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ABSTRACT 

The examination of assessment items for potential bias is more important than ever. Items that 

function differently for examinees of equal ability from different groups are said to exhibit 

differential item functioning (DIF). Traditionally, DIF has been detected by comparing only two 

groups at a time. In racial/ethnic pairwise comparisons, White examinees were treated as the 

reference group and one minority group was treated as the focal group. This pairwise analysis 

was repeated for each minority group of interest. The practice of comparing minority examinees 

to White examinees must be troubled from a critical race theory perspective. To address the 

limitations of pairwise analyses, DIF methods that simultaneously analyze items for DIF based 

on multiple groups and/or multiple grouping factors have been developed. These methods 

include the generalized Mantel-Haenszel (GMH) statistic and multiple indicators, multiple 

causes (MIMIC) confirmatory factor analysis (CFA) models. Recently, a multiple-group non-

compensatory DIF (MG-NCDIF) index that uses a random sample of all examinees as a base 

reference group was developed. This study compared the performance of the MG-NCDIF index 

with the GMH and MIMIC DIF detection methods in simulated conditions that modeled both 

uniform and non-uniform DIF. Additionally, the GMH and MIMIC methods, which have 



 

 

historically used a traditional reference group, were modeled using a base group reference. 

Overall, the MG-NCDIF method exhibited lower power and higher Type I error rates than the 

MIMIC method. The MG-NCDIF method did outperform the GMH method when non-uniform 

DIF was simulated via the a parameter only; however, when the b parameter was manipulated (to 

model uniform DIF or non-uniform DIF in combination with manipulation of the a parameter), 

power was higher for the GMH index than the MG-NCDIF index. Across analyses, GMH 

exhibited lower Type I error rates than MG-NCDIF. All three methods exhibited higher power 

for the detection of uniform DIF and non-uniform DIF when both the a and b parameters were 

adjusted; power was lower for the detection of non-uniform DIF when the adjustment was made 

solely to the a parameter. A critical race theory framework guided this study. 

 

INDEX WORDS: Differential item functioning (DIF), Multiple-factor multiple-group non-

compensatory DIF, Differential functioning of items and tests (DFIT), Generalized Mantel-

Haenszel, Multiple-indicators multiple-causes (MIMIC), Critical race theory, QuantCrit 
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1  THE PROBLEM 

 

There is currently a “Big Data” movement (Gillborn, Warmington, & Demack, 2018), 

and assessment is a large part of this movement. Assessment data are used for school and teacher 

accountability, sometimes in the form of merit pay (Buddin, McCaffrey, Kirby, & Xia, 2007; 

Hassel & Hassel, 2007), as well as student promotion and retention (for example, Georgia 

Promotion, Placement, and Retention Law, O.C.G.A. §§ 20-2-282 through 20-2-285). The 

examination of test items for potential bias is, therefore, more important than ever. Items that 

function differently for examinees of equal ability from different groups are said to exhibit 

differential item functioning (DIF). Traditionally, DIF has been detected by comparing only two 

groups at a time (e.g., Black examinees and White examinees). For researchers and 

psychometricians, these pairwise comparisons are not ideal for analyzing characteristics of 

interest that include more than two subgroups (e.g., race/ethnicity, test administration location, 

native language, test administration language, socio-economic status, academic intervention 

method, and treatment condition). To address this limitation, DIF methods that simultaneously 

analyze items for DIF based on multiple groups and/or multiple grouping factors have been 

developed. These methods include the generalized Mantel-Haenszel (GMH) statistic (Somes, 

1986) and multiple indicators, multiple causes (MIMIC) confirmatory factor analysis (CFA) 

models (Jöreskog & Goldberger, 1975). 

DIF analysis is often used to ensure equitable assessment across racial/ethnic subgroups. 

Historically, in each pairwise comparison, White examinees were treated as the reference group 

and one minority group was treated as the focal group. This pairwise analysis was repeated for 

each minority group of interest. Although statisticians could justify the practice of treating White 

examinees as the reference because their subgroup sample size was largest – a critical property 
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from a mathematical perspective – this argument is quickly becoming invalid. Based on U.S. 

Census data, it has been predicted that the number of non-Hispanic White children will decrease 

significantly from 2014 to 2060, from 52% to 35.6%, and that non-Hispanic Whites will 

represent less than 50% of the U.S. population by the year 2044, making this a “Majority-

Minority” nation for the first time (Colby & Ortman, 2015). Furthermore, the practice of 

comparing minority examinees to White examinees must be troubled from a critical race theory 

perspective, from which the argument may be made that the use of White examinees as a 

reference group is reflective of and has contributed to a “Whiteness as the ideal to be reached” 

mentality. Critical race theorists further argue the inappropriateness of a catch-all minority focal 

group compared with a White reference group (Gillborn et al., 2018). Another dangerous 

practice would be the use of particular “model minority” groups as the reference (Gillborn, 2009; 

Gillborn et al., 2018; Teranishi, 2007). 

Recently, a multiple-group non-compensatory DIF (MG-NCDIF) index (Oshima, Wright, 

& White, 2015) and a multiple-factor multiple-group non-compensatory DIF (MFMG-NCDIF) 

index (Dell-Ross, Oshima, & Wright, 2017) that use a random sample of all examinees – a base 

group – as the reference were developed. However, the performance of these measures has yet to 

be compared with other multiple-group methods. This study was designed to compare the 

performance of the MG-NCDIF index with the GMH and MIMIC DIF detection methods in 

simulated conditions that model both uniform and non-uniform DIF. Additionally, the GMH and 

MIMIC methods, which have historically used a traditional reference group, were modeled using 

a base group reference. A critical race theory framework guided this study. 
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Purpose 

There were two primary purposes for this study. The first purpose of the study was to 

investigate the performance of the MG-NCDIF statistic compared with other existing methods 

that are capable of handling multiple-group analyses. Specifically, MG-NCDIF was compared 

with GMH and MIMIC indices. The two-group Mantel-Haenszel statistic (Mantel & Haenszel, 

1959) has enjoyed widespread popularity (Penfield, 2001); consequently, its multiple-group 

extension, GMH, is of great interest to researchers. MIMIC models were selected for inclusion 

because they permit the simultaneous analysis of multiple groups, as well as multiple grouping 

factors, making them comparable to the MG-NCDIF and MFMG-NCDIF indices. (An additional 

reason for their inclusion is that the GMH and MIMIC methods have ready-made, user-friendly 

software options that facilitate automated analyses for test developers and researchers.) The 

second purpose of the study was to investigate whether the performance of these indices varied 

by the type of DIF: uniform or non-uniform. 

Research Questions 

The current study was designed to answer the following questions. First, how does MG-

NCDIF perform compared to existing multiple-group DIF detection methods? Second, does the 

efficacy of the GMH and MIMIC indices vary when detecting various types of DIF (i.e., uniform 

or non-uniform)? 

Significance of the Study 

This study is significant for several reasons. First, although a simulation study was 

conducted to assess the performance of the MG-NCDIF index (Oshima et al., 2015), there has 

not yet been a simulation study to compare this index with existing methods of DIF detection. 

Second, most simulation studies that have examined the performance of the GMH and MIMIC 



 

 

 

4 

methods did so in the context of uniform DIF; there have been few simulation studies that 

examined the performance of these methods in the context of non-uniform DIF. Finally, by 

modeling the MG-NCDIF, GMH, and MIMIC indices using a base (i.e., composite or 

omnicultural) reference group, the findings of this study contributed to the existing literature 

base on the use of such a reference group in DIF detection. 
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2  REVIEW OF THE LITERATURE 

 

Differential Item Functioning 

In item response theory (IRT), the probability of an examinee correctly answering an 

assessment item i, denoted as ( )iP  , is given by the three-parameter logistic (3PL) function 

( )

( )

e
( ) (1 )

1 e

i i

i i

Da b

i i i Da b
P c c

−

−
 = + −

+
, 

where 
ia  represents the discrimination parameter for item i, 

ib  is the difficulty parameter for 

item i, 
ic  is the pseudo-guessing parameter for item i, θ represents examinee ability, and D is the 

scaling constant of 1.7. This function can be represented visually; Figure 1 shows this function 

for two groups of examinees. If there is a difference in probabilities when examinee ability, with 

respect to the latent trait being measured, is controlled for, then differential item functioning 

(DIF) is exhibited. There are two types of DIF: uniform and non-uniform. Uniform DIF, 

indicated by a difference in b parameters only, is the case of one group being consistently 

favored over the other group across the ability continuum. Uniform DIF is shown in Figure 1. As 

can be seen, with uniform DIF, the item characteristic curves (ICCs) for the two groups do not 

cross. With non-uniform DIF, on the other hand, one group is favored over the other in the first 

part of the ability continuum, but then this pattern reverses and the other group is favored in the 

second part of the ability continuum. In this case, the two ICCs cross, as shown in Figure 2. Non-

uniform DIF is the result of groups having either (a) differing a parameters or (b) differing a and 

b parameters. There are many methods of DIF detection, both within and outside of the IRT 

framework. For an overview of these methods, readers are referred to Clauser and Mazor (1998) 

and Magis, Béland, Tuerlinckx, and De Boeck (2010). Regardless of the DIF detection method 
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selected, DIF may be conceptualized as a performance discrepancy between groups when ability 

has been taken into account. 

To investigate items for DIF, a focal group is compared to a reference group. 

Historically, the reference group, arbitrarily selected by the researcher, has been the “majority” 

(i.e., the subgroup with the highest rate of participation), because parametric estimations, such as 

those conducted in IRT-based analyses, are more stable with larger sample sizes. In the case of 

racial/ethnic analyses, White examinees have typically been used as the reference. The focal 

group has traditionally been a select minority subgroup. Such “pairwise” comparisons have been 

the tradition for DIF detection (Fidalgo & Scalon, 2010; Magis et al., 2010); they have been the 

go-to for assessment companies for decades.  

With pairwise DIF detection, multiple analyses are conducted for a single item. For 

example, if the researcher is concerned that an item may exhibit DIF for Asian, Black, or 

Hispanic examinees, three separate tests are conducted: Asians compared to Whites, Blacks 

compared to Whites, and Hispanics compared to Whites. There are three main problems with 

such pairwise DIF analysis. First, the multiple pairwise tests require an adjustment of the alpha 

level to avoid inflated Type I error rates. Second, these pairwise comparisons have lower power 

for DIF detection than simultaneous multiple-group testing methods (Magis et al., 2010). Third, 

as discussed at more length later in this paper, the arbitrary selection of a reference group is 

problematic; changing demographics and new perspectives on the way quantitative research 

contributes to systematic and institutionalized racism call for alternative means of DIF detection. 
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Critical Race Theory 

QuantCrit. 

Aimed at exposing systematic, institutionalized racism and fostering social justice by 

contextualizing human experience and giving a voice to marginalized groups, critical race theory 

(CRT) has historically been the purview of qualitative research. More recently, quantitative 

researchers with an interest in social justice and critical race theorists with an interest in 

quantitative research have begun to break down the wall between CRT and statistics, looking to 

CRT as a guiding framework. This methodological crossover with its numerous distinctions has 

come to be known by various names, including Critical Race Transformative Convergent Mixed 

Methods (Garcia & Mayorga, 2018), Critical Race Quantitative Intersectionality (Covarrubias et 

al., 2018), CritQuant (Sullivan, Larke, & Webb-Hasan, 2010), and – to be used as a framework 

for this paper – QuantCrit (Gillborn et al., 2018). 

To explicate the ideals of QuantCrit, an understanding of the main principles of CRT is 

imperative. First and foremost, CRT scholars believe that “racism is prevalent in all aspects of 

society, with schools not being an exception” and that this “notion of the permanence of racism 

suggests that racist hierarchical structures govern all political, economic, and social domains” 

(DeCuir & Dixson, 2004, pp. 26 & 27, respectively). As Ladson-Billings and Tate (2006) 

explained, “when we speak of racism we refer to Wellman’s definition: ‘culturally sanctioned 

beliefs which, regardless of the intentions involved, defend the advantages Whites have because 

of the subordinated positions of racial minorities’” (pp. 18-19). Racism, as a pervasive force in 

our society, has permeated all our institutions, and “not merely in those spaces seen as racially 

defined spaces” (Ladson-Billings, 2004, p. 5). Thus, it influences education and the academy, 

teachers and researchers. It follows logically therefore that “critical race methodology in 
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education challenges White privilege, rejects notions of ‘neutral’ research or ‘objective’ 

researchers, and exposes deficit-informed research that silences or distorts epistemologies of 

people of color” (Solórzano & Yosso, 2009, p. 133). 

Consequently, critical race theorists call for research that is situated, both historically and 

contextually, and that recognizes the voices, perspectives, and experiential knowledge of 

marginalized and oppressed peoples (see, for example, Buras, 2014; Ladson-Billings, 2009; 

Morris, 2006). As Pérez Huber, Vélez, and Solórzano (2018) explained, “numbers can offer vital 

insights, highlight patterns, and convey particular analyses, but when they are decontextualized, 

ahistorical, and disconnected from the everyday lives of People of Color, they are hypothetical at 

best” (p. 212). Covarrubias et al. (2018) further pointed out the dangers of numbers in isolation: 

“Without sociohistorical contexts, these interpretations run the risk of perpetuating deficit 

ideologies about the causes that produce and reproduce these outcomes” (p. 253). This is 

especially true in the arena of educational research, where the “achievement gap” is a common 

element in the dominant discourse. Covarrubias et al. (2018) cautioned that “educational 

pipelines require critical pedagogies to situate and deconstruct static numbers if we are to capture 

the complexity of lived experiences and challenge stereotypes of a monolithic educational 

trajectory for entire Communities of Color.” (p. 253). Similarly, Buras (2014) argued that high-

quality research involves “race-conscious ethics and a long-term relationship with the 

community” and “cannot be done along well-established lines that call for aloofness, distance, 

objectivity, color-blindness, neutrality, and the ‘untainted’ judgments of the all-knowing 

researcher about, not with, the ‘objects’ of study” (p. 35). Stories – and counterstories – “add 

necessary contextual contours to the seeming ‘objectivity’ of positivist perspectives” (Ladson-

Billings, 2009, pp. 21-22). 
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Researchers studying race – whether qualitatively or quantitatively – would do well to 

adopt a CRT perspective. Race is a social construct, not an objective, scientific, biological 

characteristic as it is often treated (Ladson-Billings, 2009). Furthermore, researchers often 

neglect to recognize that “objective” quantitative research and statistical analyses are themselves 

as much a social construction as race (Gillborn, 2010). Quantitative research is perceived to be 

objective, neutral, and scientific even though it is a social construction, susceptible to the 

researcher’s biases and experiences (Gillborn, 2010). As Morris (2006) asserted, “the race, social 

class or political views of the researcher affect the research process, because researchers bring 

their own epistemological perspectives – ways of knowing – into the framing of researchable 

questions, data collection and analysis, and interpretations and conclusions” (p. 133). From a 

CRT perspective, there is no such entity as “objective research”; it reflects the subjectivities of 

the researcher. There is no point in the research process in which researchers’ biases and 

prejudices are isolated from the research itself; indeed, 

cultural influences have set up the assumptions about the mind, the body, and the 

universe with which we begin; pose the questions we ask; influence the facts we 

seek; determine the interpretation we give these facts; and direct our reaction to 

these interpretations and conclusions. (Gould, 1996, p. 55) 

Similarly, Crenshaw, Gotanda, Peller, and Thomas (1995) argued, “there is ‘no exit’ – no 

scholarly perch outside the social dynamics of racial power from which merely to 

observe and analyze. Scholarship – the formal production, identification, and 

organization of what will be called ‘knowledge’ – is inevitably political” (p. xiii). 

Gillborn at al. (2018) made a similar point. In discussing the public’s surprised response 

to the racially-biased results of a computer algorithm, they explained  
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we argue that, far from being surprised that quantitative calculations can 

reproduce human bias and racist stereotypes, such patterns are entirely predictable 

and should lead us to treat quantitative analyses with at least as much caution as 

when considering qualitative research and its findings . . . . Simply because the 

mechanics of an analysis are performed by a machine does not mean that any 

biases are automatically stripped from the calculations. On the contrary, not only 

can computer-generated quantitative analyses embody human biases, such as 

racism, they also represent the added danger that their assumed objectivity can 

give the biases enhanced respectability and persuasiveness. (p. 159) 

They rightly pointed out the weight that quantitative data carry in our society. Gould (1996) had 

already made the same argument, stating that a “reason for analyzing quantitative data arises 

from the special status that numbers enjoy. The mystique of science proclaims that numbers are 

the ultimate test of objectivity” (p. 58). This “special status” can be seen clearly in the “Big 

Data” movement: “Big Data has become big business . . . . where, most significantly, theories 

and human reasoning are rendered obsolete because the ‘numbers speak for themselves’” 

(Gillborn et al., 2018, pp. 165-167). Quantitative research has long enjoyed an elevated status 

above qualitative research and thus contributes to enduring systematic marginalization of people 

of color. Contrary to this position, CRT scholars have a “preference of the experiences of 

oppressed peoples (narrative) over the ‘objective’ opinions of whites” (Taylor, 2009, p. 4). 

Research must, therefore, be situated historically and contextually, giving voice to those who 

have heretofore been rendered mute. Unfortunately, this rarely occurs in quantitative research. 

Gillborn et al. (2018) defined QuantCrit not as a new theory, but as an extension of CRT; 

it is the practice of quantitative research from a CRT perspective. They outlined five guiding 
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principles “as a kind of toolkit that embodies the need to apply CRT understandings and insights 

whenever quantitative data is used in research and/or encountered in policy and practice” (p. 

169). Garcia, López, and Vélez (2018) summarized these five principles: 

(1) The centrality of racism as a complex and deeply rooted aspect of society that 

is not readily amenable to quantification; (2) The acknowledgement that numbers 

are not neutral and they should be interrogated for their role in promoting deficit 

analyses that serve white racial interests; (3) The reality that categories are neither 

‘natural’ nor given and so the units and forms of analysis must be critically 

evaluated; (4) The recognition that voice and insight are vital: data cannot ‘speak 

for itself’ and critical analyses should be informed by the experiential knowledge 

of marginalized groups; (5) The understanding that statistical analyses have no 

inherent value but they can play a role in struggles for social justice. (p. 151) 

QuantCrit scholars acknowledge the limitations of statistical analyses: “every attempt to 

‘measure’ the social in relation to ‘race’ can only offer a crude approximation that risks 

fundamentally misunderstanding and misrepresenting the true nature of the social dynamics that 

are at play” (Gillborn et al., 2018, p. 170). In “promoting deficit analyses that serve white racial 

interests,” quantitative analyses function as “racial projects.” Racial projects, according to Omi 

and Winant (1994) are “efforts to shape the ways in which human identities and social structures 

are racially signified, and the reciprocal ways that racial meaning becomes embedded in social 

structures” (p. 13).  

Although “statistics, studies, and formal databases, while important, do not, in the view 

of CRT scholarship, have the moral certitude, proficiency, and knowledge base adequate to name 

and resist oppression” (Taylor, 2009, p. 5), QuantCrit scholars such as Gillborn (2010) do not 
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advocate the abandonment of statistical analysis, but instead recommend “using the master’s 

tools” (p. 270). As Gillborn explained, “the fact that stats have such force in the public 

consciousness means that we have to be more imaginative – and critical – in how we use them to 

fight racism” (p. 271). As a social construct, statistical analysis is neither positive nor negative 

by definition; it is the implementation and use of such research that ultimately renders it as a 

positive or negative force in the push for racial/ethnic equity; “with appropriate safeguards and 

reflexivity quantitative material has the potential to contribute to a radical project for greater 

equity in education” (Gillborn et al., 2018, p. 160). Thus, a racial project may become a racial 

justice project. 

Positionality. 

Quantitative researchers have been criticized for their failure to acknowledge their own 

positionalities, opting instead to present “an ice-cold impartiality” with “dispassionate 

objectivity,” even though “impartiality (even if desirable) is unattainable by human beings with 

inevitable backgrounds, needs, beliefs and desires” (Gould, 1996, p. 36). Gould recognized the 

peril of believing oneself to be neutral “for then one stops being vigilant about personal 

preferences and their influences – and then one truly falls victim to the dictates of prejudice” (p. 

36). This is CRT at its core. Instead of representing an unattainable ideal as the definition of 

objectivity, Gould proposed that it be reimagined as “fair treatment of data, not absence of 

preference” (p. 36), explaining that “the best form of objectivity lies in explicitly identifying 

preferences so that their influence can be recognized and countermanded” (p. 37). 

For Taylor (2009), “positionality then becomes a perspective that must be disclosed; it 

identifies the frame of reference from which researchers, practitioners, and policy makers present 

their data, interpretations, and analysis” (p. 8). However, with the significance that has been 
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assigned to quantitative simulation studies, his statement should perhaps be modified to read 

“positionality . . . identifies the frame of reference from which researchers, practitioners, and 

policy makers present their analytical design, data, interpretations, and analysis.” Gould (1996) 

and Taylor (2009) are not alone in calling for self-reflexivity and disclosure on the part of the 

researcher; indeed, the inclusion of a positionality statement in empirical research is beginning to 

take hold with others (see, for example, Covarrubias et al., 2018; Garcia & Mayorga, 2018; 

López, Erwin, Binder, & Chavez, 2018). 

It is here that I would like to disclose my own positionality, although using the personal 

pronoun “I” is anathema to me as a quantitative researcher. Any scholar who has read 

quantitative research extensively is well aware that personal pronouns are eschewed; if one is 

desperate, one may refer to oneself as “one” or “the author” or a similar referent. In an effort to 

honor both the CRT and quantitative research traditions, I have decided to include a positionality 

statement. However, I beg the reader’s forgiveness when I revert to third-person language in 

subsequent sections as my training dictates. I shall rejoin you in this more personal manner in the 

Discussion chapter. 

My social location is a privileged one by any classification; I am a White, middle-class, 

middle-aged, abled, heterosexual woman who has enjoyed the benefits of being a natural-born 

citizen of the U.S. and a native English speaker, with the opportunity to pursue and earn 

advanced educational degrees. After 11 years as a teacher in the public-school system, I 

embarked on a new professional journey to earn a Ph.D. in research, measurement, and statistics. 

Specifically, my primary interest is the intersection of statistics and assessment, known as 

“measurement” or “psychometrics.” I have never viewed myself – nor do I now – as a social 

justice activist. I am simply looking to, as doctors say, “first, do no harm.” I do not want my 
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work to contribute to the marginalization or subordination of others; indeed, this is what 

motivates my interest in the identification of test item bias. 

It was my goal to abide by the tenets of CRT and QuantCrit in this study, insofar as I was 

able, given that simulation studies represent the most decontextualized form of quantitative 

research. From the CRT and QuantCrit perspectives, there is a need to trouble the perceived 

objectivity and truthfulness of data and statistics, and I wished to honor that goal. To my mind, 

the best way for me to achieve this goal in the current paper was to identify the subjective (i.e., 

arbitrary) decisions that I was required to make throughout this research, acknowledging that an 

entirely different set of results may have been reached if I were to have made different choices. 

Doing so, I believe, is a first step for quantitative researchers who are concerned with the 

potential (ab)uses to which their work might be put. After all, as Gillborn et al. (2018) cautioned,  

statistics are socially constructed in exactly the same way that interview data and 

survey returns are constructed i.e. through a design process that includes, for 

example, decisions about which issues should (and should not) be researched, 

what kinds of questions should be asked, how information is to be analyzed, and 

which findings should be shared publicly . . . . at every stage there is the 

possibility for decisions to be taken that obscure or misrepresent issues that could 

be vital to those concerned with social justice. (p. 163)  

DIF detection and the traditional White reference group. 

The inclusion of QuantCrit principles is a noble goal in its own right, regardless of the 

quantitative study at hand. Doing so seems even more imperative given the nature of the topic at 

hand: multiple-group DIF. One of the most significant uses of DIF analysis is to ensure 
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racial/ethnic fairness in large-scale assessment programs. As already discussed, White examinees 

have traditionally been used as the reference group in pairwise DIF comparisons. 

From a CRT perspective, there is certainly room to argue the treatment of White data in 

this way was reflective of and contributed to a “Whiteness as the ideal to be reached” mentality. 

Taylor (2009) summed it up succinctly: “White supremacy is the background against which 

other systems are defined” (p. 4). His statement could easily be modified to “White students’ 

academic performance is the background against which other students’ performance is defined.” 

This mentality played a role in school desegregation. Policymakers assumed that White 

students, teachers, and schools were more successful. Indeed, Morris (2006), in his interviews 

with Black educators involved in school desegregation in the mid-1990s, found a theme of “the 

stigmatizing of black teachers as incompetent and the subsequent stigmatizing of all-black 

schools as ‘inferior’ institutions” (p. 136). Thus, placing Black students in White schools was 

believed to be the “fix,” as Solórzano and Yosso (2009) explained: “The main solution for the 

socioacademic failure offered by cultural deficit majoritarian storytellers is cultural assimilation. 

Specifically, they argue that students of color should assimilate to the dominant White middle-

class culture to succeed in school and in life” (p. 138). However, as one of the principals in 

Morris’ (2006) study pointed out, “I’ve never been a proponent of sending black children to sit 

with white children was going to help them to learn” (p. 141). 

Although the use of a White reference group has been criticized by some critical race 

theory scholars (e.g., Garcia & Mayorga, 2018), it should be mentioned that to choose, instead, 

particular minority groups to serve as the reference group is no less dangerous. This is because  

certain groups are held up as ‘model minorities’, a stereotype of hard work and 

success that harms both the group itself (by obscuring certain other disadvantages, 
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such as higher rates of unemployment) and, by implication, other less successful 

groups (whose ‘failure’, it is reasoned, must surely be their own fault). (Gillborn, 

2009, pp. 60-61) 

The use of model minorities as the reference obscures intragroup heterogeneity. For 

example, in his discussion regarding the umbrella label “Asian American,” Teranishi 

(2007) argued that “the perceived educational success of Asian Americans has resulted in 

their exclusion altogether from racial discourse on educational issues because it is 

believed that there is no need to address their educational issues” (pp. 47). Critical race 

theorists further assert that the creation and use of a catch-all minority focal group 

compared with a White reference group is also inappropriate (Gillborn et al., 2018). 

Regardless of which group is selected as the reference, it is a subjective decision made by 

the researcher. Therefore, the type of reference group required for different DIF detection 

methods must be considered very carefully when weighing the costs and benefits of various 

indices. 

Multiple-Factor Multiple-Group Non-Compensatory DIF 

As stated earlier, there are a plethora of methods for the detection of DIF in test items. In 

the differential functioning of items and tests (DFIT) framework (Raju, van der Linden, & Fleer, 

1995), one method of measuring DIF is the non-compensatory DIF (NCDIF) index. The NCDIF 

index for dichotomous items is defined as the expected value of the squared distance between the 

probabilities of a correct response for the reference group and the focal group at a given theta 

(ability). Specifically, NCDIF for item i is calculated as 

2
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where ( )
2

θ̂i sd is the squared difference between ˆ(θ)iFP , the probability of correct response for 

examinee s on item i at a given θ̂  using the item parameter estimates from the focal group, and 

ˆ(θ)iRP , the probability of correct response for examinee s on item i at the same given θ̂  using the 

item parameter estimates from the reference group. 
FN  is the sample size of the focal group. The 

squaring of the difference between probabilities is a critical element of the calculations, as it 

prevents differences that favor the reference group and differences that favor the focal group 

from cancelling each other out. In other words, by squaring the differences between the reference 

group’s ICC and the focal group’s ICC, both uniform and non-uniform DIF may be detected 

(Oshima & Morris, 2008). 

The NCDIF statistic may be tested for significance via the item parameter replication 

(IPR) method (Oshima, Raju, & Nanda, 2006). In an IPR test of significance, for each item, the 

focal group’s item parameters and variance-covariance estimates are used to create a set of 

simulated item parameters with the same variance and covariance structure. These simulated 

item parameters are then randomly paired, as though one represented the estimations for a 

reference group and one represented the estimations for a focal group. Next, NCDIF is calculated 

for each pair of parameters and rank ordered. As the simulated parameters come from the same 

distribution, all pairwise differences between the two simulated groups are due to sampling error 

(Oshima & Morris, 2008; Oshima et al., 2006). Any observed NCDIF value beyond the (1 − α) 

rank is deemed extreme and, therefore, significant. This process has been automated in the 

“DIFCUT” program (Nanda, Oshima, & Gagne, 2005). 

Oshima et al. (2015) extended this pairwise NCDIF index to a multiple-group NCDIF 

(MG-NCDIF) index. MG-NCDIF is defined as  
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where ˆ ˆ ˆ(θ ) (θ ) (θ )
gig s iB s iG sd P P= − for group g of p groups. In moving from a pairwise comparison 

to a multiple-group comparison, an arbitrary reference group is no longer selected. Instead, MG-

NCDIF utilizes a “base” group comprised of a random sample (or a stratified random sample) of 

all examinees. MG-NCDIF results may be tested for significance with the same IPR method 

discussed above. As significance tests are sensitive to sample size, Oshima et al. (2015) 

recommended that the size of the base group be equal to the average subgroup sample size from 

the complete examinee dataset. 
BN  is the sample size for this base group, B. The base group data 

is then used in the IPR method to determine the cutoff value for significance for each item. 

Dell-Ross, Oshima, and Wright (2017) further extended MG-NCDIF to include multiple 

grouping factors (i.e., variables such as gender and race/ethnicity). Multiple-factor multiple-

group NCDIF (MFMG-NCDIF) is given as 
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where MG-NCDIFi is averaged for q factors, making it essentially the average of the squared d 

values, unweighted by the number of groups within each factor. By calculating MG-NCDIF for 

each factor and then averaging these values, each factor is given equal weight. Thus, a factor 

with many levels is not favored over a factor with only a few levels. [For example, racial/ethnic 

DIF (several levels) would be weighted equally with gender DIF (two levels).] It should be noted 

that a researcher could, if interested, weight the factors. However, this would be an arbitrary 
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decision, and is not recommended unless there is an imperative reason for doing so. Again, the 

base group data is used to determine significance of the MFMG-NCDIF results. 

The use of these NCDIF indices has several advantages. First, as just described, these 

relatively new indices may be tested for significance. Second, the DFIT framework includes an 

index for differential test functioning (DTF), which is analogous to testing for DIF across an 

entire assessment. Just as NCDIF was extended to test for multiple-factor multiple-group DIF 

detection, DTF has been extended to multiple-factor multiple-group DTF detection (Dell-Ross et 

al., 2017). Third, the NCDIF indices are weighted by density, or the number of examinees at 

each value of theta, such that the observations at the extreme ends of the ability continuum do 

not exert undue influence in the analysis. Fourth, for each item, MG-NCDIF and MFMG-NCDIF 

return a single result. There is no need for multiple testing of a single item and, therefore, there is 

no need to adjust the alpha level for multiple tests. Last – and most importantly – as the MG-

NCDIF and MFMG-NCDIF statistics use a base group, researchers are not required to arbitrarily 

select a reference group. Therefore, comparisons are not a matter of social convention or 

majoritarian sample size. 

There is one potential disadvantage to these NCDIF indices. As the amounts of DIF are 

averaged, it is possible that the addition of groups and/or grouping factors may obscure DIF. To 

date, there has been only one simulation study to assess the performance of the MG-NCDIF 

index: Oshima et al. (2015). Oshima et al. simulated a variety of conditions to assess the efficacy 

of the new MG-NCDIF statistic, including sample size, type of DIF, DIF pattern, and impact, 

across three- and five-group conditions. They found that the performance of the MG-NCDIF 

index was not affected by the number of groups and that this new DIF index had Type I error 

rates and power comparable to the two-group (pairwise) NCDIF analysis. They also concluded 
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that the MG-NCDIF statistic accurately detected both uniform and non-uniform DIF and that the 

direction of impact (unidirectional or bidirectional) did not affect the results, both of which are 

promising findings for this new test of DIF. To date, there have not been any simulation studies 

to assess the efficacy of the MFMG-NCDIF index, so it remains unclear if the addition of 

factors, which will likely increase the total number of groups, will lead to a “watered down” DIF 

identification rate. 

Generalized Mantel-Haenszel 

DIF between two groups can also be detected using the Mantel-Haenszel (MH) method 

(Mantel & Haenszel, 1959). For dichotomously-scored items, MH is one of the most popular 

DIF detection methods (Fidalgo, 2011; Magis et al., 2010; Penfield, 2001). In the MH method, a 

2×2 contingency table is used to test the relationship between group membership and item 

response while controlling for total test score (the sum, or matching, score). The null hypothesis 

is that there is no association between group membership and item response; the response 

variable is distributed randomly. In the MH framework, dichotomous items are investigated for 

DIF using the formula 

2
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where Aj represents the number of correct responses among reference group examinees with sum 

score j. E(Aj) and Var(Aj) are calculated, respectively, as 
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where 
Rjn  is the number of responses among reference group examinees with sum score j, 

Fjn  is 

the number of responses among focal group examinees with sum score j, 
1 jm  is the number of 

correct responses among examinees with sum score j, and 
0 jm  is the number of incorrect 

responses among examinees with sum score j. 
jT  is the number of examinees with sum score j. 

MH follows a χ2 distribution with one degree of freedom. 

MH was extended to detect DIF simultaneously in more than two groups using the GMH 

index (Landis, Heyman, & Koch, 1978; Penfield, 2001; Somes, 1986). GMH is given as 

1

GMH ( ) ( ) ( )
j j j j j

−     
= − −     
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    E Var Ej j j j jA A A A A , 

where all variables are defined as above, except that E(Aj) and Var(Aj) are now vectors. For 

dichotomous items, GMH follows a χ2 distribution with G – 1 degrees of freedom, where G is 

the number of groups. GMH conducts a single test of significance, testing the null hypothesis 

that DIF is observed in at least one pair of groups. If the source of DIF is of interest to the 

researcher, post-hoc pairwise analyses may be conducted using the MH method (Finch, 2016) or 

MH with a Bonferroni-adjusted alpha level (Penfield, 2001). GMH is a specific case of the 

generalized nominal Mantel-Haenszel 
(1)GMHQ statistic (Fidalgo & Scalon, 2010). 

The GMH index has several advantages over other DIF detection methods. First, due to 

the popularity of the MH class of methods, there are two pieces of software that are ready-made 

for multiple-group GMH analyses: GMHDIF (Fidalgo, 2011) and the “difR” package (Magis et 

al., 2010). Second, as just mentioned, GMH simplifies DIF detection by providing a single index 

across multiple groups (Penfield, 2001), alleviating the need for researchers to make arbitrary 
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decisions on how to proceed when DIF is observed between some groups but not others; this also 

simplifies the purification process. Third, GMH does not conduct the estimations that parametric 

methods such as MG-NCDIF and MIMIC models undergo. This means that GMH analyses may 

be reliably conducted with much smaller sample sizes (Fidalgo & Madeira, 2008), a 

characteristic that is critical as many focal groups do not meet the minimum sample size 

guidelines that parametric methods require (Fidalgo & Scalon, 2010). A related advantage is that 

GMH does not require a specific parametric function to be fit to the data (Fidalgo & Scalon, 

2010; Wang & Su, 2004). Fourth, Type I error rates are well-controlled with GMH, as multiple 

pairwise tests are avoided (Fidalgo & Scalon, 2010; Penfield, 2001). This is important because, 

even when the nominal alpha level is controlled, power is lower for multiple pairwise tests 

(Penfield, 2001). Finally, the MH family of methods has been shown to have high power for 

detecting uniform DIF (Fidalgo & Madeira, 2008; Finch, 2016; Sireci & Rios, 2013). 

The GMH statistic also has a few disadvantages in regard to DIF detection. First, MH and 

GMH are much less sensitive to the detection of non-uniform DIF than other DIF detection 

procedures (Penfield, 2001; Rogers & Swaminathan, 1993; Swaminathan & Rogers, 1990; Wang 

& Su, 2004); in other words, GMH performs best when the data are fit to a 1PL model (Fidalgo 

& Madeira, 2008; Penfield, 2001). Second, a reference group must still be arbitrarily selected by 

the researcher. For example, if a researcher wished to study items for potential bias across White, 

Asian, Black, and Hispanic examinees, then Asian examinees would be compared with White 

examinees, Black examinees would be compared with White examinees, and Hispanic 

examinees would be compared with White examinees (assuming White examinees were treated 

as the reference group), despite the fact that this is an omnibus test. Third, a GMH effect size has 

not yet been developed. Therefore, in cases where a significant finding may be an artifact of 
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large sample sizes, there is no means of analyzing whether this is indeed the case (Penfield, 

2001). 

Despite these drawbacks to the GMH index, there is some evidence that it may be a 

powerful tool for multiple-group DIF detection. Fidalgo and Scalon (2010) found that the 

(1)GMHQ statistic (of which GMH is a specific case) and Bonferroni-adjusted GMH index had 

acceptable Type I error rates (ranging from .048 to .067 and .046 to.065, respectively) across 

conditions with two or three focal groups (three or four groups total). They also concluded that 

observed power levels for these two indices were acceptable, again across conditions with two or 

three focal groups. In a multiple-group comparison of GMH, generalized logistic regression 

(Magis, Raîche, Béland, & Gérard, 2011), Lord’s chi-square test (Lord, 1980), and the multiple-

group alignment procedure (Asparouhov & Muthén, 2014), Finch (2016) found that GMH had 

the second-best Type I error rates, was less sensitive to the number of groups analyzed when 

sample sizes were equal, exhibited excellent power across sample sizes (N = 500, 1000, and 

2000) when DIF magnitude was 0.6 or 0.8, and exhibited excellent power in unequal sample size 

conditions regardless of the number of groups. He concluded that GMH and the alignment 

method had the best combination of Type I error rates and power when there were more than two 

groups in the analysis. Penfield (2001) compared GMH, MH, and a Bonferroni-adjusted MH 

(BMH). Although GMH Type I error rates were slightly higher than those of BMH, these rates 

were still within the nominal alpha of .05. He also found that GMH and MH consistently 

exhibited the highest power levels. As GMH had the best balance between Type I error rates and 

power, he recommended the use of GMH over MH or BMH in multiple-group analyses. 
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Multiple Indicators, Multiple Causes Confirmatory Factor Analysis 

More recently, DIF has been detected using multiple indicators, multiple causes (MIMIC) 

confirmatory factor analysis (CFA) models (Jöreskog & Goldberger, 1975; see, for example, 

Chun, Stark, Kim, & Chernyshenko, 2016; Finch, 2005; Shih & Wang, 2009; Wang & Shih, 

2010; Woods & Grimm, 2011; Woods, Oltmanns, & Turkheimer, 2009). In a MIMIC model, a 

direct path extends from the latent factor to each assessment item. (Technically, this path extends 

from the latent factor to the latent response variable for each item, which in turn extends to the 

observed response variable for each item; however, the latent response variables are often 

omitted from the path diagrams for parsimony.) Additionally, a direct path extends from the 

grouping factor(s) to the latent factor. To test an item for uniform DIF, direct paths are added 

from the grouping factor(s) to the item being studied. Figure 3 presents a visual representation of 

this MIMIC model. Mathematically, in relation to IRT, this MIMIC model takes the form 

*

i i ij j iy z=  + +  
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where *

iy  is the latent response variable i, 
i  is the factor loading for variable i, θ is the latent 

trait, 𝑧𝑗 is the dummy variable indicating group j membership, ij
  is the direct loading from 

group j to item i, i  represents the error associated with item i, 
iy  is the observed dichotomous 

response for item i, and i  represents the threshold for item i. The threshold parameter τ and the 

factor loading λ are related to IRT item difficulty and/or discrimination in a two-parameter 

logistic (2PL) model as follows: 
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where 
ia  is the discrimination of item i, 

ib  is the difficulty of item i, and D is the scaling 

constant of 1.7. A significant ij
  value indicates the presence of uniform DIF. It should be noted 

that, although MIMIC models are most commonly referred to as CFA models, they are actually 

structural regression models, due to the endogenous nature of the MIMIC factor (Kline, 2016). 

They have been labeled as CFA models herein to provide consistency with existing literature. 

Although MIMIC was originally designed for the detection of uniform DIF, it has 

recently been extended to detect non-uniform DIF (Woods & Grimm, 2011; see, also, Chun et 

al., 2016). To detect non-uniform DIF, an interaction between the latent trait and each dummy-

coded grouping variable is added to the model, with a path extending from each interaction term 

to the studied item, as shown in Figure 4. The resulting model is 

*

i i ij j ij j iy z z=  + +  + , 

where 
ij jz  represents this interaction and all other variables are as defined previously. 

Interestingly, very few studies have been conducted investigating the performance of MIMIC 

models when non-uniform DIF is present. In fact, some authors continue to erroneously state that 

MIMIC models may not be used to detect this type of DIF (e.g., Pendergast, von der Embse, 

Kilgus, & Eklund, 2017). 

The dearth of simulation studies in this area may be related to the complexity of 

estimating this model. Unfortunately, the calculation of an interaction term involving a latent 
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trait is not a straightforward multiplicative matter. Instead, Klein and Moosbrugger’s (2000) 

latent moderated structural (LMS) equation algorithm is employed to estimate these terms (Finch 

& French, 2019; Woods & Grimm, 2011). The LMS algorithm, first developed to estimate non-

linear effects in CFA models, can also be applied to interaction terms involving latent variables. 

The Mplus program (Muthén & Muthén, 2007), which appears to be the most commonly used 

software for MIMIC analyses, features the “XWITH” command for the creation of interaction 

terms involving latent traits. Analyses conducted with XWITH utilize the LMS algorithm and 

robust maximum likelihood (MLR) estimation with numerical integration (Muthén & Muthén, 

2017). [For a detailed treatment of numerical integration, which is beyond the scope of this 

paper, readers are referred to Muthén (2004).] It should be noted that the LMS method assumes a 

normal distribution for each variable included in the interaction term and that this assumption is 

violated in the case of DIF analyses where one of the variables is a dummy-coded grouping 

variable; consequently, an inflation of the Type I error rate may be observed (Klein & 

Moosbrugger, 2000; Woods & Grimm, 2011), even as the power for detection of non-uniform 

DIF remains sufficient (Finch & French, 2019). 

To conduct two-stage omnibus testing for uniform and/or non-uniform DIF, Lopez Rivas, 

Stark, and Chernyshenko (2009) and Chun et al. (2016) recommended a constrained baseline 

approach at Stage 1 to identify anchor items and a free baseline approach at Stage 2 to identify 

items that function differentially. In the constrained baseline approach (Stage 1), a more 

restrictive model [Figure 5(a)] consisting of paths from the grouping variables to the latent trait, 

j , and from the latent trait to each item, 
i , is compared with a less restrictive model [Figure 

5(b)] in which (1) paths from the grouping variables to the studied item, 
ij , have been added to 

test for uniform DIF and (2) the interaction terms, 
jz , and paths from these terms to the studied 
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item, 
ij , have been added to test for non-uniform DIF. This model comparison is conducted 

separately for each item; a significant difference between models indicates that the item exhibits 

DIF. Thus, items in which the difference test is non-significant are eligible for use as anchors in 

Stage 2. 

In the free baseline approach (Stage 2), researchers begin with a less restrictive model 

[Figure 6(a)] consisting of paths from (1) the grouping variables to the latent trait, 
j , (2) the 

latent trait to each item, 
i , (3) the grouping variables to all non-anchor items, 

ij , and (4) the 

interaction terms to all non-anchor items, 
ij . This model is compared with a more restrictive 

model [Figure 6(b)] in which the paths from the grouping variables to the studied item, 
ij , and 

the paths from the interaction terms to the studied item, 
ij , have been removed. This model 

comparison is conducted separately for each studied item; again, a significant difference between 

models is indicative of the item exhibiting DIF. 

At both stages of this analysis, χ2 difference testing is required. As mentioned earlier, in 

Mplus, the XWITH command is used to create the models’ interaction terms. XWITH is used in 

conjunction with the “TYPE=RANDOM” command to estimate a random-effects model 

(Muthén, 2004), which “precludes the calculation of standardized coefficients and chi-square and 

related fit statistics” (Muthén, 2009, para. 1). To further complicate matters, as Satorra and 

Bentler (2010) explained,  

it frequently happens that two nested models, 0M  and 1M , are compared using 

estimation methods that are nonoptimal (asymptotically) given the distribution of 

the data; e.g., maximum likelihood (ML) estimation is used when the data are not 

multivariate normal. In those circumstances, the usual chi-square difference test 
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0 1dT T T= − , based on the separate models’ goodness of fit test statistics, is not χ2 

distributed. (p. 243) 

Instead, the Satorra-Bentler χ2 test of significance (Satorra & Bentler, 2001; see, also, Muthén & 

Muthén, n.d.) is used to compare models. This difference testing is conducted using the 

loglikelihoods – which follow a χ2 distribution (Muthén, 2009) – and the scaling correction 

factors associated with each model. To conduct this χ2 test, the difference test scaling correction, 

dc , is calculated as 

0 0 1 1

0 1

d

p c p c
c

p p

−
=

−
, 

where 
0p  is the number of parameters in the null (nested) model, 

1p  is the number of parameters 

in the alternative (comparison) model, 
0c  is the scaling correction factor of the null model, and 

1c  is the scaling correction factor of the alternative model. This χ2 test takes the form of 

( )0 12
d

d

L
TR

c

L−
=

−
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where 
dTR  is the Satorra-Bentler scaled χ2 difference statistic, 

0L  is the loglikelihood of the null 

model, and 
1L  is the loglikelihood of the alternative model. The degrees of freedom for this χ2 

test are equal to 1 0p p−  (UCLA Statistical Consulting Group, n.d.). It should be noted that, like 

other χ2 tests of significance, the Satorra-Bentler χ2 is sensitive to sample size (Pendergast et al., 

2017). 

MIMIC models have several advantages over other DIF detection methods. Unlike the 

MH and GMH methods, in which examinees are matched on summed scores, MIMIC models 

use latent-variable matching, a procedure which is likely to be more accurate (Woods et al., 

2009). These models have been extended to include multiple groups, as well as multiple 
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grouping factors (e.g., age and ethnicity; Woods et al., 2009). Interaction terms (e.g., gender by 

ethnicity) may also be tested for significance. MIMIC models may include both continuous and 

categorical covariates to account for other sources of variation (Finch, 2005). [Conversely, 

researchers may use MIMIC models to control for DIF (Fleishman, Spector, & Altman, 2002).] 

Additionally, as only one set of item parameters are estimated for the entire sample – as opposed 

to one set per group – the sample size requirements are lower for MIMIC than for some other 

DIF detection methods. Furthermore, there is some evidence that MIMIC models exhibit more 

accurate uniform DIF detection for dichotomous items when focal group sample sizes are small 

(Woods, 2009b). MIMIC models have also been shown to have a well-controlled Type I error 

rate and high power (Shih & Wang, 2009). 

MIMIC models also have a few disadvantages in regard to DIF detection. Perhaps the 

most significant is the fact that a researcher cannot test for DIF across all items simultaneously; 

such a model would not be identified; “at least one DIF-free [anchor] item is needed to define the 

factor on which the groups are matched” (Woods et al., 2009, p. 323). This requires the 

researcher to compare nested models by conducting the χ2 test of significance for each item. A 

second disadvantage of MIMIC models is the need to arbitrarily scale the latent response 

variables and the common factor. There are two options for scaling the latent response variables: 

constraining *

iy  to 1.0 for all items or constraining the residuals i  to have unit variance. There 

are also two methods for scaling the common factor: choosing a reference indicator or 

standardizing the common factor. In other words, the researcher may either fix the threshold and 

factor loading of one item while freely estimating the mean and variance of the latent factor or 

fix the mean and variance of the latent factor while freely estimating the item’s threshold and 

factor loading. This creates four crossed scaling options from which the researcher may choose. 
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For a thorough explanation of these options, readers are referred to an excellent overview and 

demonstration by Kamata and Bauer (2008). A third disadvantage of MIMIC is that a reference 

group must still be arbitrarily selected by the researcher when dummy-coding the grouping 

variables. For example, if a researcher wished to study items for potential bias across White, 

Asian, Black, and Hispanic examinees, there would be separate factor loadings for each pairwise 

comparison. (Readers should note that MIMIC results are conceptually equivalent to GMH 

results, in which a significant omnibus finding indicates that there was a significant difference 

between at least one pair of groups.) Finally, as noted earlier, an inflation of the Type I error rate 

may be observed (Klein & Moosbrugger, 2000; Woods & Grimm, 2011), because the model 

estimation method violates the assumption of normally-distributed variables when the model 

includes dummy-coded grouping variables. 

Despite these drawbacks to MIMIC models, there is some evidence that they may be a 

powerful tool for DIF detection. Finch (2005), in studying the detection of uniform DIF, found 

that MIMIC models had comparable performance, as measured by power and Type I error, with 

the MH, the IRT likelihood ratio (Thissen, Steinberg, & Gerrard, 1986), and SIBTEST (Shealy 

& Stout, 1993) methods for 50-item exams and when there is no pseudo-guessing parameter. 

Finch (2005) also found that the MIMIC model was less sensitive to anchor item contamination 

and small focal group sample sizes. Shih and Wang (2009) found that, when using MIMIC 

models iteratively to find a pure anchor and then assessing items for uniform DIF, a four-item 

anchor resulted in high power with equal sample sizes of 1,000 and acceptable Type I error rates 

across all conditions, even when 40% of the test items exhibited DIF. Chun et al. (2016) found 

that, when factor variance across groups was equal, using the sequential-free baseline approach 

to (non)uniform DIF detection, in which the most discriminating DIF-free item is used as the 
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anchor for subsequent DIF detection tests, an inappropriate anchor was chosen only 1% of the 

time. Furthermore, Type I error rates were acceptable, and power was high when detecting 

uniform DIF in groups of N = 250. It bears mention that all these authors have noted the dearth 

of simulation studies for the MIMIC method and have recommended continued study across 

varying conditions. 

Base/Omnicultural Reference Group 

One distinct difference between the (MF)MG-NCDIF, GMH, and MIMIC methods is the 

composition of the reference group. GMH and MIMIC have historically employed a traditional 

reference group. However, as noted earlier, (MF)MG-NCDIF uses a base group. Other authors 

have discussed the use of a base group, although sometimes under a different heading. The term 

composite, for example, has also been used (e.g., Sari & Huggins, 2015). Ellis and Kimmel 

(1992) perhaps described this group in the most informative way when they deemed it an 

omnicultural reference group. As they explained, traditional pairwise DIF analysis indicates only 

when the focal group’s response pattern differs from the reference group’s pattern; these 

analyses fail to identify “a unique response pattern of one group to the exclusion of others” (p. 

177). The ideal comparison, they argued, would be that of a focal group against an acultural 

reference, “a reference that is outside of and, therefore, uninfluenced by the culture itself” (p. 

178). Although this acultural reference is an impossibility, the development and use of an 

omnicultural reference, which includes as many cultural-linguistic contributors as possible, is a 

close approximation of the acultural ideal: “the broader the composite [i.e., the omnicultural 

reference], the freer it is from any single culture’s influence and the more decentered it is as a 

frame of reference” (p. 178). As base, composite, and omnicultural reference groups are 

synonymous, these terms will be used interchangeably. 
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 As with any statistical procedure, there are advantages and disadvantages to the use of a 

base group in DIF analysis. Sari and Huggins (2015) identified six critical advantages with a 

base-group analysis. One advantage is that focal groups may simultaneously be defined by 

multiple factors; for example, the response patterns of Hispanic females may be compared with 

the base. A second advantage is that the need to arbitrarily assign a reference group becomes 

obsolete. Third, unlike traditional pairwise comparisons, the composite approach makes use of 

the operational item parameters. Fourth, each DIF estimate in a base group analysis is specific to 

one group, not one group as compared with another group. A traditional DIF analysis may result, 

for example, in three estimates for Hispanic examinees (e.g., DIF for a Hispanic/White 

comparison, a Hispanic/Black comparison, and a Hispanic/Asian comparison), necessitating a 

search for Hispanic DIF patterns to determine whether there is a consistent (dis)advantage for 

Hispanic examinees. Composite results are easier to interpret than multiple pairwise results by 

providing a single measure of DIF for a focal group, “mak[ing] the group and direction of 

advantage very clear” (p. 672). As the number of groups increases, this advantage becomes more 

pronounced. Fifth, Type I error rates are lower for base group analyses than traditional pairwise 

analyses because fewer comparisons are made (except when pairwise comparisons with only one 

reference group are conducted) and sample sizes are larger; false discovery rates are also lower, 

for the same reasons. Finally, if more than two groups are examined, the sample size is larger for 

the composite than for a single reference group; therefore, when holding the effect size constant, 

power is higher for composite analyses. 

 Sari and Huggins (2015) also highlighted three disadvantages to the use of a base group 

in DIF analyses. As opposed to traditional pairwise comparisons in which independent 

observations are maintained, the use of a base group introduces dependence when examinees 
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from the focal group are also included in the omnicultural base group. [Ellis and Kimmel (1992) 

also recognized this potential drawback and recommended excluding the focal group from the 

base while still including at least five cultural-linguistic groups in the base, if possible.] Second, 

there is a wider variety of DIF detection methods for pairwise analyses (e.g., Mantel-Haenszel 

and Lord’s chi-square test). These methods have been more thoroughly researched and their 

efficacy tested using a traditional reference group. Third, if the DIF index is unweighted, then the 

composite is highly sensitive to the sample sizes of groups (e.g., the ICC of examinees without 

disabilities will rarely show DIF when the composite approach is used because the examinees in 

this group account for most of the composite). This may be a problem as composite groups are 

often used in score equity assessment. 

Additionally, Sari and Huggins (2015) explained that the change from a traditional 

reference group to a base group is accompanied by a corresponding change in the definitions of 

“fairness” and “bias.” Whereas traditional pairwise analysis compares the ICCs of two groups, 

the composite approach compares a focal group ICC with the ICC of all examinees (i.e., the 

operational ICC). DIF analysis is used to identify fairness as a lack of bias. Fairness in pairwise 

analyses means that the ICC for one group is equivalent to the ICC for each of the other groups; 

fairness in composite analyses means that the ICC for one group is equivalent to the operational 

ICC. Pairwise results indicate where “group-to-group invariance” is tenable; composite results 

indicate where the assumption of “group item parameters being invariant to the operational item 

parameters” (p. 671) – which are used for estimating scores – is tenable. 

Similarly, Mayhew and Simonoff (2015) argued that the type of coding used – effect 

coding versus reference coding – affects interpretations of race-based analyses. In summarizing 

Mayhew and Simonoff’s work, Rios-Aguilar (2014) stated  
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they propose the use of effect coding rather than reference coding when 

comparing the outcomes of different racial/ethnic groups. Effect coding allows 

the comparison in outcomes of interest of groups to the grand mean, whereas 

reference coding compares groups of students with each other, thus allowing 

scholars to better understand the outcomes of certain groups of students compared 

to an institutional average expected for all students, rather than simply comparing 

underrepresented students to the outcomes of White students. (pp. 98-99) 

Therefore, Mayhew and Simonoff advocated for the use of effect coding when studying race:  

By removing the idea of a reference group and by interpreting categorical effects 

as those that differ from an overall level, effect coding may equip quantitative 

criticalists . . . with the language they need to start making more informed choices 

regarding the use of statistics in understanding race and its effects on a variety of 

outcomes of interest. (p. 174) 

It should be noted that Mayhew and Simonoff acknowledge the quantitative validity of using 

reference coding; however, they ask the question “From an inclusive perspective, what are the 

implications of consistently essentializing the voices of any group of students as the benchmark 

for understanding racial differences?” (p. 174). 

Of course, pairwise and base-group methods may or may not identify the same set of 

items as exhibiting DIF for the same groups. The intention behind sharing these perspectives is 

not as an argument against the traditional pairwise approach – indeed, the two approaches can 

complement each other – but as a recommendation to choose the approach based on (a) the 

definition of fairness that is applicable to a study and (b) the consideration of the relative 
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(dis)advantages of each approach. This is an echo of the recommendations of Ellis and Kimmel 

(1992), Huggins and Penfield (2012), and Sari and Huggins (2015). 
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Figure 1. Uniform DIF. The solid line has parameters of a = 0.90, b = 0.50, and c = 0.20. The 

dashed line has parameters of a = 0.90, b = 1.20, and c = 0.20. 

 

 
Figure 2. Non-Uniform DIF. The solid line has parameters of a = 1.85, b = 0.50, and c = 0.20. 

The dashed line has parameters of a = 0.90, b = 1.20, and c = 0.20. 
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Figure 3. Five-Item Uniform DIF MIMIC Model with Three Dummy-Coded Grouping 

Variables. Item 4 is the studied item. A significant i  value indicates the presence of uniform 

DIF for the zi/reference group comparison. 

 

 

 
Figure 4. Five-Item Non-Uniform DIF MIMIC Model with Three Dummy-Coded Grouping 

Variables. Item 4 is the studied item. A significant i  value indicates the presence of non-

uniform DIF for the zi/reference group comparison. 
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Figure 5. Constrained Baseline Approach for Stage 1 DIF Testing. Item 4 is the studied item.  



 

 

 

39 

  
 

 

Figure 6. Free Baseline Approach for Stage 2 DIF Testing. Item 4 is the studied item; Items 1 

and 2 are the anchors.  
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3  METHODOLOGY 

 

Oshima et al. (2015) conducted a simulation study to assess the performance of the MG-

NCDIF index; however, the performance of the MG-NCDIF index was not compared to other 

indices. To answer the research questions identified for this study, Oshima et al.’s study 

conditions were replicated. The simulated test consisted of 30 dichotomous items, of which zero 

(0%) or six (20%) contained DIF, depending on the condition. DIF was embedded in the same 

manner as Seybert and Stark (2012), based on their a and b item parameters. Tables 1 and 2 

indicate which items were embedded with DIF and present the item parameters. In accordance 

with a critical race theory/QuantCrit framework, all analyses were conducted using a base 

reference group. The following studied conditions were manipulated. 

Number of Groups 

The analysis was comprised of two levels of number of groups: three groups and five 

groups. 

Sample Size 

Two sample size conditions were included in this study: equal (N = 1000) and unequal  

(N = 500 or N = 1000). For unequal sample sizes, Groups 2 and 3 each had N = 500 and all 

remaining groups had N = 1000 for both the three-group and five-group conditions. The base 

group sample size for each condition was set as the average of the sample sizes of the other 

groups in the condition. Therefore, for equal-size conditions, N = 1000 for the base group; for 

unequal-size conditions, N = 667 and N = 800 for the three-group and five-group conditions, 

respectively. 
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Type of DIF 

Both uniform and non-uniform DIF were analyzed. Uniform DIF was simulated by 

increasing or decreasing the b parameter. Non-uniform DIF was simulated by increasing or 

decreasing (a) the a parameter only or (b) both the a and b parameters. 

DIF Patterns 

For uniform DIF, the b parameter was calculated by adding or subtracting 0.7 to/from the 

original parameter value. In the three-group condition, three patterns were used: (0/0/0), 

(0/+0.7/0), and (0/+0.7/−0.7). The first pattern (0/0/0) indicates the absence of DIF, as zero was 

added to the original b parameter for Group 1, zero was added to the b parameter for Group 2, 

and zero was added to the b parameter for Group 3. The second pattern (0/+0.7/0) indicates that 

0.7 was added to the b parameter for Group 2, making the item more difficult for that group. The 

third pattern (0/+0.7/−0.7) indicates that 0.7 was added to the b parameter for Group 2, making 

the item more difficult for that group, while 0.7 was subtracted from the b parameter for Group 

3, making the item easier for that group. In the five-group condition, the following uniform DIF 

patterns were applied: (0/+0.7/0/0/0), (0/+0.7/+0.7/0/0), and (0/+0.7/+0.7/−0.7/−0.7). 

For non-uniform DIF via manipulation of the a parameter only, 0.4 was added to or 

subtracted from the original parameter value. In the three-group condition, the patterns were 

(0/0/0), (0/−0.4/0), and (0/−0.4/+0.4). The first pattern indicates that the item was equally 

discriminating for all three groups; the second pattern indicates that the item was less 

discriminating for Group 2; the third pattern indicates that the item was least discriminating for 

Group 2 but most discriminating for Group 3. In the five-group condition, the patterns were 

(0/−0.4/0/0/0), (0/−0.4/−0.4/0/0), and (0/−0.4/−0.4/+0.4/+0.4). 
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For non-uniform DIF via manipulation of both the a and b parameters, the patterns above 

were combined, respectively. For example, in the second pattern of the three-group condition, 

the b parameter was adjusted using (0/+0.7/0) and the a parameter was simultaneously adjusted 

using (0/−0.4/0). 

These patterns may be classified as unidirectional or bidirectional. Unidirectional patterns 

were defined as the patterns where, when the a and/or b parameters were manipulated for one or 

more groups, these manipulations shared the same sign (+ or −). Cases in which only one 

group’s parameters were manipulated were also considered unidirectional. Bidirectional patterns 

were defined as the patterns where, when the a and/or b parameters were manipulated for one or 

more groups, these manipulations had differing signs. For example, (0/−0.4/−0.4/0/0) is a 

unidirectional pattern and (0/−0.4/−0.4/+0.4/+0.4) is a bidirectional pattern. 

Impact 

The simulation included three levels of impact: no impact, unidirectional impact, and 

bidirectional impact. For the no-impact condition, each group had an ability distribution of N(0, 

1). For unidirectional impact, all groups had ability distributions of N(0, 1) except for Groups 2 

and 3, which followed distributions of N(−0.5, 1). In other words, Groups 2 and 3 had lower 

ability than the remaining groups. For bidirectional impact, all groups had ability distributions of 

N(0, 1) except for Group 2, which followed a distribution of N(−0.5, 1), and Group 3, which 

followed a distribution of N(+0.5, 1). In this case, Group 3 had the highest mean ability level of 

all the groups; Group 2 had the lowest mean ability of all the groups. Oshima et al. (2015) found 

negligible difference between unidirectional and bidirectional impact in their three-group design, 

so they elected not to simulate bidirectional impact in the five-group condition. For consistency, 
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the bidirectional impact condition was also omitted from the five-group design in the current 

study. 

Data Simulation 

Datasets were simulated for each crossed condition using R 4.0.3 (R Core Team, 2020) 

within the RStudio 1.3.1093 (RStudio Team, 2020) integrated development environment. Initial 

item parameters were maintained or manipulated, depending on the DIF pattern condition. Theta 

values were randomly generated from the random normal distribution for each examinee based 

on the groups’ ability means and standard deviations, as discussed previously. The resulting item 

parameters and theta values were applied to a three-parameter logistic (3PL) model with a 

scaling constant of D = 1.7 to calculate the probabilities of a correct response for each examinee 

for each item in the crossed condition. Random numbers – one per examinee per item – were 

then generated from a uniform distribution [X ~ U(0, 1)]. Each probability was compared against 

the corresponding random uniform value. If the probability was greater, the examinee was 

assigned a correct response (i.e., a “1”) for that item; if not, the examinee was assigned an 

incorrect response (i.e., a “0”) for that item. Each base group was comprised of a random sample 

of examinees and their responses from the crossed condition. 

MG-NCDIF 

MG-NCDIF was not re-simulated in the current study, as all study conditions were 

identical to those of Oshima et al. (2015). However, as readers may be interested in a summary 

of their methodology, particularly as it compares to the current study, a brief overview is 

included here. In Stage 1, BILOG-MG3 (Zimowski, Muraki, Mislevy, & Bock, 2003) was used 

to calibrate simulated item responses, item parameters were then estimated and placed on a 

common scale (that of the base group), and a modified version of the program “DIFCUT” 



 

 

 

44 

(Nanda, Oshima, & Gagne, 2005) was run in SAS (SAS Institute Inc., 2012) to test for 

significant MG-NCDIF at α = .05. Items found to be DIF-free were then used as anchors in Stage 

2, in which the TCC linking procedure (Stocking & Lord, 1983) was employed to retrieve 

purified linking coefficients. Next, DIFCUT analyses were repeated with the purified linking 

coefficients, identifying a final set of items exhibiting significant MG-NCDIF. In both stages, the 

IPR method (Oshima et al., 2006) was used for significance testing. As Oshima et al. found 600 

pairs of simulated item parameters to be sufficient, DIFCUT was set to simulate 600 pairs of 

item parameters using the variances, covariances, and theta estimates of the base group. Readers 

interested in a full treatment of the methodology are, of course, referred to the source article. 

It bears mention that Oshima et al. (2015) conducted these MG-NCDIF analyses using (a) 

significance tests only and (b) significance tests in conjunction with the effect size measure 

developed by Wright and Oshima (2015). However, to provide consistency with the GMH and 

MIMIC methods, which did not make use of an effect size, the current study focuses on the 

significance-test-only MG-NCDIF results. 

GMH 

For the GMH index, R 4.0.3 (R Core Team, 2020) within the RStudio 1.3.1093 (RStudio 

Team, 2020) integrated development environment was used to detect DIF. Specifically, the 

“difGMH” function of the “difR” package (Magis et al., 2010) was employed to conduct a two-

stage analysis, which has been shown to produce a slight improvement over a one-stage GMH 

analysis (Wang & Su, 2004). At Stage 1, all items were tested for the purpose of identifying DIF-

free items, which became the anchor items for Stage 2. Stage 2 consisted of two parts: partial 

purification and full purification. To achieve partial purification, each item that exhibited DIF in 

Stage 1 was retested using the anchor items; to achieve full purification, each anchor item was 
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then retested against the remaining anchor items (Fikis & Oshima, 2017). Per the 

recommendation of Zwick, Donoghue, and Grima (1993), the studied item was always included 

in the total (matching) score. Procedures were embedded in the GMH code to address two 

special circumstances in this two-stage process: failure to recover any anchor items or recovery 

of a single anchor item. If no anchors were identified in Stage 1, which rendered further testing 

unnecessary, the Stage 1 results were treated as the final results for the dataset. If a single anchor 

item was identified, it was not possible to re-test that item in Stage 2 because there were no 

remaining anchor items; in this instance, the Stage 1 results were treated as the final results for 

that item. 

Kim and Oshima (2012) recommended the use of a multiple testing adjustment method 

when conducting DIF studies, given that significance is tested for each item. In his discussion of 

multiple-group DIF analyses, Penfield (2001) made a similar recommendation, given that 

significance tests were required for each pairwise comparison. In their simulation study, Kim and 

Oshima (2012) found that the Benjamini-Hochberg (BH) false discovery rate procedure 

(Benjamini & Hochberg, 1995) provided a sufficient balance of Type I error rate control and 

power when using the MH method (Mantel & Haenszel, 1959) to detect DIF. Additionally, the 

BH procedure has been used in several MIMIC studies (see below). Therefore, at both stages of 

the GMH analysis, the observed p values were adjusted using the BH procedure at α = .05. 

All “difGMH” default settings were applied to these analyses. It bears acknowledgement 

that the remaining default settings may not be comparable to the settings used for the MG-

NCDIF and MIMIC methods. However, assessment companies and researchers are not likely to 

set the GMH analysis options to match MG-NCDIF or MIMIC options (or options of other DIF 



 

 

 

46 

indices). Thus, the results of this study reflect what analysts would see if they used GMH as an 

isolated measure in practice with operational data. 

MIMIC 

For the MIMIC index, Mplus 8.4 (Muthén & Muthén, 2007) was used to identify a 

purified set of anchors and detect DIF. To automate these analyses, R 4.0.3 within the RStudio 

1.3.1093 integrated development environment was used. Specifically, the “MplusAutomation” 

package (Hallquist & Wiley, 2018) was employed to write the Mplus input code, call Mplus to 

run the analyses, and read in the Mplus output files. 

As mentioned earlier, in Mplus, the XWITH command is used to create the models’ 

interaction terms. XWITH was used in conjunction with the “TYPE=RANDOM” command to 

estimate a random-effects model (Muthén, 2004). Analyses conducted with XWITH utilized the 

LMS algorithm and robust maximum likelihood (MLR) estimation with numerical integration 

(Muthén & Muthén, 2017). To ensure that the model was identified, the mean and variance of 

the latent factor, *

iy , were constrained to zero and one, respectively. This freed the Item 1 factor 

loading, permitting the item to be studied for DIF. All other Mplus default settings were applied. 

Per the recommendations of Lopez Rivas et al. (2009) and Chun et al. (2016), two-stage 

omnibus testing for uniform and/or non-uniform DIF was conducted. At Stage 1, a constrained 

baseline approach was used to identify anchor items (see Figure 5); at Stage 2, a free baseline 

approach was used to identify items functioning differentially (see Figure 6). 

Researchers have examined power and Type I error rates for various DIF detection 

methods when the number of anchor items has been limited in an effort to reduce the risk of 

anchor contamination, finding that one to five anchors yielded desirable results (e.g., Lopez 

Rivas et al., 2009; Meade & Wright, 2012). Since then, researchers have studied the performance 
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of a short anchor with the MIMIC method. Designating four items as anchors based on the first 

stage of testing, Rebouças and Cheng (2019) found that highly-discriminating anchors were 

more likely to flag DIF items, while power was reduced when anchors had low discrimination. 

Shih and Wang (2009) found that, in MIMIC analyses, anchor sets of one, two, four, and ten 

items were sufficient to detect DIF items while exhibiting well-controlled Type I error rates; a 

four-item anchor set yielded high power rates that were similar to the ten-item anchor set power 

rates. Thus, they recommended a four-item anchor set, which was 10-20% of their test length, 

depending on the condition. Other MIMIC studies have made use of a short anchor while 

examining other conditions of interest. For example, Chun et al. (2016) used a single highly-

discriminating item for the anchor when investigating MIMIC DIF detection performance with 

(non)uniform DIF in a multiple-group context. Wang and Shih (2010) used four anchors when 

comparing various MIMIC methods to detect DIF in polytomous items. Woods and Grimm 

(2011) used one-third of simulated assessment items for anchoring when they introduced the 

MIMIC model for non-uniform DIF detection and a three-item anchor in their empirical 

example. Based on this clear precedent for limiting the number of anchors, as many as five DIF-

free items were selected as anchors in the current study. In cases where more than five items 

were found to be DIF-free, the five with the highest discrimination (loading) values were 

assigned as the anchors. At least one item must be assigned as an anchor to achieve model 

identification in Stage 2; therefore, if no anchor was recovered in the first stage, Item 5, the most 

discriminating DIF-free item, was designated as the anchor. 

At both stages of analysis, the Satorra-Bentler χ2 test of significance (Satorra & Bentler, 

2001) was used to compare nested models. These model comparisons – in addition to data 

aggregation and calculation of outcome measures (see next section) – were conducted using R in 
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the RStudio environment. As discussed in the previous section, Kim and Oshima (2012) and 

Penfield (2001) recommended the use of a multiple testing adjustment method when conducting 

DIF studies. The BH procedure (Benjamini & Hochberg, 1995), which Kim and Oshima (2012) 

found to be effective when using the MH method (Mantel & Haenszel, 1959) to detect DIF, has 

also been used in several MIMIC studies to date, including Woods (2009a), Woods (2009b), 

Woods and Grimm (2011), and Woods et al. (2009). Therefore, at both stages of the MIMIC 

analysis, the observed p values were adjusted using the BH procedure at α = .05. 

Outcomes 

The manipulation of these conditions created 82 crossed conditions, which were 

replicated 100 times each. For each crossed condition, Type I error rates and power were 

calculated as the outcome measures. Type I error was calculated as the mean of the number of 

times an item was incorrectly flagged as exhibiting DIF across the 100 replications. Power was 

calculated as the mean of the number of correct DIF identifications across the 100 replications.  
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Table 1 

Item Parameters Used in Generating DIF Conditions – Three-Group Condition 

 G1 G2 G3 

Item a b c a b a b 

1 0.49 −0.07 0.19     

2 0.92 0.21 0.15     

3 1.26 0.54 0.05     

4 0.61 −0.03 0.18 (−0.4) (+0.7) (+0.4) (−0.7) 

5 1.74 0.01 0.12     

6 0.50 1.96 0.12     

7 0.96 0.04 0.13 (−0.4) (+0.7) (+0.4) (−0.7) 

8 0.59 −0.09 0.18     

9 0.82 −1.16 0.17     

10 1.26 0.02 0.11     

11 0.82 0.20 0.07     

12 0.75 −0.43 0.15     

13 1.49 −0.06 0.09 (−0.4) (+0.7) (+0.4) (−0.7) 

14 0.97 −0.34 0.12     

15 1.49 0.05 0.12     

16 0.89 −0.25 0.15     

17 1.45 0.06 0.07     

18 0.75 0.31 0.18     

19 1.43 0.04 0.08 (−0.4) (+0.7) (+0.4) (−0.7) 

20 0.60 0.13 0.22     

21 0.83 0.52 0.09     

22 0.56 −0.96 0.19 (−0.4) (+0.7) (+0.4) (−0.7) 

23 0.67 −0.79 0.20     

24 0.70 0.37 0.18     

25 1.03 −0.71 0.14     

26 0.89 −0.19 0.21     

27 1.23 0.74 0.06     

28 0.90 −0.44 0.18 (−0.4) (+0.7) (+0.4) (−0.7) 

29 1.23 −0.17 0.12     

30 0.69 0.53 0.17     

Note. The bold numbers (4, 7, 13, 19, 22, and 28) indicate DIF items. The number in the 

parentheses under G2 and G3 indicates the value subtracted from or added to the item parameters 

for G1 to embed DIF, when applicable, on either the a parameter, the b parameter, or both. From 

“Multiple Group Noncompensatory Differential Item Functioning in Raju’s Differential 

Functioning of Items and Tests,” by T. C. Oshima, K. Wright, and N. White, 2015, International 

Journal of Testing, 15, pp. 254-273. Reprinted with permission. 
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Table 2 

Item Parameters Used in Generating DIF Conditions – Five-Group Condition 

 G2 G3 G4 G5 

Item a b a b a b a b 

1         

2         

3         

4 (−0.4) (+0.7) (−0.4) (+0.7) (+0.4) (−0.7) (+0.4) (−0.7) 

5         

6         

7 (−0.4) (+0.7) (−0.4) (+0.7) (+0.4) (−0.7) (+0.4) (−0.7) 

8         

9         

10         

11         

12         

13 (−0.4) (+0.7) (−0.4) (+0.7) (+0.4) (−0.7) (+0.4) (−0.7) 

14         

15         

16         

17         

18         

19 (−0.4) (+0.7) (−0.4) (+0.7) (+0.4) (−0.7) (+0.4) (−0.7) 

20         

21         

22 (−0.4) (+0.7) (−0.4) (+0.7) (+0.4) (−0.7) (+0.4) (−0.7) 

23         

24         

25         

26         

27         

28 (−0.4) (+0.7) (−0.4) (+0.7) (+0.4) (−0.7) (+0.4) (−0.7) 

29         

30         

Note. The item parameters for G1 are shown in Table 1. The value in the parentheses indicates 

the number subtracted from or added to the item parameters for G1, when applicable. From 

“Multiple Group Noncompensatory Differential Item Functioning in Raju’s Differential 

Functioning of Items and Tests,” by T. C. Oshima, K. Wright, and N. White, 2015, International 

Journal of Testing, 15, pp. 254-273. Reprinted with permission.  
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4  RESULTS 

 

Power and Type I error rates were calculated for each of the 82 crossed conditions. The 

results for the GMH three-group and five-group conditions are shown in Tables 3 and 4, 

respectively. MIMIC results for the three-group and five-group analyses are provided in Tables 5 

and 6, respectively. For ease of comparison, the MG-NCDIF results from Oshima et al.’s (2015) 

study have been cited, in Tables 7 and 8, with the lead author’s permission. Although Oshima et 

al. provided power and Type I error results both with and without the use of an effect size 

measure, only the significance testing results are included herein, to provide consistency with the 

GMH and MIMIC results. It should be noted that, while Oshima et al. reported power and Type I 

error to the hundredths place for MG-NCDIF, power and Type I error for GMH and MIMIC are 

reported to the thousandths place for greater precision. This precision was particularly important 

for these two methods for conditions with lower Type I error rates (many of which fell below 

.010) and for higher MIMIC power rates (many of which exceeded .990). 

 Overall, GMH exhibited the least consistent power, which ranged from .025 to 1.000, 

with the lowest observed power rates being associated with the non-uniform DIF condition in 

which only the a parameter was manipulated, particularly in cases where group sizes were 

unequal and mean ability varied between groups. The same was found to be true for MG-

NCDIF, albeit with a slightly more consistent range of power (.15 to 1.00). Although the MIMIC 

conditions with the lowest power followed the same pattern, this method exhibited more 

consistent power, with values ranging from .340 to 1.000 and with only five of the 82 crossed 

conditions falling below a power of .500. (Comparatively, power fell below .500 for 17 of the 

MG-NCDIF conditions and 24 of the GMH conditions.) While all three methods exhibited power 

of .900 or higher in particular cases, MG-NCDIF did so across only 11 of the crossed conditions, 
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as compared with GMH and MIMIC, which exhibited power of at least .900 across 35 and 50 of 

the crossed conditions, respectively. 

 When it came to Type I error rates, MG-NCDIF exhibited inflated error, exceeding the 

.05 nominal alpha level 44 times. In regard to Type I error rates for GMH and MIMIC, the 

results were mixed. On one hand, the GMH index exhibited better Type I error control in nearly 

two and a half times as many of the crossed conditions as the MIMIC index at the .05 level. 

Similarly, GMH Type I error rates fell below .01 in 58 of the crossed conditions, while MIMIC 

results showed a Type I error rate below .01 in 39 of the crossed conditions. On the other hand, 

the MIMIC method Type I error rates never exceeded the nominal alpha level, while GMH Type 

I error rates exceeded .05 three times, going as high as .089. This occurred in the five-group 

equal sample size condition where (a) there was no impact and the DIF pattern was 

(0/−0.4/−0.4/+0.4/+0.4) for the a parameter and (0/+0.7/+0.7/−0.7/−0.7) for the b parameter, (b) 

there was no impact and the DIF pattern was (0/+0.7/+0.7/−0.7/−0.7) for the b parameter, and (c) 

impact was present and the DIF pattern was (0/+0.7/+0.7/−0.7/−0.7) for the b parameter. 

As explained earlier, all items were tested at Stage 1 for the purpose of identifying DIF-

free items to serve as anchors at Stage 2, necessitating the need to develop procedures for special 

anchor-identification circumstances. For the GMH index, Stage 2 consisted of two parts: partial 

purification and full purification. To achieve partial purification, each item that exhibited DIF in 

Stage 1 was retested using the anchor items; to achieve full purification, each anchor item was 

then retested against the remaining anchor items (Fikis & Oshima, 2017). Procedures were 

embedded in the GMH code to address two special circumstances in this two-stage process: 

failure to recover any anchor items or recovery of a single anchor item. If no anchors were 

identified in Stage 1, which rendered further testing unnecessary, the Stage 1 results were treated 
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as the final results for the dataset. If a single anchor item was identified, it was not possible to re-

test that item in Stage 2 because there were no remaining anchor items; in this instance, the Stage 

1 results were treated as the final results for that item. Failure to recover any anchor items 

occurred with 15 of the 8,200 simulated datasets – approximately 0.18% of the analyses – in the 

following crossed conditions, all of which had five groups and equal sample sizes: 

• no impact with the uniform DIF pattern (0/+0.7/+0.7/−0.7/−0.7) for the b parameter 

(six datasets), 

• no impact with the non-uniform DIF pattern (0/−0.4/−0.4/+0.4/+0.4) for the a 

parameter and (0/+0.7/+0.7/−0.7/−0.7) for the b parameter (six datasets), and 

• impact present with the uniform DIF pattern (0/+0.7/+0.7/−0.7/−0.7) for the b 

parameter (three datasets). 

Recovery of a single anchor item occurred with 53 of the 8,200 simulated datasets – 

approximately 0.65% of the analyses – in the following crossed conditions, all of which had five 

groups and equal sample sizes: 

• no impact with the uniform DIF pattern (0/+0.7/+0.7/−0.7/−0.7) for the b parameter 

(14 datasets), 

• no impact with the non-uniform DIF pattern (0/−0.4/−0.4/+0.4/+0.4) for the a 

parameter and (0/+0.7/+0.7/−0.7/−0.7) for the b parameter (22 datasets),  

• impact present with the uniform DIF pattern (0/+0.7/+0.7/−0.7/−0.7) for the b 

parameter (13 datasets), and 

• impact present with the non-uniform DIF pattern (0/−0.4/−0.4/+0.4/+0.4) for the a 

parameter and (0/+0.7/+0.7/−0.7/−0.7) for the b parameter (four datasets). 
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This means that, out of the 180,709 anchor items that were identified throughout this study, 53 

(or 0.03%) of these items could not be re-tested for DIF in Stage 2. 

For the MIMIC index, at least one item must have been assigned as an anchor to achieve 

model identification in Stage 2; therefore, if no anchor was recovered in the first stage, Item 5, 

the most discriminating DIF-free item, was designated as the anchor. This occurred with two of 

the 8,200 simulated datasets – approximately 0.02% of the analyses – in the five-group, equal 

sample size condition in which DIF was embedded in the b parameter (0/+0.7/+0.7/−0.7/−0.7): 

once when impact was present and once when it was not. Given the relatively small frequency 

with which these special anchor circumstances occurred, this topic will not be addressed in 

relation to the remaining results, which are organized by studied condition. 

Number of Groups 

The performance of the GMH and MIMIC DIF detection methods was affected by the 

number of groups. For both indices, the power tended to be the same or slightly higher in the 

five-group condition. For example, with the GMH index, in the non-uniform condition with no 

impact, unequal sample sizes, and a pattern of (0/−0.4/0) for the three-group condition and 

(0/−0.4/0/0/0) for the five-group condition, power equaled .120 and .132, respectively; the power 

of the MIMIC index in the same conditions was .382 and .395, respectively. Unfortunately, the 

GMH and MIMIC Type I error rates also tended to be the same or slightly higher in the five-

group condition. These power and Type I error results were to be expected, given that GMH and 

MIMIC are both omnibus tests that at least one pairwise comparison will be found significant; 

the more comparisons that are made, the more likely an item is to be flagged – correctly or 

erroneously – for DIF. However, despite some higher flagging rates, both the three- and five-
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group conditions followed the same performance patterns with respect to the other manipulated 

factors discussed below. 

Oshima et al. (2015) found that the MG-NCDIF index was not sensitive to the number of 

groups studied. As they explained, care must be taken when interpreting the results, as the three-

group condition and the five-group condition are not perfectly comparable due to the fact that the 

MG-NCDIF index is calculated by averaging the d2 values of the pairwise comparisons. Take, 

for example, the case of unequal groups where no impact is present and uniform DIF has been 

embedded using the pattern (0/+0.7/0) for the three-group condition and the patterns 

(0/+0.7/0/0/0) and (0/+0.7/+0.7/0/0) for the five-group condition. It is expected for power to be 

lowest in the (0/+0.7/0/0/0) condition, with an increase in the (0/+0.7/0) condition, and the 

highest power in the (0/+0.7/+0.7/0/0) condition; indeed, this was the case, with observed power 

equaling .60, .63, and .71, respectively. The Type I error rates between these three example 

conditions were nearly identical: .03, .03, and .04, respectively. 

Sample Size 

For all three DIF detection methods, power and Type I error rates were generally higher 

for equal sample size conditions than the unequal sample sizes. (The differences in Type I error 

were especially pronounced for the MG-NCDIF index.) As noted earlier, all three methods are 

sensitive to sample size. The larger the sample size, the more likely an item is to be flagged – 

correctly or erroneously – for DIF. In the case of three-group analyses, the total sample size is 

4,000 in the equal-groups conditions and 2,667 in the unequal-groups conditions (including the 

base group); in the case of five-group analyses, the total N counts are 6,000 and 4,800, 

respectively. These differences are substantial, and likely account for the observed differences. 
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With respect to the other manipulated conditions, datasets with equal and unequal sample sizes 

exhibited commensurate performance. 

Type of DIF 

Both uniform and non-uniform DIF were analyzed. Caution must be exercised when 

comparing the results for different types of DIF because the magnitude of DIF is greater in 

conditions where both the a and b parameters are manipulated to produce non-uniform DIF than 

conditions where a single parameter is manipulated to produce uniform DIF (via adjustment of 

the b parameter) or non-uniform DIF (via adjustment of the a parameter only). In other words, 

the effect of the type of DIF becomes confounded with the effect of the magnitude of DIF. 

Therefore, it was expected that the MG-NCDIF and MIMIC indices would exhibit the highest 

power when non-uniform DIF is modeled via manipulation of both the a and b parameters, with 

power decreasing for uniform DIF detection; the lowest power rates were expected to be 

associated with non-uniform DIF modeled by the a parameter only. For the GMH index, which 

is not designed to take differences in the a parameter into account, the magnitude of DIF did not 

increase when both parameters were manipulated; therefore, power for uniform DIF detection 

was expected to be highest. 

As predicted, performance differences were observed between the types of DIF detected 

by the MIMIC index. MIMIC performed at its poorest when used to detect non-uniform DIF of 

the a parameter, with power ranging from .610 to .970 for equal groups and from .340 to .887 for 

unequal groups. The MIMIC method produced excellent results for uniform DIF detection, with 

power ranging from .995 to 1.000 for equal groups and from .937 to 1.000 for unequal groups. 

MIMIC results were also impressive when non-uniform DIF modeled by adjustments to both the 
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a and b parameters was simulated; power ranged from .997 to 1.000 for equal groups and from 

.948 to 1.000 for unequal groups. 

Similarly, performance differences were observed between the types of DIF detected by 

the MG-NCDIF index. As was the case with the MIMIC method, MG-NCDIF performed at its 

poorest when used to detect non-uniform DIF of the a parameter; its power ranged from .27 to 

.63 for equal groups and from .15 to .55 for unequal groups. Uniform DIF detection with the 

MG-NCDIF method demonstrated lower power than the other two methods, with rates of .68 to 

.87 for equal groups and .60 to .88 for unequal groups. MG-NCDIF results improved when both 

the a and b parameters were manipulated to produce non-uniform DIF; under this condition, 

power ranged from .69 to 1.00 for equal groups and from .63 to 1.00 for unequal groups. 

The GMH method produced excellent results for uniform DIF detection, with power 

ranging from .997 to 1.000 for equal groups and from .950 to 1.000 for unequal groups. 

However, as expected, GMH performed poorly when used to detect non-uniform DIF via 

manipulation of the a parameter only, with power ranging from .068 to .262 for equal groups and 

from .025 to .240 for unequal groups. When non-uniform DIF via manipulation of both the a and 

b parameters was present, the power of GMH improved, ranging from .793 to 1.000 for equal 

groups and from .647 to 1.000 for unequal groups. 

DIF Patterns 

 For all three indices, within the unidirectional pattern, as the number of groups with DIF 

increased from one to two, the power increased as well. For example, in the GMH no-impact, 

unequal-groups condition with uniform DIF only, the single-group pattern of (0/+0.7/0/0/0) 

exhibited power of .980, while the multiple-group pattern of (0/+0.7/+0.7/0/0) demonstrated 
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power of 1.000. In other words, as the number of groups having DIF embedded in their 

parameters increased, DIF was more easily detected. 

Similarly, for all three methods, the bidirectional patterns demonstrated higher power as 

compared to their unidirectional counterparts. For example, in the MIMIC no-impact, equal-

groups condition with non-uniform DIF of the a parameter only, the bidirectional pattern of 

(0/−0.4/−0.4/+0.4/+0.4) exhibited higher power (.952) than the unidirectional pattern of 

(0/−0.4/−0.4/0/0), where power equaled .745. This is to be expected, given that in a bidirectional 

pattern, the difference in parameter values between the group with the highest parameter value 

and the group with lowest corresponding parameter value is twice that of the unidirectional 

pattern (0.8 versus 0.4 in this example). In other words, bidirectional DIF was more easily 

detected than unidirectional DIF for all studied methods. 

It is interesting to note that the pattern of DIF also affected the Type I error rates for the 

GMH index. For GMH, the difference between the Type I error rate for an equal-groups 

condition and its unequal-groups counterpart was .004 or less approximately 78% of the time. 

For the remaining conditions, this difference ranged from .013 to .071, and all of these larger 

Type I error differences between an equal-groups condition and its unequal-groups counterpart 

occurred when the DIF pattern was either bidirectional uniform (via manipulation of the b 

parameter) or bidirectional non-uniform (via manipulation of both the a and b parameters). 

Furthermore, as stated earlier, the GMH Type I error rate did exceed the nominal alpha level of 

.05 for three of the 82 crossed conditions; all three of these cases occurred in conditions in which 

the DIF pattern was bidirectional. Thus, it seems that the GMH index is more sensitive to various 

DIF patterns than the other studied methods. 
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Impact 

For the MIMIC method, the differences between impact conditions, when all other 

conditions were held constant, were small, a finding that may be attributed to the fact that group 

differences in mean ability are explicitly modeled by the paths from the grouping variables to the 

latent factor. Similarly, Oshima et al. (2015) concluded that the impact condition did not affect 

the performance of the MG-NCDIF index, owing to the efficacy of the two-stage linking 

procedure. Indeed, for MG-NCDIF the difference between impact conditions, when everything 

else was equal, was remarkably small. 

However, the same does not appear to be true of the GMH statistic. In the GMH three-

group conditions, power was typically highest when no impact was present and decreased when 

bidirectional impact was present, with unidirectional impact exhibiting the lowest power. This 

was consistent with the finding that, in the GMH five-group conditions, power was typically 

higher in the impact-free condition than the unidirectional-impact condition. This suggests that 

the flagging rates for items tended to increase when any type of impact was present but, as the 

GMH index does not partial out group mean differences from DIF, the resulting power was 

lowered, and Type I error increased. 
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Table 3 

GMH Power and Type I Error Rates – Three-Group Condition 

 

DIF 

Type 

   Equal Ns Unequal Ns 

   (1000/1000/1000) (1000/500/500) 

%DIF Pattern Impact P TIE P TIE 

– 0 (0/0/0) 0/0/0 – < .001 – .000 

   0/−0.5/−0.5 – .001 – .000 

   0/−0.5/0.5 – .001 – .000 

a 20 (0/−0.4/0) 0/0/0 .177 .002 .120 .002 

   0/−0.5/−0.5 .068 .001 .025 .001 

   0/−0.5/0.5 .103 .003 .040 .001 

  (0/−0.4/0.4) 0/0/0 .212 .002 .178 .004 

   0/−0.5/−0.5 .240 .005 .110 .004 

   0/−0.5/0.5 .222 .005 .152 .003 

b 20 (0/0.7/0) 0/0/0 1.000 .008 .980 .008 

   0/−0.5/−0.5 .997 .006 .953 .008 

   0/−0.5/0.5 1.000 .009 .950 .006 

  (0/0.7/−0.7) 0/0/0 1.000 .016 1.000 .012 

   0/−0.5/−0.5 1.000 .038 1.000 .008 

   0/−0.5/0.5 1.000 .026 1.000 .009 

a/b 20 (0/−0.4/0) 0/0/0 .890 .007 .843 .005 

  (0/0.7/0) 0/−0.5/−0.5 .793 .006 .648 .008 

   0/−0.5/0.5 .823 .009 .707 .005 

  (0/−0.4/0.4) 0/0/0 1.000 .021 1.000 .008 

  (0/0.7/−0.7) 0/−0.5/−0.5 1.000 .027 .998 .008 

   0/−0.5/0.5 1.000 .035 1.000 .011 

Note. DIF Type = manipulation of a parameter only, b parameter only, or both a and b 

parameters. %DIF = percentage of items manipulated to create DIF. Pattern = difference in 

manipulated parameters from Group 1. Impact = mean difference from Group 1. P = power. TIE 

= Type I error. 
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Table 4 

GMH Power and Type I Error Rates – Five-Group Condition 

    Equal Ns Unequal Ns 

 

DIF 

Type 

   (1000/1000/1000/ 

1000/1000) 

(1000/500/500/ 

1000/1000) 

%DIF Pattern Impact P TIE P TIE 

– 0 (0/0/0/0/0) 0/0/0/0/0 – .001 – .001 

   0/−0.5/−0.5/0/0 – .003 – .001 

a 20 (0/−0.4/0/0/0) 0/0/0/0/0 .178 .002 .132 .003 

   0/−0.5/−0.5/0/0 .080 .002 .047 .002 

  (0/−0.4/−0.4/0/0) 0/0/0/0/0 .200 .003 .178 .003 

   0/−0.5/−0.5/0/0 .172 .003 .100 .001 

  (0/−0.4/−0.4/0.4/0.4) 0/0/0/0/0 .243 .004 .240 .003 

   0/−0.5/−0.5/0/0 .262 .004 .227 .003 

b 20 (0/0.7/0/0/0) 0/0/0/0/0 1.000 .010 .980 .010 

   0/−0.5/−0.5/0/0 1.000 .009 .958 .008 

  (0/0.7/0.7/0/0) 0/0/0/0/0 1.000 .008 1.000 .009 

   0/−0.5/−0.5/0/0 1.000 .009 .998 .011 

  (0/0.7/0.7/−0.7/−0.7) 0/0/0/0/0 1.000 .068 1.000 .011 

   0/−0.5/−0.5/0/0 1.000 .089 1.000 .018 

a/b 20 (0/−0.4/0/0/0) 0/0/0/0/0 .882 .009 .847 .011 

  (0/0.7/0/0/0) 0/−0.5/−0.5/0/0 .802 .011 .647 .008 

  (0/−0.4/−0.4/0/0) 0/0/0/0/0 .928 .013 .898 .010 

  (0/0.7/0.7/0/0) 0/−0.5/−0.5/0/0 .835 .008 .815 .010 

  (0/−0.4/−0.4/0.4/0.4) 0/0/0/0/0 1.000 .080 1.000 .017 

  (0/0.7/0.7/−0.7/−0.7) 0/−0.5/−0.5/0/0 1.000 .048 1.000 .018 

Note. DIF Type = manipulation of a parameter only, b parameter only, or both a and b 

parameters. %DIF = percentage of items manipulated to create DIF. Pattern = difference in 

manipulated parameters from Group 1. Impact = mean difference from Group 1. P = power. TIE 

= Type I error. 
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Table 5 

MIMIC Power and Type I Error Rates – Three-Group Condition 

 

DIF 

Type 

   Equal Ns Unequal Ns 

   (1000/1000/1000) (1000/500/500) 

%DIF Pattern Impact P TIE P TIE 

– 0 (0/0/0) 0/0/0 – .001 – < .001 

   0/−0.5/−0.5 – .001 – .001 

   0/−0.5/0.5 – .003 – .002 

a 20 (0/−0.4/0) 0/0/0 .643 .004 .382 .004 

   0/−0.5/−0.5 .623 .005 .340 .003 

   0/−0.5/0.5 .695 .010 .402 .005 

  (0/−0.4/0.4) 0/0/0 .805 .004 .665 .005 

   0/−0.5/−0.5 .765 .011 .580 .007 

   0/−0.5/0.5 .883 .013 .710 .006 

b 20 (0/0.7/0) 0/0/0 .995 .007 .963 .008 

   0/−0.5/−0.5 .998 .012 .937 .008 

   0/−0.5/0.5 .997 .027 .955 .014 

  (0/0.7/−0.7) 0/0/0 1.000 .012 1.000 .011 

   0/−0.5/−0.5 1.000 .030 1.000 .012 

   0/−0.5/0.5 1.000 .050 1.000 .016 

a/b 20 (0/−0.4/0) 0/0/0 .998 .005 .980 .006 

  (0/0.7/0) 0/−0.5/−0.5 .997 .012 .948 .010 

   0/−0.5/0.5 .997 .015 .955 .009 

  (0/−0.4/0.4) 0/0/0 1.000 .015 1.000 .005 

  (0/0.7/−0.7) 0/−0.5/−0.5 1.000 .016 1.000 .012 

   0/−0.5/0.5 1.000 .043 1.000 .017 

Note. DIF Type = manipulation of a parameter only, b parameter only, or both a and b 

parameters. %DIF = percentage of items manipulated to create DIF. Pattern = difference in 

manipulated parameters from Group 1. Impact = mean difference from Group 1. P = power. TIE 

= Type I error. 
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Table 6 

MIMIC Power and Type I Error Rates – Five-Group Condition 

 

 

DIF 

Type 

   Equal Ns Unequal Ns 

   (1000/1000/1000/ 

1000/1000) 

(1000/500/500/ 

1000/1000) 

%DIF Pattern Impact P TIE P TIE 

– 0 (0/0/0/0/0) 0/0/0/0/0 – .002 – .001 

   0/−0.5/−0.5/0/0 – .002 – .001 

a 20 (0/−0.4/0/0/0) 0/0/0/0/0 .610 .008 .395 .003 

   0/−0.5/−0.5/0/0 .630 .011 .408 .005 

  (0/−0.4/−0.4/0/0) 0/0/0/0/0 .745 .008 .618 .003 

   0/−0.5/−0.5/0/0 .798 .012 .622 .006 

  (0/−0.4/−0.4/0.4/0.4) 0/0/0/0/0 .952 .008 .868 .008 

   0/−0.5/−0.5/0/0 .970 .012 .887 .012 

b 20 (0/0.7/0/0/0) 0/0/0/0/0 .998 .010 .955 .010 

   0/−0.5/−0.5/0/0 1.000 .020 .947 .017 

  (0/0.7/0.7/0/0) 0/0/0/0/0 1.000 .008 .997 .007 

   0/−0.5/−0.5/0/0 1.000 .023 .995 .017 

  (0/0.7/0.7/−0.7/−0.7) 0/0/0/0/0 1.000 .014 1.000 .017 

   0/−0.5/−0.5/0/0 1.000 .040 1.000 .028 

a/b 20 (0/−0.4/0/0/0) 0/0/0/0/0 1.000 .008 .985 .010 

  (0/0.7/0/0/0) 0/−0.5/−0.5/0/0 .997 .019 .950 .011 

  (0/−0.4/−0.4/0/0) 0/0/0/0/0 1.000 .009 1.000 .009 

  (0/0.7/0.7/0/0) 0/−0.5/−0.5/0/0 1.000 .020 .998 .013 

  (0/−0.4/−0.4/0.4/0.4) 0/0/0/0/0 1.000 .011 1.000 .014 

  (0/0.7/0.7/−0.7/−0.7) 0/−0.5/−0.5/0/0 1.000 .038 1.000 .020 

Note. DIF Type = manipulation of a parameter only, b parameter only, or both a and b 

parameters. %DIF = percentage of items manipulated to create DIF. Pattern = difference in 

manipulated parameters from Group 1. Impact = mean difference from Group 1. P = power. TIE 

= Type I error. 
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Table 7 

MG-NCDIF Power and Type I Error Rates – Three-Group Condition 

 

DIF 

Type 

   Equal Ns Unequal Ns 

   (1000/1000/1000) (1000/500/500) 

%DIF Pattern Impact P TIE P TIE 

– 0 (0/0/0) 0/0/0 – .06 – .02 

   0/−0.5/−0.5 – .05 – .02 

   0/−0.5/0.5 – .07 – .02 

a 20 (0/−0.4/0) 0/0/0 .41 .09 .15 .02 

   0/−0.5/−0.5 .38 .10 .17 .04 

   0/−0.5/0.5 .41 .11 .17 .03 

  (0/−0.4/0.4) 0/0/0 .60 .08 .36 .02 

   0/−0.5/−0.5 .57 .09 .39 .04 

   0/−0.5/0.5 .62 .11 .40 .03 

b 20 (0/0.7/0) 0/0/0 .74 .07 .63 .03 

   0/−0.5/−0.5 .69 .08 .64 .04 

   0/−0.5/0.5 .76 .08 .64 .04 

  (0/0.7/−0.7) 0/0/0 .87 .08 .88 .02 

   0/−0.5/−0.5 .85 .08 .84 .03 

   0/−0.5/0.5 .87 .09 .85 .06 

a/b 20 (0/−0.4/0) 0/0/0 .90 .08 .64 .02 

  (0/0.7/0) 0/−0.5/−0.5 .82 .09 .66 .03 

   0/−0.5/0.5 .78 .08 .66 .03 

  (0/−0.4/0.4) 0/0/0 .94 .09 .99 .05 

  (0/0.7/−0.7) 0/−0.5/−0.5 1.00 .10 1.00 .03 

   0/−0.5/0.5 .99 .10 1.00 .05 

Note. The MG-NCDIF results in the power (P) and Type I error (TIE) columns reflect the item 

parameter replication significance test only. DIF = manipulation of a parameter only, b 

parameter only, or both a and b parameters. %DIF = percentage of items manipulated to create 

DIF. Pattern = difference in manipulated parameters from Group 1. Impact = mean difference 

from Group 1. Adapted from “Multiple Group Noncompensatory Differential Item Functioning 

in Raju’s Differential Functioning of Items and Tests,” by T. C. Oshima, K. Wright, and N. 

White, 2015, International Journal of Testing, 15, pp. 254-273. Reprinted with permission. 
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Table 8 

MG-NCDIF Power and Type I Error Rates – Five-Group Condition 

 

 

DIF 

Type 

   Equal Ns Unequal Ns 

   (1000/1000/1000/ 

1000/1000) 

(1000/500/500/ 

1000/1000) 

%DIF Pattern Impact P TIE P TIE 

– 0 (0/0/0/0/0) 0/0/0/0/0 – .07 – .04 

   0/−0.5/−0.5/0/0 – .07 – .04 

a 20 (0/−0.4/0/0/0) 0/0/0/0/0 .29 .07 .19 .04 

   0/−0.5/−0.5/0/0 .27 .07 .18 .05 

  (0/−0.4/−0.4/0/0) 0/0/0/0/0 .42 .10 .34 .05 

   0/−0.5/−0.5/0/0 .40 .10 .33 .06 

  (0/−0.4/−0.4/0.4/0.4) 0/0/0/0/0 .63 .09 .55 .04 

   0/−0.5/−0.5/0/0 .63 .12 .53 .04 

b 20 (0/0.7/0/0/0) 0/0/0/0/0 .69 .06 .60 .03 

   0/−0.5/−0.5/0/0 .68 .08 .63 .04 

  (0/0.7/0.7/0/0) 0/0/0/0/0 .79 .06 .71 .04 

   0/−0.5/−0.5/0/0 .78 .06 .73 .05 

  (0/0.7/0.7/−0.7/−0.7) 0/0/0/0/0 .84 .09 .86 .04 

   0/−0.5/−0.5/0/0 .84 .07 .86 .04 

a/b 20 (0/−0.4/0/0/0) 0/0/0/0/0 .69 .09 .63 .05 

  (0/0.7/0/0/0) 0/−0.5/−0.5/0/0 .69 .07 .64 .03 

  (0/−0.4/−0.4/0/0) 0/0/0/0/0 .78 .09 .73 .05 

  (0/0.7/0.7/0/0) 0/−0.5/−0.5/0/0 .78 .09 .74 .05 

  (0/−0.4/−0.4/0.4/0.4) 0/0/0/0/0 1.00 .11 1.00 .06 

  (0/0.7/0.7/−0.7/−0.7) 0/−0.5/−0.5/0/0 1.00 .13 1.00 .06 

Note. The MG-NCDIF results in the power (P) and Type I error (TIE) columns reflect the item 

parameter replication significance test only. DIF = manipulation of a parameter only, b 

parameter only, or both a and b parameters. %DIF = percentage of items manipulated to create 

DIF. Pattern = difference in manipulated parameters from Group 1. Impact = mean difference 

from Group 1. Adapted from “Multiple Group Noncompensatory Differential Item Functioning 

in Raju’s Differential Functioning of Items and Tests,” by T. C. Oshima, K. Wright, and N. 

White, 2015, International Journal of Testing, 15, pp. 254-273. Reprinted with permission. 
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5  DISCUSSION 

 

This study was designed to compare the performance of the MG-NCDIF index with the 

GMH and MIMIC DIF detection methods in simulated conditions that modeled both uniform 

and non-uniform DIF. Additionally, the GMH and MIMIC methods, which have historically 

used a traditional reference group, were modeled using a base group reference. A critical race 

theory framework guided this study. The goal was to answer the following questions. First, how 

does MG-NCDIF perform compared to existing multiple-group DIF detection methods? Second, 

does the efficacy of the GMH and MIMIC indices vary when detecting various types of DIF (i.e., 

uniform or non-uniform)? 

Overall, the MG-NCDIF method exhibited lower power and higher Type I error rates 

than the MIMIC method. The MG-NCDIF method did outperform the GMH method when non-

uniform DIF was simulated via the a parameter only; however, when the b parameter was 

manipulated (to model uniform DIF or non-uniform DIF in combination with manipulation of 

the a parameter), power was higher for the GMH index than the MG-NCDIF index. Across 

analyses, GMH exhibited lower Type I error rates than MG-NCDIF. 

In comparison with the GMH method, the MIMIC method demonstrated higher power 

when (a) non-uniform DIF via manipulation of the a parameter or (b) unidirectional or 

bidirectional non-uniform DIF via manipulation of the a and b parameters was present. The two 

indices performed similarly in regard to power for the remaining conditions. MIMIC exhibited 

slightly higher Type I error rates than GMH, except in cases when the GMH Type I error rate 

exceeded .02. 

All three methods exhibited higher power for the detection of uniform DIF and non-

uniform DIF when both the a and b parameters were adjusted; power was lower for the detection 
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of non-uniform DIF when the adjustment was made solely to the a parameter. As mentioned 

earlier, caution must be exercised when comparing the results for different types of DIF because 

the effect of the type of DIF becomes confounded with the effect of the magnitude of DIF when 

two parameters are manipulated instead of a single parameter. As expected, the difference in 

observed performance based on DIF type was most noticeable for the GMH method. Power 

consistently exceeded .900 for the MIMIC index when uniform DIF or non-uniform DIF via 

manipulation of the a and b parameters was modeled and for the GMH index when uniform DIF 

or bidirectional non-uniform DIF via manipulation of the a and b parameters was modeled, 

indicating that the base group is an efficacious reference under these conditions. Given that the 

base group is likely a representative sample of the full dataset, it is not expected that use of a 

base group reference would detrimentally impact the remaining conditions, but further study is 

needed to make such a claim. Therefore, it is suggested that simulations be conducted in which 

DIF detection rates for traditional and base reference groups are directly compared. 

This study is significant for several reasons. First, although a simulation study was 

conducted to assess the performance of the MG-NCDIF index (Oshima et al., 2015), there had 

not yet been a simulation study to compare this index with existing methods of DIF detection. 

Second, most simulation studies that have examined the performance of the GMH and MIMIC 

methods did so in the context of uniform DIF; there have been few simulation studies that 

examined the performance of these methods in the context of non-uniform DIF. Finally, the fact 

that the MG-NCDIF, GMH, and MIMIC indices were modeled using a base (i.e., composite or 

omnicultural) reference group, the findings of this study contributed to the existing literature 

base on the use of such a reference group in DIF detection. 
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The three (multiple-factor) multiple-group DIF detection methods examined in this study 

all show promising results. Of course, various DIF detection methods may or may not identify 

the same set of items as exhibiting DIF for the same groups, as Hambleton (2006) expounded: 

it is well-known that competing DIF procedures do not produce identical results 

and this is not surprising because procedures are themselves quite different – 

some are model-based, others are not; some condition or match on test score and 

others on a latent trait or traits, 2-stage DIF remains an option with many of the 

procedures, and summarizing conditional differences at ability levels is handled 

differently by the various procedures. (p. S186) 

Hambleton’s preferred approach to “apply multiple procedures and then especially focus on the 

items that show the largest statistics with each procedure” (p. S186) may indeed be the most 

responsible method for practitioners. However, limited resources may preclude such practice, 

and readers may be interested in the recommendation of a single method. Based on the 

procedures used in the current study and the results thereof, the following recommendations are 

provided.  

Overall, the MIMIC method exhibited the best performance across the studied conditions, 

balancing the highest power with acceptable Type I error rates. This index was, by far, the most 

successful in the identification of non-uniform DIF when only the a parameter was manipulated 

and had exceptional detection rates in the other conditions; its use is therefore recommended 

when both uniform and non-uniform DIF detection are of interest. If, however, the practitioner is 

solely interested in the detection of uniform DIF, the GMH method is recommended, based on 

the excellent power it exhibited and the ease of which this method may be implemented (see 

below for further discussion). Although the Type I error rates exceeded the nominal alpha level 
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in some conditions, practitioners may be willing to overlook this downfall, given that the result is 

that some items that are flagged as exhibiting DIF are, in fact, DIF-free.  

Of course, making recommendations based solely on the efficacy of the various 

approaches (i.e., the power and Type I error results) is a relatively straightforward activity. 

Ultimately, however, the selection of a DIF detection approach should be based on (a) theoretical 

and philosophical considerations related to the assessment program and the various candidate 

DIF detection methods; (b) methodological considerations, such as purification procedures and 

post-hoc testing; and (c) practical considerations, including requisite sample sizes, time 

limitations, expense, and the availability of requisite software.  

There are several theoretical and philosophical questions related to the assessment 

program and the various candidate DIF detection methods with which practitioners must wrestle. 

What is the scoring philosophy of the assessment program, and which DIF method is most 

consistent with that philosophy? Which matching criterion is preferrable: test scores or a latent 

trait? What assumptions are associated with each DIF detection method, and are they tenable? 

Are covariates to be included in the model? The recommendation of a DIF detection method is 

dependent on the answers to questions such as these. For example, if performance is reported as 

a raw score for a particular assessment (i.e., IRT procedures such as equating are not conducted), 

the GMH approach would be most consistent with the scoring philosophy. If, however, the 

assessment program equates forms using a Rasch IRT model, the MIMIC and MG-NCDIF 

approaches would be more consistent with the operational philosophy. It should be noted that the 

MG-NCDIF index is the only DIF detection method studied herein that permits modeling of a 

pseudo-chance (guessing) parameter and is, therefore, the recommended approach when the 

assessment program employs three-parameter logistic (3PL) IRT modeling. Furthermore, the 
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GMH index has the advantage of having the fewest assumptions – unidimensionality and a fixed 

odds ratio across scores – of the studied methods, while MIMIC models assume 

unidimensionality, local independence, and equal variances for the latent trait across groups and 

the MG-NCDIF index assumes unidimensionality, local independence, and model fit (Chun et 

al., 2016; Teresi, 2006). On the other hand, GMH cannot be used to detect DIF when covariates 

are to be included in the model; in such cases, use of the parametric MIMIC and MG-NCDIF 

indices would be most appropriate. As a thorough comparison of the assumptions, advantages, 

and disadvantages associated with these DIF detection methods, as well as other methods, 

extends beyond the scope of this paper, readers are referred to Hambleton (2006) and Teresi 

(2006) for an excellent discussion of these topics. 

Methodological considerations such as purification procedures and post-hoc testing 

should also be weighed when evaluating the relative (dis)advantages of various DIF detection 

approaches. For practitioners and researchers intending to identify a purified anchor set (i.e., 

conducting a two-stage DIF analysis), the GMH method using the R (R Core Team, 2020) 

“difR” package (Magis et al., 2010) is both the simplest and quickest of the three methods 

studied herein. In fact, the “difGMH” function includes an optional argument indicating whether 

the user wishes to purify the dataset using an iterative procedure, alleviating the need to write 

additional code. Unfortunately, purification is a more demanding task with the MIMIC and MG-

NCDIF indices. For MIMIC, additional Mplus (Muthén & Muthén, 2007) code is necessitated, 

and the run time for analyses is nearly doubled. For MG-NCDIF, after identifying a set of anchor 

items, a second linking process is required and these purified linking coefficients must then be 

applied to the second stage of the analysis. The MG-NCDIF index does have an advantage over 

the MIMIC index in that the anchor items are automatically retested for DIF (i.e., full 
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purification is achieved) without the use of additional coding. Additionally, post-hoc testing may 

also be of interest to users, to determine which groups differ from the reference group when 

omnibus significance is found. If post-hoc testing is to be conducted, MG-NCDIF and GMH are 

the recommended DIF detection approaches of those included in the current study. Recall that 

MG-NCDIF is defined as  
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exhibiting the greatest difference from the base group, users need only modify the SAS (SAS 

Institute Inc., 2012) code to print the ( )
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index is calculated; the higher this value is for a group, the more that group is contributing to the 

significant omnibus DIF result. In other words, to alleviate the need for post-hoc tests, the code 

may be written to show pairwise NCDIF values prior to combining them in a single MG-NCDIF 

index. Post-hoc testing is also quite simple for the GMH index: simply conduct pairwise analyses 

of each group against the base group using the MH method (Finch, 2016) or MH with a 

Bonferroni-adjusted alpha level (Penfield, 2001). Conversely, post-hoc testing with the MIMIC 

index is both complex and time-consuming; it necessitates additional experimental model 

comparisons in which model paths are freed or dropped, an endeavor that has yet to be studied 

by DIF scholars and which would entail substantial additional coding (either in R or Mplus). 

Practical considerations invariably come into play when selecting a DIF detection 

method. In authentic testing situations, psychometricians are often expected to turn around 

student scores in an expedited timeframe. Of the methods featured in the current study, the GMH 
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approach is likely the most practical option for many assessment companies and researchers. As 

a non-parametric method, it has the lowest sample size requirements of the three approaches, a 

desirable trait when planning field testing and when meeting tight reporting deadlines for 

operational field test assessment items. It is also the most time-efficient DIF detection method, as 

it requires writing only a small amount of R code and the two-stage analysis of a 30-item 

assessment takes approximately one minute. As added benefits, the Mplus code is short and 

simple, and the hand-calculated χ2 difference tests of nested models are easy to conduct. The 

availability of R at no cost to the user is also a relative advantage for this method. The parametric 

approaches, on the other hand, have higher sample size requirements, take considerably more 

time to complete, require more coding expertise, and have higher associated software licensing 

fees. As explained earlier, for the MIMIC method, nested models must be compared separately 

for each studied item; for a 30-item assessment, this could take several hours. The process may 

be automated using R, as was done herein, which would reduce the run-time significantly, but it 

requires the practitioner to know an additional coding language. The fees for Mplus licensing 

may also be prohibitive for researchers or small organizations. Similarly, due to the necessity of 

linking each focal group to the reference group, the MG-NCDIF approach is more time 

consuming and requires multiple software applications, and these licenses may be costly as well. 

Furthermore, the “DIFCUT” program (Nanda, Oshima, & Gagne, 2005), which is currently 

available only in SAS (SAS Institute Inc., 2012), must be modified based on the number of 

groups in a particular study, an endeavor that requires extra time and coding ability. 

One final recommendation merits attention: the selection of a reference group. Each of 

the three DIF detection methods studied herein may be conducted with a base reference group, 

despite the fact that GMH and MIMIC studies have historically been conducted with a traditional 
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reference group. It is worth noting that, although the use of a base group is recommended when 

identifying DIF between racial/ethnic groups, its use may not always be appropriate. For 

example, in the case of a test designed to assess students’ command of the English language, the 

use of a traditional reference group comprised of native English speakers is a defensible decision 

because, ultimately, it is desirable for the performance of English learners to be commensurate 

with the performance of students for whom English is their first language and for items to 

function identically between these two groups. Therefore, it is strongly recommended that, as 

discussed earlier, the choice of a reference group be based on the definitions of fairness and bias 

that are most applicable to the research study being conducted or the assessment program goals. 

At this point, it is typical for the researcher to identify a few major limitations of his/her 

study and recommend future quantitative endeavors. It is here that I wish to rejoin my readers in 

a more personal manner. As I discussed earlier, CRT and QuantCrit scholars advocate for de-

anonymized research in which the researcher is forthcoming about decisions related to analytical 

design, data, interpretations, and analysis. I have attempted to provide as much transparency as 

possible regarding the methodological decisions that I made throughout the course of this study 

because, as Garcia and Mayorga (2018) eloquently explained,  

exogenous forces require that researchers make compromises in their research 

practices, yet it is important to note that these decisions are not viewed as 

compromises, but normal decisions made in the course of conducting research . . . 

these small, ‘normal’ compromising decisions are where white supremacy is 

reproduced and comes to bear through research outcomes. (p. 246) 

Herein, I have acknowledged the compromises that I made in the course of my work, making 

myself professionally vulnerable in the process. Each compromise that I made during this 
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research study became an inherent limitation to the study. For example, in choosing to 

manipulate the a parameter by 0.4, my study is limited by the fact that I didn’t explore smaller 

differences in each group’s a parameter, such as 0.2, or larger differences, such as 0.6. In the 

interest of providing guidance to my readers, and to adhere to the tradition of naming just a few 

limitations, I am happy to identify those that I believe to be the most important. (Of course, you 

are welcome to respectfully disagree.) 

With one exception, which I will discuss momentarily, the most significant limitations to 

my study shared a common cause, that most precious and limited resource: time. First, the 

analyses conducted in the current study did not include DIF detection with a traditional reference 

group, which would have allowed for a direct comparison of the performance of the base 

reference group against the traditional reference group for each DIF detection method. The 

results herein indicate that use of a base reference group is potentially as efficacious as the use of 

a traditional reference group. If that turns out to be true, it provides quantitative justification for a 

change in the psychometric status quo, in addition to the other justifications provided earlier in 

this study. In other words, such studies could provide a more solid statistical foundation on 

which to build a movement to end the “Whiteness as the ideal to be reached” mentality in testing. 

It is, therefore, imperative that these analyses be conducted in the future. The second limitation is 

that the performance of the MFMG-NCDIF and MIMIC methods were not compared when 

multiple background factors (i.e., covariates), each with varying numbers of groups, were 

simulated. Third, unlike the procedures for the MG-NCDIF and GMH indices, in which each 

anchor item was retested for DIF against the remaining anchor items, only partial purification 

(Fikis & Oshima, 2017) was carried out for the MIMIC index. Fourth, no post-hoc testing was 

conducted, a shortcoming given that GMH and MIMIC are omnibus methods that signal the 
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identification of DIF for at least one pairwise group comparison. Fifth, the performance of the 

MG-NCDIF method was not re-analyzed using the datasets from the current study. 

The final limitation that I would like to acknowledge, which was related not to time but 

to DIF detection methods in general, is that of anchor selection. As readers likely noted, the 

number of anchors may be arbitrarily selected in a variety of ways. On one end of the spectrum, 

quantitative researchers may limit the number of anchors to a set maximum (e.g., five items), as I 

did with the MIMIC method, to limit the chances of having a contaminated anchor set. At the 

other end of the spectrum is the option to allow as many anchors as possible to make use of as 

much “clean” data as possible, which researchers may prefer in studies in which the MH and/or 

GMH methods are used, given that the total (matching) score, comprised solely of the anchor 

items and studied item, is a key part of these analyses. Ultimately, I decided to limit the number 

of anchor items in my MIMIC analyses because there was a clear precedent for this in the 

literature. On the other hand, there was no evidence of this practice in the GMH literature; thus, 

although the risk of anchor contamination was greater, I allowed anchor items to be identified 

without any upper limit. Neither anchor-count method is inherently “correct”; the compromise 

here was that it resulted in an apples-to-oranges comparison of DIF indices. Furthermore, the 

subjective decisions around anchoring became even more complex when I had to choose whether 

to use a pre-defined set of anchors or a set of anchors identified in the first stage of DIF detection 

procedures. It was my perspective that it was best if I refrained from selecting the anchors myself 

(except when absolutely necessary, as discussed earlier) because, in an authentic assessment 

situation, it is unlikely that the researcher will know which items are truly DIF-free; (s)he will 

have to rely on the statistical procedure(s) being implemented. When it was necessary for me to 

intervene in the identification of MIMIC anchors, I attempted to do so conservatively, making 
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use of a single highly-discriminating item, a practice supported in the literature (e.g., Chun et al., 

2016). I acknowledge that other quantitative scholars may have made different choices. 

It should come as no surprise, therefore, that my list of recommendations for future 

research would include study of (1) the performance of the base reference group in direct 

comparison with a traditional reference group, (2) the performance of the MFMG-NCDIF and 

MIMIC methods with multiple background factors (i.e., covariates), (3) MIMIC performance 

with full anchor purification, and (4) GMH and MIMIC post-hoc testing, where appropriate. 

Rios-Aguilar (2014) asserted that “a more open discussion of the decisions made, 

drawbacks, and surprises while scholars do research is certainly needed if we aspire to conduct 

research that matters in producing equitable opportunities for all students” (p. 97), and it was my 

sincere intent to do so. However, from a critical perspective it is not sufficient to be transparent 

in our decision making as researchers; it is also our responsibility to think critically about the 

analytical design, data, and interpretations of our studies. Although this was a simulation study, I 

consider it to be a racial project; consequently, I feel it would be negligent not to trouble DIF 

analyses and provide recommendations for readers. Therefore, I humbly offer three 

recommendations to those who study DIF methods or make use of them in authentic assessment 

contexts. 

First, critically examine the classifications that are embedded in DIF studies, particularly 

those corresponding to race and ethnicity. In echo of Gillborn et al. (2018), “categories are 

neither ‘natural’ nor given” (p. 169). Race is a social construct, not an objective, scientific, 

biological characteristic as it is often treated (Ladson-Billings, 2009). Furthermore, racial 

categorization can obscure intra-group heterogeneity (Garcia & Mayorga, 2018; Teranishi, 

2007). As Pérez Huber et al. (2018) explained, “aggregate data . . . can mask patterns of racial 
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inequity that become prominent when data is disaggregated by ethnic subgroup, language, 

geography, immigration status, and other demographic variables” (p. 227). Garcia and Mayorga 

(2018) offered a related piece of advice: “acknowledge the limitations of generalizability of 

sample when speaking of racial groups as homogeneous populations/categorizations, especially 

when you recode samples to create monologic groups for statistical purposes (e.g.  

Non-white . . .)” (p. 249). We, as a quantitative field, need to move beyond the typical “White, 

Black, Asian, Hispanic, American Indian, or Multiracial” categorization to develop a deeper 

understanding of how items function between – and within – groups of examinees. 

My second recommendation is to be exceedingly cautious when discussing examinee 

ability, or theta (θ). As many critical scholars have outlined in detail, quantitative analyses, 

statistics, and assessment – outgrowths of intelligence testing – have racist origins that may be 

traced to early eugenics movements (e.g., Gould, 1996; López et al., 2018). Historically, 

quantitative studies have controlled for variables affected by institutional racism, such as 

“intelligence” and prior achievement, and such studies have fed the deficit discourse surrounding 

students of color. [The Bell Curve (Herrnstein & Murray, 1994) is a particularly egregious 

example of this type of work.] As Sleeter (2004) explained, during the late 1980s, “most school 

reforms that were discussed emphasized raising standards and requiring students to work harder, 

and the ‘at risk’ discourse emerged to describe those who were falling behind (who were mainly 

children of color and children from low-income backgrounds)” (p. 166). This discourse 

continues today. As Ladson-Billings (2009) discussed, “current instructional strategies presume 

that African American students are deficient. As a consequence, classroom teachers are engaged 

in a never-ending quest for ‘the right strategy or technique’ to deal with (read: control) ‘at risk’ 

(read: African American) students” (pp. 29-30). In the case of works such as The Bell Curve 
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(Herrnstein & Murray, 1994), studies that document alleged student deficiencies have been 

aggregated to make a case for group deficiencies. In other words, there is a tragic cycle in which 

students are victimized by a racist education system, this racism is statistically factored out of 

achievement and ability calculations, these same students are then portrayed as having lesser 

potential, and this data is then translated into discourses of racial patterns of ineptitude. 

López et al. (2018) asserted that we must “mov[e] away from erroneous genetic or 

cultural essentialist logics that conceptualize differences in intelligence and academic 

performance as innate and unchanging” (p. 200). Today, items are identified as exhibiting DIF if 

they function differently for examinees of equal ability from different groups. “Ability” in the 

DIF context, I fear, may be misunderstood as “intelligence.” As presented earlier, in the IRT 

framework, the probability of an examinee correctly answering an assessment item i, denoted as 

( )iP  , is given by the three-parameter logistic (3PL) function 

( )
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where 
ia  represents the discrimination parameter for item i, 

ib  is the difficulty parameter for 

item i, 
ic  is the pseudo-guessing parameter for item i, θ represents examinee ability, and D is the 

scaling constant of 1.7. I argue that, conceptually, this function should be rewritten as  
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where 
t  represents examinee ability at time t. In layman’s terms, performance is dependent on 

an examinee’s ability at a particular time. Of course, I have no expectation that the formal 

mathematical model will be changed. My intent here is to emphasize that, in referencing ability, 

scholars have the responsibility to communicate the message that it is not innate or static; ability 

is a dynamic trait that, like academic achievement, reflects “different[ial] treatment, 
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opportunities, and exposure to structural, institutional, and interpersonal racism” (López et al., 

2018, p. 193). 

My third recommendation, closely related to the previous one, is to critically revisit the 

(ab)uses to which we put DIF results, especially those associated with authentic assessments. 

Currently, DIF results are used to determine which items should be revised or omitted entirely 

from assessments, but not to trouble the educational system itself. When an item is found to 

function differentially, psychometricians and content specialists may ask “What characteristics 

of this item caused it to exhibit DIF?” However, we should also ask, “What characteristics of 

instruction and/or the educational system caused this item to exhibit DIF?” Furthermore, 

discussions of group mean differences in ability are particularly susceptible to misinterpretation 

and must be explicitly defined and contextualized. As with all other quantitative studies, findings 

must be discussed within – not isolated from – the sociohistorical context (i.e., the lived 

experiences of students of color), because “opportunity structures, not innate, genetic, or cultural 

differences, shape the contours of . . . education outcomes and accompanying sedimented 

inequalities” (López et al., 2018, p. 188). Consider, for example, the following scenario . . . .  

Michelle Darden walked around the room, monitoring her 4th grade students as they 

worked in near silence on their statewide end-of-year standardized assessment. She wished she 

could tell how they were doing; she wanted them to feel successful; she wanted them to recognize 

how much they had learned – not just from her, but from each other – and she wanted their 

parents to see it too. 

As Michelle began another loop around the room, Dymond, one of many Black students 

in the class, raised her hand. “Ms. Darden, number 25 says there are two correct answers, but I 

see three.” Michelle read the test item to which Dymond was pointing. 
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Based on Source 2 and Source 3, which statements best describe the  

qualities of good citizens? Select the two correct answers. 

A. They go to college. 

B. They use their talents. 

C. They spend money. 

D. They vote in elections. 

E. They volunteer their time. 

F. They study history. 

 

It was obvious to Michelle that the author’s intent was for students to identify options D 

and E. However, she was fairly sure she understood why the young girl thought there were three 

correct answers. Dymond’s family had moved to Louisiana a few years ago from Alabama, 
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where her great-grandfather had participated in the Civil Rights movement. They had been 

fortunate that he was able to speak to the class, and the students had been captivated as he 

recounted his experiences. Michelle had been equally enthralled. His story brought meaning to a 

movement she had never fully understood as a White woman; it grounded the message that 

nearly every one of her social studies teachers had told her: You need to study history so that 

you don’t repeat it. To Dymond and her Black peers, studying history was an essential step to 

understanding racism and the foundation for continuing her great-grandfather’s pursuit of 

justice and equity for people of color. 

Michelle felt helpless, thinking that Dymond surely viewed the study of history as 

something in which a good citizen would engage, yet recognizing that her professional 

obligations did not permit her to offer any help. She gave Dymond a soft squeeze on the 

shoulder, replying in a whisper, “I’m not allowed to help you with that. Just do the best you can. 

You’ve got this!” 

Five minutes later, walking past Rodrigo, she took note of the puzzled look etched upon 

his face. “Everything okay?” she asked. 

“I don’t know what to do. The computer will only let me choose two answers.” He 

nodded towards the screen, where number 25 was displayed. 

“Oh, no!” Michelle thought, “Not again!” 

Rodrigo’s parents had attended every single parent-teacher conference this year, despite 

the fact that they worked long hours and that each meeting took twice as much time as other 

conferences, owing to the need for a Spanish translator. Even though Rodrigo was only 10 years 

old, they wanted to make sure that he was mastering the state standards so that he could attend 

the magnet school across town when he started 9th grade. It was their hope that he earn a 
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college degree. His papelito would symbolize the sacrifices that his extended family had made 

and the fact that they had established roots in the U.S.; it would also enable him to establish a 

career in which he would serve the Latina/o community. 

But she could do nothing more in the moment than reply, “You can only choose two 

answers. Do your best and don’t worry, it’s only one question.” 

Michelle began to get worried; if Dymond and Rodrigo each found value in an answer 

she knew to be considered incorrect, they were surely not the only ones. And, as though she had 

commanded it, a hand rose into the air at the back of the room. With a quiet turn, Michelle 

headed towards Graciela. Arriving at her pupil’s desk, she again saw number 25 on the monitor. 

“Ms. Darden, I know D is right, but I can’t decide between C and E for the second 

answer. When people got COVID and my tía lost her job, she said it was because people didn’t 

have enough money to spend eating out. Doesn’t it help the community when you shop and eat at 

restaurants? Then people have jobs.” 

Michelle was stunned. She debated how to answer Graciela in a way that would honor 

her thought process, even as she knew that she was not permitted to offer help and that, if 

Graciela chose C, she would be wrong in the eyes of the test developer and the state. In the most 

supportive tone she could muster, she told Graciela how proud she was of the girl’s careful 

thinking about the question and reminded her that she could always mark two answers and come 

back to the question later if she wanted to think about it more. 

Walking back to the front of the room, Michelle sent up a silent prayer. “Please, let this 

be a field test item.” 

 Although this story is fictional, the test item is not. It was taken from Louisiana’s “LEAP 

2025 Annotated Social Studies Practice Test Items” guide (Louisiana Department of Education, 
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2020, pp. 15 and 17). To the author of the test item, a good citizen is defined as a person who is 

an active participant in democratic processes and who gives his time to the community without 

expectation of payment. To a Black student like Dymond, a good citizen is defined as a person 

who learns about the processes that led to and continue to support the marginalization of 

particular groups of people in our society. To a Latino student like Rodrigo, a good citizen is 

someone who values education and takes advantage of the educational opportunities afforded 

him. To a student from a low-income household like Graciela, a good citizen may contribute to 

the economy by purchasing goods and retaining the services of others. 

From a critical race theory framework, we – test developers, psychometricians, educators, 

and researchers – are ethically bound to ask the questions “What knowledge counts? Whose 

knowledge counts?” When an item is identified as exhibiting DIF, revising the item or discarding 

it must not be the only two courses of action. Instead, we must critically examine that item and 

interrogate the role it plays in the marginalization of the Other, acknowledging that student 

assessment is simultaneously a reflection of the inequitable instruction that students have 

received and a racial project that reifies deficit perceptions of children of color as less intelligent, 

unmotivated, or lacking familial support. It is only by critically examining differentially-

functioning items that we will begin to turn this particular racial project into a racial justice 

project. 
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