaluate other cohort selection mechanisms that may 

be of interest to applied researchers. This dissertation focused on the most commonly used co-

hort groupings (3-year, 5-year, and 10-year) in previously published HAPC-CCREM analyses. 

However, at least two studies in the literature utilized generational theory to form their cohort 

groupings (see Kowske et al., 2010 and Shu & Meagher, 2018). Generational theory is a subfield 

of life course theory that specifically examines how very large generations of individuals influ-

ence outcomes of interest (Mannheim, 1952; Okros, 2020), such as the GI Generation (those 

born between 1901-1924), Baby Boomers (those born between 1943-1960), Gen Xers (those 

born between 1961-1981), and Millenials (those born between 1982-2003). Using these cohort 

groupings in the model may have important impacts on the accuracy of the model estimates. 

Speculatively, the findings of this dissertation would imply that if the underlying structure of the 

data used in this model was formed by these groupings, the model would produce accurate 

effects as long as the same grouping was specified in the model itself (i.e., the cohort selection 

mechanism in the data generating model matched the estimating model). However, if this was 

not the case, using these cohorts would likely cause biased model estimates, especially given that 

they would result in a very small number of cohort clusters used by the model since each 

generation encompasses a very large number of birth cohorts. Nonetheless, future simulation 

studies could explicitly test this assumption. 



 

 
 

116 

Additionally, it will remain important to revisit and test other specifications for cohort 

groupings as our understanding of social processes is updated or advanced, especially if it influ-

ences model selection and the variability exhibited across cohorts. Speculatively, for example, 

the continued rapid advancement of technology may produce cohort effects that require cohort 

groupings used in age-period-cohort analyses that differ from current practice. In this example, it 

may be the case that rapid technological developments result in cohort effects that are more vari-

able among newer (that is, younger) individuals compared to more stable effects in older groups. 

Such a phenomenon could be modeled in HAPC-CCREM analyses by blending a modeling ap-

proach of narrower cohort widths for the newer cohorts (perhaps 3-year or 5-year birth cohorts) 

and using wider cohort widths informed by generational theory for the older birth cohorts. If 

these types of model specification procedures are of interest to applied researchers, they should 

be evaluated as a cohort selection mechanism in future simulation studies. 

Another limitation of this dissertation is that the findings of the simulation study only ap-

ply to HAPC-CCREMs estimated with continuous outcomes. Monte Carlo simulations con-

ducted on multilevel models in general consistently indicate that compared to continuous out-

comes, models with non-continuous outcomes require greater sample sizes to accurately estimate 

model parameters, especially for fixed effects at level-2 and variance components at level-1 and 

level-2 (McNeish & Harring, 2017; Moineddin et al., 2007; Schoeneberger, 2016). While many 

of the studies using the HAPC-CCREM in the applied literature to date have used continuous 

outcomes, a growing number of studies have examined binary outcomes (for example, see Attell, 

2020 and Keyes et al., 2011) and ordered-categorical outcomes (for example, see Yang, 2008 

and Zhang, 2017). It would therefore be worthy of investigation to examine the ability of the 

HAPC-CCREM to accurately estimate parameters with non-continuous dependent variables and 
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if model fit indices for these types of outcomes perform as well as they did in the current study in 

detecting the cohort selection mechanism underlying the data. 

Future research on the performance of the HAPC-CCREM could also investigate cover-

age rates of the 95% confidence intervals for the fixed effects using different methods to calcu-

late the confidence intervals. In this study, confidence intervals were calculated using the Wald 

method, as discussed in Chapter 3. The Wald method is commonly utilized to calculate confi-

dence intervals given its computational efficiency. However, it relies on the asymptotic normal-

ity properties of the maximum likelihood estimate of the coefficient and its standard error, mean-

ing that in small sample sizes the Wald method may produce overly narrow confidence intervals 

(Royston, 2007). Therefore, some studies have proposed other methods to calculate confidence 

intervals that are robust to this issue, such as profile likelihood estimation and bootstrapping, that 

would result in wider confidence intervals (Carpenter & Bithell, 2000; Longford, 2000; Venzon 

& Moolgavkar, 1988). It would therefore be worthy of future research to examine if the low cov-

erage rates found for some of the conditions in this study could be improved using a different 

calculation of the 95% confidence interval. 

One final area for future methodological work related to the HAPC-CCREM would be to 

establish a comprehensive framework for building and reporting the model. Such frameworks 

exist for more traditional two-level models (Bliese & Ployhart, 2002; Grilli & Rampichini, 2018; 

McCoach, 2019; McCoach & Kaniskan, 2010; Niehaus et al., 2014), but currently do not exist 

for the HAPC-CCREM. Findings from this dissertation related to the use of model fit indices to 

identify an ideal cohort selection mechanism could be combined with previously existing meth-

odological research related to centering variables in the model (Yang & Land, 2006) and exam-

ining the significance of the period and cohort effects (Frenk et al., 2013). A comprehensive 
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model building framework would consider how these model building choices should work to-

gether and in what steps they should be performed to aid applied researchers in carefully and 

thoughtfully executing their models. Such a framework would also have the potential to help 

peer reviewers of research studies employing the HAPC-CCREM evaluate if assumptions of the 

model had been met and if critical elements of the model were appropriately reported in manu-

scripts submitted to journals.   
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APPENDICES 

Appendix A. Compendium of Applied Studies using Hierarchical Age-Period-Cohort 
Analysis 
 

Author(s) Topic 

Year Range, # 
of Periods, 
and Data 
Source 

Cohort 
Size(s) 
Used 

Justification for Cohort 
Sizes 

An et al. 
(2021) 

Utilization of 
multiple modes of 
transportation 

2001 – 2017 
 
17 periods 
 
National 
Travel Survey 
in England 

5-year None 

Anderson et 
al. (2017) 

Attitudes toward 
death penalty 

1974 – 2014 
 
27 periods  
 
General Social 
Survey 

3-year, 
5-year, 
7-year 

“We also examined 
models with dummy 
variables for 3-year and 
5-year age groups with 
each combination of 3-,5-
, and 7-year cohorts and 
1-2-, and 3-year 
periods… We conclude 
from these models that 
our findings are not 
sensitive to our choice of 
coding for age, period, 
and cohort” (p. 847). 

Attell (2020) Euthanasia and 
suicide for 
terminally ill 
persons   

1977 – 2016  
 
23 periods 
 
General Social 
Survey 

5-year  None 

Bardo (2017) Happiness 1973 – 1994  
 
19 periods 
 
General Social 
Survey 

Not 
specified 

None 

Bardo et al. 
(2017) 

Happiness 
(replication of a 
different APC 
study) 

1972 – 2014  
 
Number of 
periods not 
reported 

5-year “The Baby Boomer 
cohort is generally 
defined by demographers 
to include all persons 
born between 1946 and 
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General Social 
Survey 

1964, but the 5-year birth 
cohorts that TSL 
constructed include an 
additional birth year (i.e, 
1945). To make their and 
out studies comparable, 
we construct birth cohorts 
in the same fashion as 
TSL.” (p. 6). 

Caren et al. 
(2011) 

Attendance at 
protests and 
signing of 
petitions among 
Americans 

1973 – 2008  
 
8 periodsa 

 
21 various data 
sources 

4-year “We group birth cohort 
into four-year categories. 
While our groups could 
have been theoretically 
driven…no consensus 
exists on which dates 
differentiate these 
groupings…Results from 
other period and cohort 
binning strategies provide 
similar results and are 
available from the 
authors” (p, 135). 

Carlisle and 
Clark (2018) 

Religion and 
Environmentalism 

1973 – 2014  
 
29 periods 
 
General Social 
Survey 

5-year “the definition of the 
width of the time intervals 
is somewhat arbitrary, but 
the use of 5-year birth 
cohorts is the norm in 
age-period-cohort 
analyses” (p. 236). 

Clark (2017) Gender 
differences in 
attitudes toward 
various social 
issues 

1972 – 2012  
 
Periods: 12, 
18, 19, 20, 24, 
28b 

 
General Social 
Survey 

5-year “the definition of the 
width of the time intervals 
is somewhat arbitrary, but 
the use of five-year birth 
cohorts is the norm in 
age-period-cohort 
analyses” (p. 34). 

Clark et al. 
(2019) 

Environmental 
attitudes 

1973 – 2014  
 
28 periods 
 
General Social 
Survey 

5-year “the definition of the 
width of the time intervals 
is somewhat arbitrary, but 
the use of five-year birth 
cohorts is the norm in 
age-period-cohort 
analyses” (p. 22). 

Delaruelle et 
al. (2015) 

Self-rated health 2002 – 2012  
 

3-year None 
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8 periodsc 

 
European 
Social Survey 

Donnelly et 
al. (2015) 

Attitudes towards 
women’s work 

1976 – 2013  
 
18 periods 
 
General Social 
Survey 

5-year “We believe that 
separating the data into 5-
year intervals provides 
the best compromise 
between specificity and 
breadth” (p. 45). 

Eisenstein et 
al. (2017) 

Political tolerance 
and religion 

1984 – 2014  
 
18 periods 
 
General Social 
Survey 

5-year None 

Elias et al. 
(2015) 

Attitudes toward 
premarital sex 

1975 – 2008  
 
20 periods 
 
General Social 
Survey 

5-year None 

Fullerton and 
Dixon 
(2010b) 

Attitudes toward 
governmental 
spending on 
education, health, 
and social 
security 

1984 – 2008  
 
17 periods 
 
General Social 
Survey 

5-year “Following demographic 
and other research (e.g., 
Yang 2008), we code 
cohorts into dummy 
variables based on five-
year intervals” (pp. 650-
651). 

Fullerton and 
Stern (2013) 

Gender 
differences in 
political 
participation 

1952 – 2004  
 
11 periods 
 
American 
National 
Election 
Studies 

10-year None 

Gauchat 
(2012) 

Public trust in 
science 

1974 – 2010  
 
26 periods 
 
General Social 
Survey 

Not 
specified 

None 

Gorodzeisky 
and 

Anti-immigrant 
attitudes 

2002 – 2014  
 
4 periodsd 

3-year, 
5-year 

“…we used the 
conventional practice of a 
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Semyonov 
(2018) 

 
European 
Social Survey 

5-year interval (Reither et 
al., 2015)” (p. 35). 
 
“In order to conduct a 
robustness test, we re-
estimated the analysis 
using a 3-year interval for 
cohorts” (p. 35). 

 Horowitz 
(2015) 

Civic 
participation 

1973 – 1994  
 
Number of 
periods not 
reported 
 
Roper Social 
and Political 
Trends Data 

5-year None 

Johnson 
(2021) 

Psychological 
distress and 
mental health 
treatment 

1997 – 2017 
 
21 periods 
 
National 
Health 
Interview 
Survey 

5-year None 

Johnson and 
Schwadel 
(2019) 

Attitudes toward 
environmental 
spending 

1973 – 2014  
 
29 periods 
 
General Social 
Survey 

5-year “Such coding, and 
consequently the number 
of level-2 units, comports 
with extant empirical age-
period-cohort research 
(e.g., Johnson and 
Schwadel forthcoming; 
Schwadel and Garneau 
2014; Yang 2008)” (p. 
922). 

Keyes et al. 
(2011) 

Adolescent 
marijuana use 

1976 – 2007  
 
32 periods 
 
Monitoring the 
Future 

Not 
specified 

None 

Keyes et al. 
(2012) 

Adolescent 
alcohol use 

1976 – 2007  
 
32 periods 
 

5-year None 
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Monitoring the 
Future 

Keyes et al. 
(2019) 

Depressive 
symptoms 

1991 – 2018  
 
28 periods 
 
Monitoring the 
Future 

1-year None 

Koeber and 
Oberwittler 
(2019) 

Fear of crime 
among older 
adults 

2002 – 2016  
 
8 periodse 
 
European 
Social Survey 

3-year “Cohorts are birth years 
grouped in three-year 
intervals starting in 1919 
based on group size 
considerations” (p. 215). 

Kowske et 
al. (2010)  

Work attitudes 1985 – 2009  
 
19 periods 
 
Kenexa 
WorkTrends 

Unequal 
cohorts 
used based 
on 
generational 
theory 

“However, the issue then 
becomes how to group 
individuals into 
generations; when should 
a generation begin and 
how long should a 
generation last? Luckily, 
many generational 
theorists have 
hypothesized generations 
longer than 1 year…” (p. 
269). 

Masters 
(2012) 

Race differences 
in mortality risk 

1986 – 2006  
 
19 periods 
 
National 
Health 
Interview 
Survey 

5-year “The data were collapsed 
into five-year age by five-
year period by five-year 
cohort cells for two 
primary reasons: (1) 
sparse mortality counts in 
the black mean’s and 
women’s individual-level 
samples preclude stable 
age-period-cohort 
modeling, and (2) the 
aggregated data structure 
breaks the linear 
dependency between age, 
period, and cohort (Glenn 
2005)” (p. 782). 

Masters et al. 
(2012) 

Educational 
differences in 
mortality risk 

1986 – 2004  
 
19 periods 
 

5-year None 
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National 
Health 
Interview 
Survey 

Meuleman 
(2019) 

Attitudes toward 
income 
redistribution 

1978 – 2014  
 
British Social 
Attitudes 
Survey (25 
periods) 
 
General Social 
Survey (22 
periods) 

5-year None 

Pampel 
(2011a) 

Gender 
egalitarianism 

1988 – 2002  
 
3 periods 
International 
Social Survey 
Program 

1-year with 
curvilinear 
cohort term 
specified 

“The use of cohort 
quadratic terms with five-
year age groups and the 
two or three survey years 
eliminates the 
dependency of cohort on 
age and period” (p. 676). 

Pampel 
(2016) 

Social distribution 
of tolerant sexual 
attitudes 

1973 – 2014 
 
Periods: 17, 
25f 
 
General Social 
Survey 

1-year with 
curvilinear 
cohort term 
specified 

None 

Pampel and 
Hunter 
(2012) 

Environmental 
spending 

1973 – 2008  
 
26 periods 
 
General Social 
Survey 

1-year with 
curvilinear 
cohort term 
specified 

“Based on Bayesian 
Information Criterion 
statistics, two quadratic 
cohort terms perform 
better than a set of nine 
dummy variables for 10-
year cohorts, and a set of 
16 dummy variables for 
five-year cohorts” (p. 
431). 

Reither et al. 
(2009) 

Obesity 1976 – 2002  
 
27 periods 
 
National 
Health 
Interview 
Survey 

5-year “In this investigation, we 
group birth cohorts into 5-
year intervals, which are 
conventional in 
demography (Yang, 
2008b)” (p. 1442). 
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Rosenberger 
and Steiner 
(2019) 

Attitudes toward 
unauthorized 
immigration 

1994 – 2010  
 
7 periods 
 
American 
Public Opinion 
and Foreign 
Policy Study 

5-year None 

Sanderson et 
al. (2021) 

Attitudes toward 
immigration 

1996 – 2018  
 
General Social 
Survey (9 
periods) 
 
American 
National 
Election 
Survey (7 
periods) 

3-year None 

Schwadel 
(2010a) 

Religious 
nonaffiliation 

1973 – 2016  
 
25 periods 
 
General Social 
Survey 

5-year “As Yang et al. (2008), 
while the choice of 
intervals is somewhat 
arbitrary, five-year birth 
cohorts are the norm in 
age-period-cohort 
analyses” (p. 313). 

Schwadel 
(2010b) 

Religious service 
attendance 

1972 – 2006  
 
26 periods 
 
General Social 
Survey 

10-year None 

Schwadel 
(2013a) 

Attitudes toward 
prayer and 
reading the bible 
in public schools 

1974 – 2010  
 
11 periodsg 
 
General Social 
Survey 

5-year “Following the norm in 
age-period-cohort 
analyses, birth cohorts are 
coded in 5-year intervals 
(Yang et al. 2008)” (p. 
267). 

Schwadel 
(2013b) 

Changing strength 
of religious 
affiliation 

1974 – 2010  
 
Number of 
periods not 
reported 
 
General Social 
Survey 

5-year “Birth cohorts are coded 
into five-year intervals, as 
is the norm in age-period-
cohort analyses (Yang et 
al. 2008)” (p. 112). 
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Schwadel 
and Garneau 
(2014) 

Changing 
political tolerance 

1974 – 2010 
 
22 periods 
 
General Social 
Survey 

5-year None 

Schwadel 
and Ellison 
(2017) 

Support for 
legalization of 
marijuana  

1973 – 2014 
 
25 periods 
 
General Social 
Survey 

5-year None 

Shi et al. 
(2020) 

Perception of 
crime as country’s 
most important 
problem 

1960 – 2014  
 
55 periods 
 
Most 
Important 
Problem 
Dataset 

5-year None 

Shu and 
Meagher 
(2018) 

Gender attitudes 1977 – 2016  
 
20 periods 
 
General Social 
Survey 

Roughly 5-
year 
generational 
cohorts 

“We divide the sample 
into five generations 
according to prior 
research on the distinctive 
life experiences of age 
groups in the United 
States… Demographic 
research commonly 
creates cohorts by 
mechanically dividing 
samples into five-year 
intervals, which may 
separate people who share 
similar life experiences 
(Yang 2008). Instead, we 
divide the cohorts around 
historical events that 
likely created distinctive 
experiences during 
respondents’ formative 
years” (pp. 1249-1250). 

Smets and 
Neundorf 
(2014) 

Voter turnout 1972-2010 
 
28 periods 
 

16 electoral 
cohorts 
defined by 
years in 
which a 

“The grouping of cohorts 
is also of concern, as it 
determines the number of 
observations on the 
group-level. 
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General Social 
Survey 

respondent 
became 
eligible to 
vote 

Distinguishing only a few 
cohorts would not yield 
enough variation on the 
cohort-level, increasing 
the risk of conducting 
Type-II errors” (p. 44). 

Twenge et 
al. (2014) 

Confidence in 
various social 
institutions 

1972 – 2012 
 
20 periods 
 
General Social 
Survey 

Not 
specified 

None 

Twenge, 
Carter, and 
Campbell 
(2015) 

Attitudes toward 
controversial 
beliefs and 
lifestyles 

1972 – 2012 
 
25 periods 
General Social 
Survey 

5-year “Data collected over time 
can be analyzed in many 
ways, including grouping 
by 20-year generation 
blocks, by decades, or 
individual year. We felt 
that separating the data 
into five-year intervals 
provided the best 
compromise between 
specificity and breadth” 
(p. 385.) 

Twenge, 
Sherman, 
and Wells 
(2015) 

Sexual behaviors 
and attitudes 
toward sexuality 

1972 – 2012 
 
Periods: 14, 19 
 
General Social 
Survey 

10-year “To focus on the general 
trends, we grouped birth 
cohorts by decade with 
the exception of the first 
cohort (1883-1889) and 
the last cohort (1990-
1994) as they did not 
make complete decades 
by themselves” (p. 2277). 

Twenge, 
Sherman, 
and 
Lyubomirsky 
(2016) 

Trends in 
happiness 

1972 – 2014 
 
Number of 
periods not 
reportedh 
 
Monitoring the 
Future and 
General Social 
Survey 

5-year “We felt that separating 
the data into 5-year 
intervals provided the 
best compromise between 
specificity and breadth” 
(p. 3). 

Twenge, 
Sherman, 

Same-sex sexual 
behaviors and 
attitudes 

1973 – 2014 
 
15 periods 

10-year “To focus on the general 
trends, we grouped birth 
cohorts by decade with 
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and Wells 
(2016) 

 
General Social 
Survey 

the exception of the first 
cohort (1883-1889) and 
the last cohort (1990-
1996) as they did not 
make complete decades 
by themselves” (p. 1717). 

Twenge, 
Sherman, 
Exline, and 
Grubbs 
(2016) 

Religious beliefs 
and participation 
in religion 

1972 – 2014 
 
Periods: 20, 
29, 30 
 
General Social 
Survey 

10-year None 

Twenge et 
al. (2017) 

Sexual inactivity 1972 – 2014 
 
15 periods 
General Social 
Survey 

10-year “We grouped people by 
birth decade as a 
compromise between 
breadth and depth. Using 
a larger span (for 
example, a 20-year 
generation) risks losing 
discriminatory power, and 
a smaller span (such a 5-
year groups) risks low 
sample size” (p.435). 

Twenge, 
Campbell, 
and Sherman 
(2019) 

Trends in verbal 
intelligence 

1974 – 2016  
 
22 periods 
 
General Social 
Survey 

1-year None 

Wilkes 
(2011) 

Race differences 
in trust 

1972 – 2008  
 
23 periods 
 
General Social 
Survey 

5-year  None 

Wilkes and 
Corrigall-
Brown 
(2011) 

Attitudes towards 
immigration and 
immigrants 

1987 – 2008 
 
14 periods 
 
Environics 
National 
Surveys 

5-year None 

Yang (2008) Inequalities in 
happiness 

1972 – 2004 
 
22 periods 

5-year “Specifically, we can use 
single years of age, time 
periods corresponding to 
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General Social 
Survey 

years in which the 
surveys are conducted, 
and birth cohorts defined 
by five-year intervals, 
which are conventional in 
demography” (p. 210). 

Zhang 
(2017) 

Religious 
involvement and 
self-rated health 

1972 – 2008 
 
24 periods 
 
General Social 
Survey 

5-year None 

Zheng 
(2015) 

Confidence in 
institution of 
medicine 

1973 – 2008 
 
27 periods 
General Social 
Survey 

5-year None 

Zheng et al. 
(2011) 

Self-rated health 1984 – 2007 
 
24 periods 
 
National 
Health 
Interview 
Survey 

5-year None 

 
Notes: 

a. Caren et al. (2011) pooled items from a variety of datasets and created unequally spaced period groupings. 
This approach is not conventional. Most researchers use repeated cross-sections from one dataset and use 
single-year periods. 

b. Clark (2017) analyzed seven different outcomes of the GSS data using separate HAPC models. The out-
comes were not all asked in the same set of years, therefore some of the models have differing amounts of 
periods in the analysis. 

c. Given the very small number of periods in the data (8), Delaruelle et al. (2015) nest periods into countries, 
and create an age by period by country clustering and use MCMC estimation procedures to estimate the 
APC effects. This type of approach is an extension of that proposed by Yang and Land (2006) and is dis-
cussed in Bell and Jones (2014a) and Fairbrother (2014). 

d. Similar to Delaruelle et al. (2015), Gorodzeisky and Semyonov (2018) nest periods into countries in the 
cross-classified data structure. 

e. Unlike Delaruelle et al. (2015) and Gorodzeisky and Semyonov (2018) do not extend the cross-classifica-
tion data structure proposed by Yang and Land (2006) and only use eight periods (i.e., they do not nest pe-
riods into countries). 

f. Pampel (2016) analyzed four different outcomes. Three of the outcomes had twenty-five periods of data 
available, while one had seventeen. 

g. Schwadel (2013a) takes an unusual approach and arbitrarily collapses survey years with adjacent survey 
years, resulting in a smaller number of periods compared to other studies using General Social Survey data. 

h. Twenge, Sherman, and Lyubormirksy (2016) utilize single-year periods in their HAPC analysis, but then 
examine trends by grouping the period residuals into five-year averages. This is an uncommon approach 
and it is unclear the exact number of periods utilized in the analysis. 
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Appendix B. R Program for Real Data Study and Monte Carlo Simulation 
 

#load necessary packages# 
library(foreign) 
library(dplyr) 
library(ggplot2) 
library(lme4) 
library(lmerTest) 
library(parallel) 
library(tidyr) 
library(openxlsx) 
library(cowplot) 
 
################################################################################ 
################################################################################ 
 
#step 1 - real data study# 
 
#set working directory# 
setwd("~/Dropbox/Dissertation/data/RDS Data_bothdivorce") 
 
#function to read data dictionary# 
read.dct <- function(dct, labels.included = "yes") { 
  temp <- readLines(dct) 
  temp <- temp[grepl("_column", temp)] 
  switch(labels.included, 
         yes = { 
           pattern <- "_column\\(([0-9]+)\\)\\s+([a-z0-9]+)\\s+(.*)\\s+%([0-9]+)[a-
z]\\s+(.*)" 
           classes <- c("numeric", "character", "character", "numeric", "charac-
ter") 
           N <- 5 
           NAMES <- c("StartPos", "Str", "ColName", "ColWidth", "ColLabel") 
         }, 
         no = { 
           pattern <- "_column\\(([0-9]+)\\)\\s+([a-z0-9]+)\\s+(.*)\\s+%([0-9]+).*" 
           classes <- c("numeric", "character", "character", "numeric") 
           N <- 4 
           NAMES <- c("StartPos", "Str", "ColName", "ColWidth") 
         }) 
  temp_metadata <- setNames(lapply(1:N, function(x) { 
    out <- gsub(pattern, paste("\\", x, sep = ""), temp) 
    out <- gsub("^\\s+|\\s+$", "", out) 
    out <- gsub('\"', "", out, fixed = TRUE) 
    class(out) <- classes[x] ; out }), NAMES) 
  temp_metadata[["ColName"]] <- make.names(gsub("\\s", "",  
                                                temp_metadata[["ColName"]])) 
  temp_metadata 
} 
 
#function to read data# 
read.dat <- function(dat, metadata_var, labels.included = "yes") { 
  read.fwf(dat, widths = metadata_var[["ColWidth"]],  
           col.names = metadata_var[["ColName"]]) 
} 
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#call data and apply formats# 
GSS_metadata <- read.dct("GSS.dct") 
GSS_ascii <- read.dat("GSS.dat", GSS_metadata) 
attr(GSS_ascii, "col.label") <- GSS_metadata[["ColLabel"]] 
gss <- GSS_ascii 
 
#make all variable names lowercase# 
colnames(gss) <- tolower(colnames(gss)) 
 
#limit dataset to years in which all abortion questions were asked# 
gss_sub <- gss %>% 
  filter(year %in% c(seq(1972,1978), 1980, 1982, 1983, 1984, 1985, 1987, 
                     1988, 1989, 1990, 1991, 1993, seq(1994,2016,2))) 
 
#remove observations whose birth cohorts were missing# 
gss_sub <- gss_sub %>% filter(cohort != 9999) 
 
#remove individuals who were DK or no answer or not applicable on divlaw# 
gss_sub <- gss_sub %>% filter(divlaw %in% c(1,2,3)) 
 
#remove individuals who were DK or no answer or not applicable on divorce# 
gss_sub <- gss_sub %>% filter(divorce %in% c(1,2)) 
 
 
#ensure there are no non-discrete missing data on sex variable# 
length(subset(is.na(gss_sub$sex), TRUE)) == nrow(gss_sub) 
 
#limit dataset to only valid abortion responses# 
gss_sub <- gss_sub %>% 
  filter(abdefect %in% c(1,2) & 
           abhlth %in% c(1,2) & 
           abnomore %in% c(1,2) & 
           abpoor %in% c(1,2) & 
           abrape %in% c(1,2) & 
           absingle %in% c(1,2)) 
 
#recode each item# 
gss_sub$abdefect <- ifelse(gss_sub$abdefect == 2, 0, gss_sub$abdefect) 
gss_sub$abhlth <- ifelse(gss_sub$abhlth == 2, 0, gss_sub$abhlth) 
gss_sub$abnomore <- ifelse(gss_sub$abnomore == 2, 0, gss_sub$abnomore) 
gss_sub$abpoor <- ifelse(gss_sub$abpoor == 2, 0, gss_sub$abpoor) 
gss_sub$abrape <- ifelse(gss_sub$abrape == 2, 0, gss_sub$abrape) 
gss_sub$absingle <- ifelse(gss_sub$absingle == 2, 0, gss_sub$absingle) 
 
#create abortion index# 
gss_sub$abortion <- with(gss_sub, abdefect + abhlth + abnomore + abpoor +  
                           abrape + absingle) 
 
#scale the index# 
gss_sub$abscaled <- gss_sub$abortion*100 
 
#create necessary model variables# 
#indicator for female respondent, 1 = female, 0 = male# 
gss_sub <- gss_sub %>% 
  mutate(age = year - cohort, #age in years at time of interview# 
         age2 = age*age, #age squared term 
         female = ifelse(sex == 2, 1, 0), 
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         ndivlaw = ifelse(divlaw == 1, 1, 0), 
         ndivorce = ifelse(divorce == 1, 1, 0))  
 
#examine cohorts and years that exist in the data# 
cohorts <- gss_sub %>% group_by(cohort) %>% 
  summarise(freq = n()) 
 
years <- gss_sub %>% group_by(year) %>% 
  summarise(freq = n()) 
 
#calculate 5-year birth cohorts# 
gss_sub$cohort5 <- findInterval(gss_sub$cohort, vec = seq(min(gss_sub$cohort),  
                                                          max(gss_sub$cohort),  
                                                          by = 5)) 
 
#create standardized age terms# 
gss_sub$agez <- scale(gss_sub$age, center = TRUE, scale = TRUE) 
gss_sub$agez2 <- gss_sub$agez^2 
 
#examine age distribution# 
ggplot(data = gss_sub, aes(x = age)) + theme_bw() + 
  geom_histogram(binwidth = 0.5) + labs(x = "Age", y = "Frequency") 
 
gss_age <- gss_sub %>% group_by(age) %>% summarise(freq = n()) %>% 
  mutate(age_prop = freq / nrow(gss_sub)) 
 
#examine sex distribution# 
gss_sub %>% group_by(female) %>% summarise(prop = n()/nrow(gss_sub)) 
 
#create cohort level divorce variable# 
divorce_cohort5 <- gss_sub %>% 
  group_by(cohort5) %>% 
  summarise(mean_divorce = mean(ndivorce)*100) 
 
gss_sub <- gss_sub %>% 
  left_join(divorce_cohort5, by = "cohort5") 
 
#histogram at cohort level# 
hist(divorce_cohort5$mean_divorce) 
 
#histogram at person level# 
hist(gss_sub$ndivorce) 
gss_sub %>% group_by(ndivorce) %>% summarise(prop = n()/nrow(gss_sub)) 
 
#center the variable# 
gss_sub$divorce_cent <- gss_sub$mean_divorce -  
  mean(divorce_cohort5$mean_divorce) 
 
#create divlaw variable at period level# 
ndivlaw_year <- gss_sub %>% 
  group_by(year) %>% 
  summarise(ndivlaw_year = mean(ndivlaw)*100) 
 
gss_sub <- gss_sub %>% 
  left_join(ndivlaw_year, by = "year") 
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#histogram at period level# 
hist(ndivlaw_year$ndivlaw_year) 
 
#histogram at person level# 
hist(gss_sub$ndivlaw) 
 
#center the variable# 
gss_sub$ndivlaw_cent <- gss_sub$ndivlaw_year - mean(ndivlaw_year$ndivlaw_year) 
 
 
#table 1 - descriptive statistics# 
rbind(gss_sub %>% 
        summarize(mean = mean(abscaled), sd = sd(abscaled), min = min(abscaled), 
                  max = max(abscaled)) %>% 
        mutate(par = "Abortion"), 
      gss_sub %>% 
        summarize(mean = mean(age), sd = sd(age), min = min(age), 
                  max = max(age)) %>% 
        mutate(par = "Age"), 
      gss_sub %>% 
        summarize(mean = mean(female), sd = sd(female), min = min(female), 
                  max = max(female)) %>% 
        mutate(par = "Female"), 
      ndivlaw_year %>% 
        summarize(mean = mean(ndivlaw_year), sd = sd(ndivlaw_year),  
                  min = min(ndivlaw_year), max = max(ndivlaw_year)) %>% 
        mutate(par = "Divorce Law"), 
      divorce_cohort5 %>% 
        summarize(mean = mean(mean_divorce), sd = sd(mean_divorce),  
                  min = min(mean_divorce), max = max(mean_divorce)) %>% 
        mutate(par = "Divorce")) 
 
#baseline and conditional models w/ outcome scaled and predictors centered# 
mod_5bsc <- lmer(abscaled ~ agez + agez2 + (1|cohort5) + (1|year), 
                 data = gss_sub, REML = TRUE) 
 
summary(mod_5bsc) 
 
  #variance components# 
  VarCorr(mod_5bsc) 
 
mod_5csc <- lmer(abscaled ~ agez + agez2 + female + divorce_cent +  
                   ndivlaw_cent + (1|cohort5) + (1|year),  
                 data = gss_sub, REML = TRUE) 
 
summary(mod_5csc) 
 
  #variance components# 
  VarCorr(mod_5csc) 
 
################################################################################ 
################################################################################ 
#step 2 – monte carlo simulation# 
 
#set replications for each study condition# 
reps <- 1000 
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#generate study conditions# 
years <- c("10", "20", "30") 
csm_dgm <- c("3-Year", "5-Year", "10-Year") 
per_var <- c("low", "high") 
coh_var <- c("low", "high") 
 
conditions <- expand.grid(years, csm_dgm, per_var, coh_var) %>% 
  select(years = Var1, csm_dgm = Var2, per_var = Var3, coh_var = Var4) %>% 
  #set proportion of variability for periods and cohorts# 
  mutate(per_varn = ifelse(per_var == "low", 0.02, 0.10), 
         coh_varn = ifelse(coh_var == "low", 0.02, 0.10), 
         #set total variability for baseline and conditional models# 
         total_b = 40745.70, 
         total_c = 40474.60) 
 
#use variance components to reallocate variability across conditions# 
conditions <- conditions %>% 
  mutate(u0j_b = coh_varn * total_b, 
         v0k_b = per_varn * total_b, 
         eijk_b = total_b - u0j_b - v0k_b, 
         u0j_c = coh_varn * total_c, 
         v0k_c = per_varn * total_c, 
         eijk_c = total_c - u0j_c - v0k_c, 
         condition = seq(1, 36, 1)) %>% #set condition number# 
  select(condition, years, csm_dgm, per_var, coh_var, u0j_b, v0k_b, eijk_b,  
         u0j_c, v0k_c, eijk_c) 
 
#list of conditions for parallel processing# 
nrep <- rep((1:reps), each = nrow(conditions)) 
con_combined<- cbind(nrep, do.call(rbind, replicate(n = reps, conditions,  
                                                    simplify = FALSE))) 
con_combined <- con_combined[order(con_combined$condition),] 
con_combined$seed <- seq(1,nrow(con_combined),1) 
simparms <- split(con_combined, 1:nrow(con_combined)) 
remove(reps, nrep, con_combined, years, coh_var, csm_dgm, per_var) 
 
################################################################################ 
runCondition <- function(myParams){ 
  library(dplyr) 
  library(stringr) 
  library(feather) 
  library(purrr) 
  library(betafunctions) 
   
  #set seed - use padding for purposes of exporting datasets below# 
  n_seed <- str_pad(as.character(myParams$seed), 5, pad = "0") 
  set.seed(n_seed) 
   
  #set number of periods# 
  n_years <- myParams$years 
   
  #set cohort selection mechanism to use in data generating model# 
  csm_dgm <- myParams$csm_dgm 
   
  #set number of observations and survey years# 
  if(n_years == "10"){ 
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    n_obs <- 15000 
    years <- c(seq(1972,1978,1),1980,1982,1983) 
  } 
   
  if(n_years == "20"){ 
    n_obs <- 30000 
    years <- c(seq(1972,1978,1),1980,seq(1982,1985,1),seq(1987,1991,1), 
               1993,1994,1996) 
  } 
   
  if(n_years == "30"){ 
    n_obs <- 45000 
    years <- c(seq(1972,1978,1),1980,seq(1982,1985,1),seq(1987,1991,1),1993, 
               seq(1994,2016,2)) 
  } 
   
  #set age distribution# 
  age_dist <- data.frame(age = seq(18,89,1), 
                         freq = c(11,24,55,96,115,159,177,215,240,258,298,231, 
                                  296,274,316,280,294,266,274,269,282,277,250,  
                                  246,266,239,225,219,219,209,229,265,221,241, 
                                  225,246,201,207,228,218,243,201,222,223,210,  
                                  214,178,194,164,188,168,177,158,155,158,136, 
                                  133,110,141,121,94,82,81,83,65,49,43,48,37, 
                                  45,23,62)) %>% 
    mutate(age_prop = freq / sum(freq)) 
   
  #generate age variable# 
  age <- sample(age_dist$age, size = n_obs, replace = TRUE,  
                prob = age_dist$age_prop) 
   
  #standardize and square the term# 
  agez <- (age - mean(age)) / sd(age) 
  agez2 <- agez*agez 
   
  remove(age_dist) 
   
  #generate periods and cohorts# 
  year <- sample(years, size = n_obs, replace = TRUE) 
  cohort <- year - age 
   
  #generate cohort groupings for generating and estimating models# 
  cgroup3 <- findInterval(cohort, vec = seq(min(cohort), max(cohort), by = 3)) 
  cgroup5 <- findInterval(cohort, vec = seq(min(cohort), max(cohort), by = 5)) 
  cgroup10 <- findInterval(cohort, vec = seq(min(cohort), max(cohort), by = 10)) 
   
  #set cohort groupings to use in data generating models# 
  if(csm_dgm == "3-Year"){ 
    cgroup_dgm <- cgroup3 
  } 
   
  if(csm_dgm == "5-Year"){ 
    cgroup_dgm <- cgroup5 
  } 
   
  if(csm_dgm == "10-Year"){ 
    cgroup_dgm <- cgroup10 
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  } 
  #generate variability in cohorts# 
  c_varb <- data.frame(cgroup_dgm = unique(cgroup_dgm), 
                       c_varb = rnorm(n = length(unique(cgroup_dgm)), 
                                      mean = 0, sd = sqrt(myParams$u0j_b))) 
   
  c_varc <- data.frame(cgroup_dgm = unique(cgroup_dgm), 
                       c_varc = rnorm(n = length(unique(cgroup_dgm)), 
                                      mean = 0, sd = sqrt(myParams$u0j_c))) 
   
  #generate variability in periods# 
  y_varb <- data.frame(year = unique(year), 
                       y_varb = rnorm(n = length(unique(year)), 
                                      mean = 0, sd = sqrt(myParams$v0k_b))) 
   
  y_varc <- data.frame(year = unique(year), 
                       y_varc = rnorm(n = length(unique(year)), 
                                      mean = 0, sd = sqrt(myParams$v0k_c))) 
   
  #generate level-one variability# 
  ind_varb <- rnorm(n = n_obs, mean = 0, sd = sqrt(myParams$eijk_b)) 
   
  ind_varc <- rnorm(n = n_obs, mean = 0, sd = sqrt(myParams$eijk_c)) 
   
  #generate indicator for female# 
  female <- rbernoulli(n = n_obs, p = 0.559) 
   
  #create cohort-level ever divorced for data estimating models# 
  l1div <- rbernoulli(n = n_obs, p = 0.199) 
   
  div_c3 <- data.frame(cgroup3, l1div) %>% 
    group_by(cgroup3) %>% 
    summarise(div3 = mean(l1div)*100) 
   
  div_c3$div3_cent <- div_c3$div3 - mean(div_c3$div3) 
   
  div_c5 <- data.frame(cgroup5, l1div) %>% 
    group_by(cgroup5) %>% 
    summarise(div5 = mean(l1div)*100) 
   
  div_c5$div5_cent <- div_c5$div5 - mean(div_c5$div5) 
   
  div_c10 <- data.frame(cgroup10, l1div) %>% 
    group_by(cgroup10) %>% 
    summarise(div10 = mean(l1div)*100) 
   
  div_c10$div10_cent <- div_c10$div10 - mean(div_c10$div10) 
   
  #set cohort-level ever divorce for use in data generating models# 
  #note that this generates with the grand mean centered divorce variable# 
  if(csm_dgm == "3-Year"){ 
    div_coh <- div_c3 %>% 
      select(cgroup_dgm = cgroup3, divorce = div3_cent) 
  } 
   
  if(csm_dgm == "5-Year"){ 
    div_coh <- div_c5 %>% 
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      select(cgroup_dgm = cgroup5, divorce = div5_cent) 
  } 
   
  if(csm_dgm == "10-Year"){ 
    div_coh <- div_c10 %>% 
      select(cgroup_dgm = cgroup10, divorce = div10_cent) 
  } 
   
   
  #create grand mean centered period level divorce law attitude# 
  divlaw_per <- data.frame(year = years, 
                           divlaw_dist = rBeta.4P(n = length(years),  
                                                  l = 18, u = 30,  
                                                  alpha = 3, beta = 8)) 
   
  divlaw_per$divlaw <- with(divlaw_per, divlaw_dist - mean(divlaw_dist)) 
   
  #combine generated data into dataframe# 
  d <- data.frame(cbind(year, age, agez, agez2, cohort, cgroup3, cgroup5, 
                        cgroup10, cgroup_dgm, ind_varb, ind_varc, female)) %>% 
    #link cohort variability# 
    left_join(c_varb, by = "cgroup_dgm") %>% 
    left_join(c_varc, by = "cgroup_dgm") %>% 
    #link period variability# 
    left_join(y_varb, by = "year") %>% 
    left_join(y_varc, by = "year") %>% 
    #link level-two predictors# 
    left_join(div_coh, by = "cgroup_dgm") %>% 
    left_join(divlaw_per, by = "year") %>% 
    #link different cohort versions of divorce for estimating models# 
    left_join(div_c3, by = "cgroup3") %>% 
    left_join(div_c5, by = "cgroup5") %>% 
    left_join(div_c10, by = "cgroup10") 
   
  remove(year, age, agez, agez2, cohort, cgroup3, cgroup5, cgroup10, ind_varb,  
         ind_varc, c_varb, y_varb, c_varc, y_varc, female, div_coh, divlaw_per,  
         div_c3, div_c5, div_c10) 
   
  #generate outcome# 
  d$abortb <- 378.373 - 4.793*d$agez - 7.754*d$agez2 + d$c_varb + d$y_varb +  
    d$ind_varb 
   
  d$abortc <- 373.057 - 5.9251*d$agez - 5.737*d$agez2 - 11.0714*d$female +  
    3.6598*d$divorce + 3.3346*d$divlaw + d$c_varc + d$y_varc + d$ind_varc 
   
  d <- d %>% 
    select(year, age, agez, agez2, cohort, cgroup3, cgroup5, cgroup10, abortb, 
           abortc, cgroup_dgm, female, divlaw, div3_cent, div5_cent, div10_cent) 
   
  #save dataset# 
  setwd("~/Desktop/dgm_dat2") 
  write_feather(d, path = paste("dat_", n_seed,  
                                ".feather", sep = "")) 
  remove(d) 
   
} 
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################################################################################ 
#run data generating models# 
start_time <- Sys.time() 
cl <- makeCluster(mc <- getOption("cl.cores", as.numeric(detectCores()))) 
parLapply(cl, simparms, runCondition) 
stopCluster(cl) 
end_time <- Sys.time() 
time_taken <- end_time - start_time 
time_taken 
 
################################################################################ 
 
#function for estimating models# 
est_mods <- function(filename){ 
  library(lme4) 
  library(feather) 
  library(broom.mixed) 
  library(stringr) 
  library(dplyr) 
   
  #call data# 
  dat <- read_feather(filename) 
   
  #estimate baseline models# 
  mod3b <- lmer(abortb ~ agez + agez2 + (1|cgroup3) + (1|year),  
                data = dat, REML = TRUE) 
   
  mod5b <- lmer(abortb ~ agez + agez2 + (1|cgroup5) + (1|year),  
                data = dat, REML = TRUE) 
   
  mod10b <- lmer(abortb ~ agez + agez2 + (1|cgroup10) + (1|year),  
                 data = dat, REML = TRUE) 
   
  #function for corrected AIC# 
  aicc <- function(model, mod_name, n){ 
    aicc <- (((-2*logLik(model)) + (2*6*n)) / (n - 6 - 1))[1] 
    res <- data.frame(fit = aicc, model = mod_name, index = "AICC") 
    return(res) 
  } 
   
  aicc_fit <- rbind(aicc(model = mod3b, mod_name = "cohort3", n = nrow(dat)), 
                    aicc(model = mod5b, mod_name = "cohort5", n = nrow(dat)), 
                    aicc(model = mod10b, mod_name = "cohort10", n = nrow(dat))) 
   
  #function for corrected BIC# 
  bicc <- function(model, mod_name, cgroup){ 
    bicc <- ((-2*logLik(model)) +  
               (log((length(unique(dat$year)))*(length(unique(cgroup))))*6))[1] 
    res <- data.frame(fit = bicc, model = mod_name, index = "BICC") 
  } 
   
  bicc_fit <- rbind(bicc(model = mod3b, mod_name = "cohort3",  
                         cgroup = dat$cgroup3), 
                    bicc(model = mod5b, mod_name = "cohort5",  
                         cgroup = dat$cgroup5), 
                    bicc(model = mod10b, mod_name = "cohort10",  
                         cgroup = dat$cgroup10)) 
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  #save model fit indices for baseline models# 
  mfit <- rbind((AIC(mod3b, mod5b, mod10b) %>% 
                   mutate(model = c("cohort3","cohort5","cohort10"),  
                          index = "AIC") %>% 
                   select(fit = AIC, model, index)),  
                (BIC(mod3b, mod5b, mod10b) %>% 
                   mutate(model = c("cohort3","cohort5","cohort10"),  
                          index = "BIC") %>% 
                   select(fit = BIC, model, index)), 
                aicc_fit, 
                bicc_fit) 
   
  #function to flag models that failed to converge# 
  convergence <- function(mod){ 
    con <- ifelse("TRUE" %in%  
                    str_detect(mod@optinfo$conv$lme4$messages,  
                               "failed to converge"), 1, 0) 
    return(con) 
  } 
   
  #convergence status for baseline models# 
  convergeb <- data.frame(rbind(convergence(mod = mod3b), 
                                convergence(mod = mod5b), 
                                convergence(mod = mod10b))) 
  convergeb$em <- c("cgroup3", "cgroup5", "cgroup10") 
  colnames(convergeb) <- c("failed_to_converge", "em") 
   
  #estimate conditional models# 
  mod3c <- lmer(abortc ~ agez + agez2 + female + div3_cent + divlaw +  
                  (1|cgroup3) + (1|year), data = dat, REML = TRUE) 
   
  mod5c <- lmer(abortc ~ agez + agez2 + female + div5_cent + divlaw +  
                  (1|cgroup5) + (1|year), data = dat, REML = TRUE) 
   
  mod10c <- lmer(abortc ~ agez + agez2 + female + div10_cent + divlaw +  
                   (1|cgroup10) + (1|year), data = dat, REML = TRUE) 
   
  #convergence status for conditional models# 
  convergec <- data.frame(rbind(convergence(mod = mod3c), 
                                convergence(mod = mod5c), 
                                convergence(mod = mod10c))) 
  convergec$em <- c("cgroup3", "cgroup5", "cgroup10") 
  colnames(convergec) <- c("failed_to_converge", "em") 
   
  #save results# 
  res <- list(fix_eff3 = tidy(mod3c, conf.int = TRUE), 
              fix_eff5 = tidy(mod5c, conf.int = TRUE), 
              fix_eff10 = tidy(mod10c, conf.int = TRUE), 
              model_fit = mfit, 
              converge_statb = convergeb, 
              converge_statc = convergec) 
   
  return(res) 
  remove(res, mod3b, mod5b, mod10b, mod3c, mod5c, mod10c, convergeb, convergec,  
         aicc_fit,bicc_fit) 
} 
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#call generated datasets and separate into conditions# 
filenames <- list.files(path = "~/Desktop/dgm_dat2", full.names = TRUE) 
con1 <- filenames[1:1000] 
con2 <- filenames[1001:2000] 
con3 <- filenames[2001:3000] 
con4 <- filenames[3001:4000] 
con5 <- filenames[4001:5000] 
con6 <- filenames[5001:6000] 
con7 <- filenames[6001:7000] 
con8 <- filenames[7001:8000] 
con9 <- filenames[8001:9000] 
con10 <- filenames[9001:10000] 
con11 <- filenames[10001:11000] 
con12 <- filenames[11001:12000] 
con13 <- filenames[12001:13000] 
con14 <- filenames[13001:14000] 
con15 <- filenames[14001:15000] 
con16 <- filenames[15001:16000] 
con17 <- filenames[16001:17000] 
con18 <- filenames[17001:18000] 
con19 <- filenames[18001:19000] 
con20 <- filenames[19001:20000] 
con21 <- filenames[20001:21000] 
con22 <- filenames[21001:22000] 
con23 <- filenames[22001:23000] 
con24 <- filenames[23001:24000] 
con25 <- filenames[24001:25000] 
con26 <- filenames[25001:26000] 
con27 <- filenames[26001:27000] 
con28 <- filenames[27001:28000] 
con29 <- filenames[28001:29000] 
con30 <- filenames[29001:30000] 
con31 <- filenames[30001:31000] 
con32 <- filenames[31001:32000] 
con33 <- filenames[32001:33000] 
con34 <- filenames[33001:34000] 
con35 <- filenames[34001:35000] 
con36 <- filenames[35001:36000] 
 
#function to run estimating models# 
run_emods <- function(condition){ 
  start_time <- Sys.time() 
  cl <- makeCluster(mc <- getOption("cl.cores", as.numeric(detectCores()))) 
  simulationResults <- parLapply(cl, condition, est_mods) 
  stopCluster(cl) 
  end_time <- Sys.time() 
  time_taken <- end_time - start_time 
  print(time_taken) 
   
  return(simulationResults) 
} 
 
#run estimating models by condition# 
res_con1 <- run_emods(condition = con1) 
res_con2 <- run_emods(condition = con2) 
res_con3 <- run_emods(condition = con3) 
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res_con4 <- run_emods(condition = con4) 
res_con5 <- run_emods(condition = con5) 
res_con6 <- run_emods(condition = con6) 
res_con7 <- run_emods(condition = con7) 
res_con8 <- run_emods(condition = con8) 
res_con9 <- run_emods(condition = con9) 
res_con10 <- run_emods(condition = con10) 
res_con11 <- run_emods(condition = con11) 
res_con12 <- run_emods(condition = con12) 
res_con13 <- run_emods(condition = con13) 
res_con14 <- run_emods(condition = con14) 
res_con15 <- run_emods(condition = con15) 
res_con16 <- run_emods(condition = con16) 
res_con17 <- run_emods(condition = con17) 
res_con18 <- run_emods(condition = con18) 
res_con19 <- run_emods(condition = con19) 
res_con20 <- run_emods(condition = con20) 
res_con21 <- run_emods(condition = con21) 
res_con22 <- run_emods(condition = con22) 
res_con23 <- run_emods(condition = con23) 
res_con24 <- run_emods(condition = con24) 
res_con25 <- run_emods(condition = con25) 
res_con26 <- run_emods(condition = con26) 
res_con27 <- run_emods(condition = con27) 
res_con28 <- run_emods(condition = con28) 
res_con29 <- run_emods(condition = con29) 
res_con30 <- run_emods(condition = con30) 
res_con31 <- run_emods(condition = con31) 
res_con32 <- run_emods(condition = con32) 
res_con33 <- run_emods(condition = con33) 
res_con34 <- run_emods(condition = con34) 
res_con35 <- run_emods(condition = con35) 
res_con36 <- run_emods(condition = con36) 
 
simulationResults <- c(res_con1, res_con2, res_con3, res_con4, res_con5,  
                       res_con6, res_con7, res_con8, res_con9, res_con10,  
                       res_con11, res_con12, res_con13, res_con14, res_con15, 
                       res_con16, res_con17, res_con18, res_con19, res_con20, 
                       res_con21, res_con22, res_con23, res_con24, res_con25, 
                       res_con26, res_con27, res_con28, res_con29, res_con30, 
                       res_con31, res_con32, res_con33, res_con34, res_con35, 
                       res_con36) 
 
rm(list = ls(pattern = "^res_con")) 
rm(list = ls(pattern = "^con")) 
 
 
################################################################################ 
 
#outcome 1 - model convergence# 
converge <- do.call(rbind, 
                    do.call(rbind, 
                            lapply(simulationResults, '[', "converge_statb"))) 
 
converge$condition <- rep(paste("Condition", seq(1,36)), each = 3000) 
converge$model <- rep(seq(1,1000), each = 3, times = 36) 
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converge_by_condition <- converge %>% 
  group_by(condition, em) %>% 
  summarise(failed = sum(failed_to_converge), 
            failed_percent = (sum(failed_to_converge)/1000 * 100)) 
 
converge_wide <- converge_by_condition %>%  
  select(-failed) %>% 
  spread(em, failed_percent) %>% 
  mutate(con = as.numeric(substr(condition, 11,12))) %>% 
  arrange(con) %>% 
  select(-con) 
 
conditions$condition <- paste("Condition", conditions$condition) 
 
converge_wide <- converge_wide %>% 
  left_join(conditions %>% select(condition, years, csm_dgm, per_var, coh_var),  
            by = "condition") 
 
 
converge_wide <- converge_wide %>% 
  select(condition, years, csm_dgm, per_var, coh_var, cgroup3, cgroup5, 
         cgroup10) 
 
################################################################################ 
 
#outcome 2 - relative absolute bias# 
 
#get model convergence for conditional models# 
converge_c <- do.call(rbind, 
                      do.call(rbind, 
                              lapply(simulationResults, '[', "converge_statc"))) 
 
converge_c$condition <- rep(paste("Condition", seq(1,36)), each = 3000) 
converge_c$model <- rep(seq(1,1000), each = 3) 
 
#extract fixed effects and variance components# 
fix_rpb <- function(result){ 
  res <- do.call(rbind,  
                 do.call(rbind,  
                         lapply(simulationResults, `[`, result))) 
   
  res$condition <- rep(paste("Condition", seq(1,36)), each = 9000) 
   
  res$result <- ifelse(res$effect == "ran_pars",  
                       res$estimate^2, res$estimate) 
   
  res$par <- ifelse(res$effect == "ran_pars", res$group,  
                    res$term) 
   
  res$model <- rep(seq(1,1000), each = 9, times = 36) 
   
  return(res) 
} 
 
fix_eff3 <- fix_rpb(result = "fix_eff3") 
fix_eff5 <- fix_rpb(result = "fix_eff5") 
fix_eff10 <- fix_rpb(result = "fix_eff10") 
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#add indicator for estimating model# 
fix_eff3$em <- "cgroup3" 
fix_eff5$em <- "cgroup5" 
fix_eff10$em <- "cgroup10" 
 
#combine fixed effects results# 
fix_eff <- rbind(fix_eff3, fix_eff5, fix_eff10) 
 
#remove models that did not converge# 
fix_eff <- fix_eff %>% 
  left_join(converge_c, by = c("condition", "model", "em")) %>% 
  filter(failed_to_converge == 0) 
 
#set divorce variable name to be consistent across estimating models# 
fix_eff$par <- ifelse(fix_eff$par %in% c("div3_cent", "div5_cent",  
                                         "div10_cent"), "divorce", fix_eff$par) 
 
#set true parameter values# 
truth <- conditions %>% 
  select(condition, csm_dgm, Residual = eijk_c, year = v0k_c,  
         cgroup = u0j_c) %>% 
  mutate('(Intercept)' = 373.057, 
         agez = -5.9251, 
         agez2 = -5.737, 
         female = -11.0714, 
         divorce = 3.6598, 
         divlaw = 3.3346) %>% 
  gather(par, truth, Residual:divlaw) 
 
#update parameter names of cohorts to match returned objects from EMs# 
truth$par <- ifelse(truth$par == "cgroup",  
                    paste("cgroup", substr(truth$csm_dgm,1,1), sep = ""),  
                    truth$par) 
 
truth$par <- ifelse(truth$par == "cgroup1", "cgroup10", truth$par) 
 
 
#calculate relative absolute bias# 
rpb <- fix_eff %>% 
  group_by(condition, em, par) %>%  
  summarise(avg = mean(result)) %>% 
  left_join(truth, by = c("condition", "par")) 
 
rpb <- rpb %>% 
  left_join(conditions %>% select(condition, u0j_c), by = "condition") 
 
rpb$truth <- ifelse(is.na(rpb$truth), rpb$u0j_c, rpb$truth) 
 
rpb <- rpb %>% 
  mutate(rpb = ((avg - truth)/abs(truth))*100) %>% 
  select(condition, em, par, avg, truth, rpb) 
 
#round off results for table# 
rpb$rpb_round <- round(rpb$rpb, 3) 
 
#rename cohort variance components to all be the same for function below# 
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rpb$par <- ifelse(substr(rpb$par,1,6) == "cgroup", "cgroup", rpb$par) 
 
#for each parameter, gather results in wide format by condition# 
rpb_gather <- function(parameter){ 
  res <- rpb %>%  
    filter(par == parameter) %>%  
    select(condition, em, rpb_round) %>% 
    spread(em, rpb_round) %>% 
    mutate(connum = as.numeric(substr(condition, 11,13))) %>% 
    left_join(conditions %>% select(condition, years, csm_dgm, per_var, 
                                    coh_var), by = "condition") %>% 
    arrange(connum) %>% 
    select(condition, years, csm_dgm, per_var, coh_var, cgroup3, cgroup5,  
           cgroup10) 
   
  return(res) 
} 
 
rpb_int <- rpb_gather(parameter = "(Intercept)") 
rpb_age <- rpb_gather(parameter = "agez") 
rpb_age2 <- rpb_gather(parameter = "agez2") 
rpb_female <- rpb_gather(parameter = "female") 
rpb_divorce <- rpb_gather(parameter = "divorce") 
rpb_divlaw <- rpb_gather(parameter = "divlaw") 
rpb_l1res <- rpb_gather(parameter = "Residual") 
rpb_perres <- rpb_gather(parameter = "year") 
rpb_cohres <- rpb_gather(parameter = "cgroup") 
 
################################################################################ 
 
#outcome 3 - coverage rates# 
 
#extract confidence intervals for fixed effects# 
#this draws on the fixed effects estimates already obtained for outcome 2# 
#and already has models that failed to converge removed# 
 
#start by removing variance components from results# 
conf_fix <- fix_eff %>% 
  filter(is.na(std.error) == FALSE) 
 
#link true parameter values# 
conf_fix <- conf_fix %>% 
  left_join(truth, by = c("condition", "par")) 
 
#determine if confidence interval contains truth# 
conf_fix$int_con <- ifelse(conf_fix$conf.low <= conf_fix$truth & 
                             conf_fix$conf.high >= conf_fix$truth, 1, 0) 
 
#sum up by condition and estimating model# 
cov_rate <- conf_fix %>% 
  group_by(condition, par, em) %>% 
  summarise(tot_cov = sum(int_con)) 
 
#get denominator for number of models converged by condition and est. model# 
cov_denom <- converge_c %>% 
  group_by(condition, em) %>% 
  summarise(tot_failed = sum(failed_to_converge), 
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            tot_converge = 1000 - tot_failed) 
 
#link denominator to numerators for coverage rate# 
cov_rate <- cov_rate %>% 
  left_join(cov_denom %>% select(-tot_failed), by = c("condition", "em")) 
 
#calculate coverage rate# 
cov_rate$cov_rate <- (cov_rate$tot_cov / cov_rate$tot_converge)*100 
 
#for each parameter, gather results in wide format by condition# 
cov_gather <- function(parameter){ 
  res <- cov_rate %>%  
    ungroup() %>% 
    filter(par == parameter) %>%  
    select(condition, em, cov_rate) %>% 
    spread(em, cov_rate) %>% 
    mutate(connum = as.numeric(substr(condition, 11,13))) %>% 
    left_join(conditions %>% select(condition, years, csm_dgm, per_var, 
                                    coh_var), by = "condition") %>% 
    arrange(connum) %>% 
    select(condition, years, csm_dgm, per_var, coh_var, cgroup3, cgroup5,  
           cgroup10) 
   
  return(res) 
} 
 
cov_int <- cov_gather(parameter = "(Intercept)") 
cov_age <- cov_gather(parameter = "agez") 
cov_age2 <- cov_gather(parameter = "agez2") 
cov_female <- cov_gather(parameter = "female") 
cov_divorce <- cov_gather(parameter = "divorce") 
cov_divlaw <- cov_gather(parameter = "divlaw") 
 
 
################################################################################ 
 
#outcome 4 - model fit indices# 
 
#for each set of estimating models find those where all 3 converged# 
conv_agg <- converge %>% 
  group_by(condition, model) %>% 
  summarise(failed_converge = sum(failed_to_converge)) %>% 
  filter(failed_converge == 0) %>% 
  mutate(keep = 1) 
 
#get denominator to use in proportion of total executed models by condition# 
conv_denom <- conv_agg %>% 
  group_by(condition) %>% 
  summarise(denominator = sum(keep)) 
 
#extract model fit results from estimating models# 
mfit <- do.call(rbind,  
                do.call(rbind,  
                        lapply(simulationResults, `[`, "model_fit"))) %>% 
  mutate(model = rep(seq(1:1000), each = 12, times = 36), 
         em = rep(c("3-Year", "5-Year", "10-Year"), times = 144000)) 
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mfit$condition <- rep(paste("Condition", seq(1,36)), each = 12000) 
#remove replications where all 3 models did not converge# 
mfit <- mfit %>% 
  left_join(conv_agg %>% select(condition, model, keep),  
            by = c("condition", "model")) 
 
mfit <- subset(mfit, keep == 1) 
 
#link which cohort selection mechanism should have been identified# 
mfit <- mfit %>% 
  left_join(conditions %>% select(condition, csm_dgm), 
            by = c("condition")) 
 
mfit$csm_dgm <- as.character(mfit$csm_dgm) 
 
#function to calculate proportion of times the fit index identified the# 
#correct model# 
mfit_correct <- function(fit_index){ 
  result <- mfit %>% 
    filter(index == fit_index) %>% 
    arrange(condition, model, fit) %>% 
    group_by(condition, model) %>% 
    filter(row_number()==1) %>% 
    mutate(pass = ifelse(em == csm_dgm, 1, 0))  
   
  result_con <- result %>% 
    group_by(condition) %>% 
    summarise(numerator = sum(pass)) %>% 
    left_join(conv_denom, by = "condition") %>% 
    mutate(prop = (numerator/denominator)*100) %>% 
    select(condition, prop) 
   
  result_con$condition <- as.numeric(substr(result_con$condition, 11,12)) 
  result_con <- result_con %>% arrange(condition) 
} 
 
aic <- mfit_correct(fit_index = "AIC") 
bic <- mfit_correct(fit_index = "BIC") 
aicc <- mfit_correct(fit_index = "AICC") 
bicc <- mfit_correct(fit_index = "BICC") 
 
fit_combined <- aic %>%  
  select(condition, aic = prop) %>% 
  left_join(bic %>% select(condition, bic = prop), by = "condition") %>% 
  left_join(aicc %>% select(condition, aicc = prop), by = "condition") %>% 
  left_join(bicc %>% select(condition, bicc = prop), by = "condition") 
 
#update table to have condition characteristics# 
conditions$condition <- seq(1,36,1) 
 
fit_combined <- fit_combined %>% 
  left_join(conditions %>% select(condition, years, csm_dgm, per_var, coh_var),  
            by = "condition") %>% 
  select(condition, years, csm_dgm, per_var, coh_var, aic, bic, aicc, bicc) 
 
 
################################################################################ 
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#combine all results into one workbook and export# 
 
setwd("~/Desktop") 
 
pages <- list("convergence" = converge_wide, 
              "rpb_int" = rpb_int, 
              "rpb_age" = rpb_age, 
              "rpb_age2" = rpb_age2, 
              "rpb_female" = rpb_female, 
              "rpb_divorce" = rpb_divorce, 
              "rpb_divlaw" = rpb_divlaw, 
              "rpb_l1res" = rpb_l1res, 
              "rpb_perres" = rpb_perres, 
              "rpb_cohres" = rpb_cohres, 
              "cov_int" = cov_int, 
              "cov_age" = cov_age, 
              "cov_age2" = cov_age2, 
              "cov_female" = cov_female, 
              "cov_divorce" = cov_divorce, 
              "cov_divlaw" = cov_divlaw, 
              "model_fit" = fit_combined) 
 
write.xlsx(pages, file = "Compiled Simulation Results.xlsx", 
           numFmt = "0.000") 
 
################################################################################ 
#visualizations# 
 
#function for dispersion plot# 
disp_plot <- function(con, item, labtitle, labs, subtext){ 
  dat <- fix_eff %>% filter(condition == con & par == item) 
   
  dat$em <- factor(dat$em, levels = paste("cgroup", c(3,5,10), sep = ""), 
                   labels = labs) 
   
  intercept <- dat %>% 
    group_by(em) %>% 
    summarise(intercept = mean(result)) 
   
  dat <- dat %>% 
    left_join(intercept, by = "em") 
   
  disp <- ggplot(data = dat, aes(x = result, y = model)) +  
    geom_point(color = "midnight blue", alpha = 0.5, size = 0.5) + 
    facet_wrap(~em, nrow = 3, strip.position = "left") + theme_light() +  
    theme(panel.grid.minor = element_blank(), 
          panel.grid.major.y = element_blank(), 
          axis.ticks.y = element_blank(), 
          axis.text.y = element_blank(), 
          axis.title.y = element_blank(), 
          axis.title.x = element_text(size = 9), 
          strip.background = element_rect(fill = "white"), 
          strip.text = element_text(color = "black", size = 9), 
          strip.text.y = element_text(angle = 180), 
          plot.title = element_text(hjust = 0.5, face = "bold", size = 11), 
          plot.subtitle = element_text(hjust = 0.5, size = 9)) + 
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    geom_vline(aes(xintercept = intercept), color = "red", size = 1) +  
    labs(x = labtitle, title = con, subtitle = subtext) 
   
  return(disp) 
} 
 
#figure 1# 
disp3 <- disp_plot(con = "Condition 3", item = "agez", 
         labtitle = expression("Point Estimate of \u03b2"[1]), 
         labs = c("3-Year EM\n-0.60", "5-Year EM\n-0.93", "10-Year EM\n-7.69"), 
         subtext = "30 Years; 3-Year CSM; Low Period Var.; Low Cohort Var.") 
 
disp21 <- disp_plot(con = "Condition 21", item = "agez", 
    labtitle = expression("Point Estimate of \u03b2"[1]), 
    labs = c("3-Year EM\n-1.48", "5-Year EM\n-12.44", "10-Year EM\n36.85"), 
    subtext = "30 Years; 3-Year CSM in DGM; Low Period Var.; High Cohort Var.") 
 
disp30 <- disp_plot(con = "Condition 30", item = "agez", 
    labtitle = expression("Point Estimate of \u03b2"[1]), 
    labs = c("3-Year EM\n-2.15", "5-Year EM\n26.55", "10-Year EM\n15.58"), 
    subtext = "30 Years; 3-Year CSM in DGM; High Period Var.; High Cohort Var.") 
 
#export plot# 
plot_grid(disp3, disp21, disp30, 
          nrow = 3, 
          align = "v") 
 
dev.new(width = 5, height = 7.5, unit="in", noRStudioGD = TRUE); 
last_plot()  
ggsave("~/Desktop/Fig1.png",width = dev.size()[1],height = dev.size()[2]); 
dev.off()  
 
 
#figure 3# 
disp14 <- disp_plot(con = "Condition 14", item = "divorce", 
    labtitle = expression("Point Estimate of \u03b3"[1]), 
    labs = c("3-Year EM\n-53.90", "5-Year EM\n2.86", "10-Year EM\n6.41"), 
    subtext = "20 Years; 5-Year CSM in DGM; High Period Var.; Low Cohort Var.") 
 
disp22 <- disp_plot(con = "Condition 22", item = "divorce", 
    labtitle = expression("Point Estimate of \u03b3"[1]), 
    labs = c("3-Year EM\n-59.42", "5-Year EM\n-4.07", "10-Year EM\n-13.15"), 
    subtext = "10 Years; 5-Year CSM in DGM; Low Period Var.; High Cohort Var.") 
 
disp33 <- disp_plot(con = "Condition 33", item = "divorce", 
    labtitle = expression("Point Estimate of \u03b3"[1]), 
    labs = c("3-Year EM\n-63.57", "5-Year EM\n-0.97", "10-Year EM\n-72.85"), 
    subtext = "30 Years; 5-Year CSM in DGM; High Period Var.; High Cohort Var.") 
 
#export plot# 
plot_grid(disp14, disp22, disp33, 
          nrow = 3, 
          align = "v") 
 
dev.new(width = 5, height = 7.5, unit="in", noRStudioGD = TRUE); 
last_plot()  
ggsave("~/Desktop/Fig3.png",width = dev.size()[1],height = dev.size()[2]); 
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dev.off()  
#figure 6# 
 
#backup original fixed effects results# 
fix_eff_backup <- fix_eff 
 
#for purposes of dispersion plot function, rename cohort variance components# 
fix_eff$par <- ifelse(fix_eff$par %in% c("cgroup3", "cgroup5", "cgroup10"),  
                      "coh_var", fix_eff$par) 
 
#divide variance component by 100,000 for plot scaling purpose# 
fix_eff$result <- ifelse(fix_eff$par == "coh_var", fix_eff$result / 100000, 
                         fix_eff$result) 
 
 
disp31 <- disp_plot(con = "Condition 31", item = "coh_var", 
  labtitle = expression("Variance Component Estimate, in 100k, of \u03c4"["u"]), 
  labs = c("3-Year EM\n-23.43", "5-Year EM\n-0.98", "10-Year EM\n347.99"), 
  subtext = "10 Years; 5-Year CSM in DGM; High Period Var.; High Cohort Var.") 
 
disp32 <- disp_plot(con = "Condition 32", item = "coh_var", 
  labtitle = expression("Variance Component Estimate, in 100k, of \u03c4"["u"]), 
  labs = c("3-Year EM\n-16.29", "5-Year EM\n3.07", "10-Year EM\n447.47"), 
  subtext = "20 Years; 5-Year CSM in DGM; High Period Var.; High Cohort Var.") 
 
disp33 <- disp_plot(con = "Condition 33", item = "coh_var", 
  labtitle = expression("Variance Component Estimate, in 100k, of \u03c4"["u"]), 
  labs = c("3-Year EM\n-19.67", "5-Year EM\n-0.76", "10-Year EM\n531.50"), 
  subtext = "30 Years; 5-Year CSM in DGM; High Period Var.; High Cohort Var.") 
 
#export plot# 
plot_grid(disp31, disp32, disp33, 
          nrow = 3, 
          align = "v") 
 
dev.new(width = 5, height = 7.75, unit="in", noRStudioGD = TRUE); 
last_plot()  
ggsave("~/Desktop/Fig6.png",width = dev.size()[1],height = dev.size()[2]); 
dev.off()  
 
 
#function for zipper plot# 
zip_plot <- function(con, item, cov3, cov5, cov10, labtitle, line, subtext){ 
  temp <- conf_fix %>%  
  filter(par == item & condition == con) %>% 
  mutate(above_below = ifelse(result <= truth, "below", "above"), 
 length = ifelse(above_below == "below" & int_con == 0, 
                 truth-conf.high, ifelse(above_below == "above" & int_con == 0, 
                                         conf.low - truth, conf.high-conf.low))) 
  temp <- temp %>% 
    group_by(em) %>% 
    arrange(desc(int_con), length) %>% 
    mutate(sort = row_number()) 
   
  temp$em <- factor(temp$em, levels = paste("cgroup", c(3,5,10), sep = ""), 
                    labels = paste(c(3,5,10), "-Year EM", sep = "")) 
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  lab_text <- data.frame(label = c(cov3, cov5, cov10), 
                         em = factor(c("cgroup3", "cgroup5", "cgroup10"), 
                               levels = paste("cgroup", c(3,5,10), sep = ""), 
                               labels = paste(c(3,5,10), "-Year EM", sep = "")), 
                         conf.low = 0, conf.high = 0, int_con = 2) 
   
  zipper <- ggplot(data = temp,aes(x = result, y = sort, xmin = conf.low,  
                                   xmax = conf.high, color = factor(int_con))) + 
    geom_errorbarh() + facet_wrap(~em) + theme_light() + 
    geom_vline(xintercept = line, size = 1.5, color = "grey") +  
    theme(panel.grid = element_blank(), legend.position = "none") + 
    scale_color_manual(values = c("firebrick", "midnightblue", "black")) + 
    theme(axis.text.y = element_blank(), axis.ticks.y = element_blank(), 
          strip.background = element_rect(fill = "white"), 
          strip.text = element_text(color = "black", size = 9), 
          plot.title = element_text(hjust = 0.5, face = "bold", size = 11), 
          plot.subtitle = element_text(hjust = 0.5, size = 9), 
          axis.title.x = element_text(size = 9), 
          panel.border = element_rect(color = "black")) + 
    labs(x = labtitle, y = "", title = con, subtitle = subtext) + 
    geom_label(data = lab_text,  
               mapping = aes(x = -Inf, y = -Inf, label = label), 
               hjust = -0.1, vjust = -0.3, size = 3) 
   
  return(zipper) 
} 
 
 
#figure 2# 
zip6 <- zip_plot("Condition 6", item = "agez", 
     cov3 = "85.15", cov5 = "95.16", cov10 = "40.11", 
     labtitle = expression("95% Confidence Interval of \u03b2"[1]), 
     line = -5.9251, 
     subtext = "30 Years; 5-Year CSM in DGM; Low Period Var.; Low Cohort Var.") 
 
zip24 <- zip_plot("Condition 24", item = "agez", 
    cov3 = "76.83", cov5 = "93.50", cov10 = "13.43", 
    labtitle = expression("95% Confidence Interval of \u03b2"[1]), 
    line = -5.9251, 
    subtext = "30 Years; 5-Year CSM in DGM; Low Period Var.; High Cohort Var.") 
 
zip33 <- zip_plot("Condition 33", item = "agez", 
    cov3 = "72.06", cov5 = "93.16", cov10 = "11.82", 
    labtitle = expression("95% Confidence Interval of \u03b2"[1]), 
    line = -5.9251, 
    subtext = "30 Years; 5-Year CSM in DGM; High Period Var.; High Cohort Var.") 
 
#export plot# 
plot_grid(zip6, zip24, zip33, nrow = 3, align = "v") 
 
dev.new(width = 6.4, height = 8, unit="in", noRStudioGD = T); 
last_plot()  
ggsave("~/Desktop/Fig2.png",width = dev.size()[1],height = dev.size()[2]); 
dev.off()  
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#figure 4# 
zip13 <- zip_plot("Condition 13", item = "divorce", 
    cov3 = "81.21", cov5 = "93.89", cov10 = "88.78", 
    labtitle = expression("95% Confidence Interval of \u03b3"[1]), 
    line = 3.6598, 
    subtext = "10 Years; 5-Year CSM in DGM; High Period Var.; Low Cohort Var.") 
 
zip22 <- zip_plot("Condition 22", item = "divorce", 
    cov3 = "89.01", cov5 = "93.87", cov10 = "83.37", 
    labtitle = expression("95% Confidence Interval of \u03b3"[1]), 
    line = 3.6598, 
    subtext = "10 Years; 5-Year CSM in DGM; Low Period Var.; High Cohort Var.") 
 
zip31 <- zip_plot("Condition 31", item = "divorce", 
    cov3 = "89.01", cov5 = "93.60", cov10 = "82.26", 
    labtitle = expression("95% Confidence Interval of \u03b3"[1]), 
    line = 3.6598, 
    subtext = "10 Years; 5-Year CSM in DGM; High Period Var.; High Cohort Var.") 
 
 
 
#export plot# 
plot_grid(zip13, zip22, zip31, nrow = 3, align = "v") 
 
dev.new(width = 6.4, height = 8, unit="in", noRStudioGD = T); 
last_plot()  
ggsave("~/Desktop/Fig4.png",width = dev.size()[1],height = dev.size()[2]); 
dev.off()  
 
 
#plot for relative bias of period-level predictor# 
per_rpb_plot <- rpb_divlaw %>% 
  ungroup() %>% 
  mutate(Condition = seq(1,36)) %>% 
  gather(EM, RPB, cgroup3:cgroup10) %>% 
  arrange(Condition) %>% 
  mutate(Group = rep(seq(1,12), each = 9)) 
 
per_rpb_plot$EM <- factor(per_rpb_plot$EM, levels = paste("cgroup", c(3,5,10),  
                                                          sep = ""), 
                          labels = paste(c(3,5,10), "-Year EM", sep = "")) 
 
 
 
per_rpb_plot <- per_rpb_plot %>% 
  mutate(group = ifelse(per_var == "low" & coh_var == "low",  
          "Low Period Variability \nLow Cohort Variability",  
          ifelse(per_var == "high" & coh_var == "low",  
                 "High Period Variability \nLow Cohort Variability", 
                 ifelse(per_var == "low" & coh_var == "high",  
                        "Low Period Variability \nHigh Cohort Variability",  
                        "High Period Variability \nHigh Cohort Variability"))), 
         csm_lab = paste(csm_dgm, "CSM in DGM", sep = " ")) 
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per_rpb_plot$csm_lab<- factor(per_rpb_plot$csm_lab,  
                        levels = c("3-Year CSM in DGM", 
                                   "5-Year CSM in DGM", 
                                   "10-Year CSM in DGM"), 
                        labels = paste(c(3,5,10), "-Year CSM in DGM", sep = "")) 
 
#figure 5# 
ggplot(data = per_rpb_plot, aes(x = years, y = RPB, group = EM, color = EM)) +  
  geom_hline(yintercept = c(-5,5), alpha = 0.8, linetype = "dashed",  
             color = "dark grey") + 
  geom_line() + geom_point() + 
  facet_grid(rows = vars(group), cols = vars(csm_lab)) + theme_bw() +  
  theme(panel.grid.minor = element_blank(), 
        panel.grid.major = element_blank(), 
        legend.position = "bottom", 
        legend.background = element_blank(), 
        legend.box.background = element_rect(color = "black"), 
        strip.text = element_text(size = 10)) + 
  labs(x = "Number of Survey Years",  
       y = expression("Relative Absolute Bias of \u03b3"[2]), 
       color = "Estimating Model") + 
  scale_color_manual(values = c("firebrick", "blue4", "darkgoldenrod1")) + 
  guides(color = guide_legend(title.position = "top", title.hjust = 0.5)) 
 
 
dev.new(width = 6.4, height = 8, unit="in", noRStudioGD = T); 
last_plot()  
ggsave("~/Desktop/Fig5.png",width = dev.size()[1],height = dev.size()[2]); 
dev.off()  
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