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ABSTRACT 

Aging is associated with declines in executive function leading to difficulties performing 

everyday tasks. To combat aging declines, many studies investigate varying rehabilitation 

interventions. Although improvement on task performance has been noted, improvement on 

other tasks remains inconsistent. The current study sought to replicate Miyake and Friedman’s 

(2012) Unity and Diversity (U&D) model including physical activity as a predictor across a 

sample of older adults. Two models were computed to estimate three latent variables: Common 

EF, Updating, and Shifting. Model 1 replicated Miyake and Friedman’s bifactor model. Model 2 

was a structural model that included physical activity as a separate independent variable. 

Extracted factor scores were used to predict within network connectivity for several resting state 

networks. We didn’t find evidence for a Shifting factor or a relationship between EF factors, 

physical activity, and within-network connectivity. Future analyses will continue to examine this 

model and modified versions in older adults.   
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1 INTRODUCTION  

By the year 2060, the number of adults over the age of 65 in the US is expected to double 

to over 90 million people (National Center for Chronic Disease Prevention and Health 

Promotion, 2022). Advances in medicine and technology have increased life expectancies of 

older adults, which unfortunately has also resulted in increased susceptibility to neurological 

diseases. One-third of the population in the US aged 85 years and older have dementia of 

Alzheimer’s type (Hale et al., 2020). Research has also shown that 11.2% of adults older than 45 

years reported subjective cognitive decline (Taylor et al., 2018). These findings are concerning 

and are already resulting in financial burdens placed on families (Wolff et al., 2016) and the 

public health system (Kelley et al., 2015). As the number of older adults increases in the 

population, so does the importance of developing interventions to combat these declines. 

Executive functions (EFs), higher-order cognitive processes that regulate lower-level 

processes to guide goal-directed behavior (Miyake & Friedman, 2012), are particularly affected 

by aging declines, which is alarming due to the association EFs have with daily functioning. 

Performance on EF measurements predict older adults’ ability to carry out important activities 

like decision-making, medication management, and driving (Nguyen et al., 2019). Cognitive 

scientists and interventionists will need to devise cost-effective approaches to improve daily 

functioning of these individuals. Although most studies find that older adults perform worse on 

EF tasks compared to younger adults, the mechanisms of EF decline in older adults are not fully 

understood (Maldonado et al., 2020). Work in resting state brain imaging shows that aging may 

alter patterns of connectivity, which may account for these behavioral declines (Siman-Tov et al., 

2017). Comparisons of otherwise healthy older adults who engage in regular physical exercise or 

cognitive training against a control cohort reveal group differences in both EF test scores and 
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brain connectivity (Voss et al., 2010). However, we know of no cognitive models that 

incorporate the effects of specific lifestyle differences as a mitigating factor of these changes. 

The goal of the present study was to develop a model of aging and changes in EF that 

incorporates an individual’s lifestyle choice, specifically regular physical exercise, which is 

associated with prophylaxis from neurocognitive declines (Ahlskog et al., 2011). The current 

research proposal sought to provide evidence of aging-related differences in EF as previously 

modeled by Miyake & Friedman (2012) in light of assessment of physical activity. Additionally, 

this project examined functional connectivity as assessed by resting state fMRI to identify 

potential neurophysiological correlates of this behavioral model. 

1.1 Aging and Functional Connectivity 

Aging related declines are not only observable in behavioral performance but are also 

associated with structural and functional changes in the brain. Although alterations in brain 

structure are important, perhaps ultimately so, the current study focused on functional alterations. 

Examining functional connectivity (FC) provides insight into how brain regions and networks 

interact. FC denotes the statistical dependency (correlation, coherence) between certain regions’ 

time courses (Betzel et al., 2014). One method to better understand the impact of functional brain 

changes on cognitive decline in older adults is through analysis of resting state functional 

magnetic resonance imaging (rsfMRI). Using rsfMRI to examine FC has led to the identification 

of resting state networks (RSNs), which give insight to how the brain is organized (Honey et al., 

2009). A few of the commonly identified networks include default mode, dorsal attention, 

ventral attention, frontoparietal, salience, visual, and somato-motor.  Aging-related changes in 

these RSNs offer insight of individual differences in behavioral measures even prior to the 

presentation of clinical symptomatology (Sala-Llonch, 2015).  
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Recent work in resting state brain imaging shows that aging may alter patterns of 

connectivity. For example, Betzel et al. (2014) examined age-related changes in FC and observed 

that RSNs associated with cognitive functions become less unified with age. FC tended to 

decrease within RSNs and increased between RSNs. Tsvetanov et al. (2016) found that similar 

patterns explained significant variability across multiple cognitive domains. Some studies have 

reported that higher-order RSNs are specifically vulnerable to aging declines. For example, 

increased within connectivity in the salience network was associated with better fluid cognition 

(Hausman et al., 2020) and decreased between connectivity in associative networks predicted 

worse memory performance (Chan et al., 2014). Several models based off imaging data have 

been proposed to explain the etiology of these FC changes: compensation, scaffolding, 

dedifferentiation etc. (Reuter-Lorenz & Cappell, 2008). Although an in-depth overview of these 

models is beyond the scope of the current study, it is useful to keep these models in mind when 

interpreting the brain-behavior results.  

1.2 Rehabilitation Interventions 

 To combat these behavioral and neuronal age-related declines, many older adults 

participate in rehabilitation interventions. These interventions include a variety of methods that 

focus on either cognitive training, physical activity, or a combination of both. Cognitive 

interventions focus on compensating for cognitive deficits by developing strategies (strategy-

based training) or they can restore deficits by repeated task practice that targets specific cognitive 

domains (process-based training) (Nguyen et al., 2019). Physical activity interventions involve a 

variety of activities like walking, cycling, or stretching, but most studies have focused on the 

effects of aerobic exercise. This is because aerobic exercise has been shown to have 

neuroprotective benefits against aging effects (Aghjayan et al., 2022). There are numerous 
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cellular and molecular mechanisms underlying these improvements. Exercise improves 

cardiovascular health leading to increases in cerebral blood flow, which is important for 

providing nutrients to the brain (Mahalakshmi et al., 2019). These benefits of aerobic exercise 

are also associated with changes in older adults’ FC (Won et al., 2021). Studies have found that 

engagement in aerobic exercise increases the functional coherence of several networks (Stillman 

et al., 2019). FC of networks gives insight to how regions communicate and how information is 

processed in the brain (Bamidis et al., 2014). If exercise is truly able to improve these processes 

in older adults, then consistent behavioral improvements would also be expected. Unfortunately, 

this is not always the case.    

In general, reviews examining cognitive training in older adults have found 

improvements in task performance, but rarely do these improvements, involving specific 

executive processes, transfer to the performance of other tasks (Lampit, Hallock & Valenzuela, 

2014). There are a few factors that could contribute to these inconsistent results. For instance, 

type of intervention may predict gains in improvements. A meta-analytic review examined the 

effects of working memory training (WMT) on older adults and found significant near-transfer 

effects, but not far-transfer effects (Teixeira-Santos et al., 2019). Near transfer effects are 

improvements on tasks/skills that involve the same mechanisms/domains and far transfer effects 

are improvements on tasks/skills that do not involve the same mechanisms/domains (Barnett & 

Ceci, 2002). This could be because WMT is a type of process-based training where individuals 

are training specifically on that one EF or task. 

 Lampit, Hallock and Valenzuela (2014) reviewed the efficacy of computerized cognitive 

training (CCT) as it relates to cognitive outcomes. It was found that CCT has small 

improvements in nonverbal memory, WM, and processing speed, but no improvements in 
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attention or EF. Alternatively, the dosage of training should be taken into consideration. Both 

brief sessions, once a week or sessions lasting less than 30 minutes, and sessions that occur more 

than three times a week have been seen as inefficient (Lampit, Hallock & Valenzuela, 2014). It 

can take weeks or months for individuals to show overt behavioral gains. It is likely that 

individuals have training-related improvements, but they are not yet reflected behaviorally. The 

issue could be related to which tasks are used to measure training improvements and transfer 

effects or perhaps the issue is related to how the deficit was defined to begin with.     

1.3 Defining Executive Functions 

Executive functions can be described as higher-order cognitive processes that regulate 

lower-level processes to guide goal directed behavior (Miyake & Friedman, 2012). Although 

there is now a relative consensus on how to define EF, there are conflicting views on how EFs 

are organized and modeled (Baggetta & Alexander, 2016). Some early models like Spearman’s g 

and Baddeley’s model of Working Memory describe EF as a unitary construct (Duncan et al., 

1996; Baddeley, 1992). Support for these unitary theories comes from frontal lobe lesion studies 

where damage to the frontal lobe leads to difficulties on a variety of cognitive tasks (Miyake et 

al., 2000). However, the difficulty of measuring EFs creates a challenge for this interpretation. A 

score from an individual task measuring EF, Stroop for example, will likely capture variance that 

is attributable to non-EF processes (Miyake & Friedman, 2012). In contrast, using multiple tasks 

to define EF is may has its own caveats as tasks usually show low intercorrelations (often 

referred to as task impurity). Approaches like factor analysis are employed to attempt to resolve 

this task impurity problem. Factor analysis can evaluate variance structure in the dependent 

measures of EF tests and affords modeling of constructs (called latent variables or factors) that 
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best fit the data. In more basic terms, factor analysis can test how well measured variables 

represent latent variables/constructs. 

In 2000, Miyake et al. used confirmatory factor analysis (CFA) to develop a unity and 

diversity framework that defines EF as having common underlying and fully separable abilities. 

CFA is a type of factor analysis where the number of factors and which measured variables are 

related to each factor are specified at the start of the analysis. The resulting model (Figure 1a) 

focused on three EFs and showed how the EFs were correlated with each other (unity), but the 

correlations were less than 1.0 (diversity). Although this model was replicated in numerous 

samples, it was later updated to further describe the unity and diversity framework. Friedman et 

al. (2008) found that adding a general factor (Common EF), comprised of all the measured 

variables, correlated perfectly with the inhibition factor, indicating there was no unique variance 

left for inhibition to account for. The resulting bi-factor model (Figure 1b) was made up of three 

latent variables/factors: Common EF, Updating-specific, and Shifting-specific. The Common EF 

factor is the general factor onto which all items load and is described as one’s ability to maintain 

goals and use those goals to guide ongoing processing (Friedman & Miyake, 2017). The 

Updating and Shifting factors are orthogonal (uncorrelated) onto which specific items load. 

Updating, similar to working memory (WM) updating, represents the gating of new information 

and retrieval of old information. Shifting represents flexibility and one’s ability to switch 

between different task-sets or mental states. 
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Figure 1 Unity and Diversity Three Factor Model (Miyake & Friedman, 2012) 
 
Note. Circles represent latent variables and squares represent measured variables. The single headed arrows 
show the relationship between the latent and measured variables. In this model, these arrows show which latent 
variables are influenced by each measured variable. The double headed arrows represent correlations between 
factors. Unity is demonstrated by the inter-factor correlations and Diversity is demonstrated when the 
correlations are closer or further from 1.0, respectively. 
 

 

Figure 2 Unity and Diversity Bi-factor Model (Miyake & Friedman, 2012) 
 
Note. Circles represent latent variables and squares represent measured variables. The single headed arrows 
show the relationship between the latent and measured variables. In this model, these arrows show which latent 
variables are influenced by each measured variable. Unity is demonstrated by all measured variables loading 
on the Common EF variable whereas Diversity is demonstrated by specific measured variables loading on the 
nested Updating and Shifting factors. 
 

Previous studies have replicated this bi-factor model in samples of young adults, but only 

a few have attempted to replicate this model in a sample of older adults. This represents a 

significant gap in the literature considering the known deficits in EFs in older adults. There are 

studies that have replicated the original three factor model (Figure 1a) and modified versions of 

original and updated model in older adults. The models were modified by having additional 

latent factors or other measured variables. For example, Glisky et al. (2020) examined the 

original model (Figure 1a), a one factor version, and varying two factor models in groups of 

young-old (aged 60-73) and old-old adults (aged 74-98). They found that none of the models 

Updating Inhibition Shifting

Stroop Stop SignalLetter Keep Track Color Category2Back NumberAntisac

Updating Common 
EF

Shifting

Stroop Stop SignalLetter Keep Track Color Category2Back NumberAntisac
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showed acceptable fit indices for the young-old group, but a nested two factor model showed 

exceptional fit for the old-old group. The latent variables in the two-factor model were the 

Common EF and Shifting. 

In another recent study, Seer at al. (2021) examined differential EF contributions to 

complex motor control in older adults. The investigators ran modified versions of both models 

(Figure 1a and 1b) that included complex motor control as a dependent variable. These modified 

models were actually structural models rather than simple CFAs. Structural models allow you to 

examine regression relationships between latent variables or latent and other measured variables. 

Seer at al. (2021) was interested in whether the latent factors of the U&D model would predict 

complex motor control. The authors found that the Updating latent factors in both models and the 

Common EF significantly predicted complex motor control in older adults. 

1.4 The Current Study 

While studies continue to identify the utility of Miyake & Friedman’s Unity and 

Diversity (U&D) framework for characterizing EFs in young adults, modeling EFs using the 

U&D rubric in older adults requires more study, particularly with respect to intervening lifestyle 

factors. Further, the employ of neurophysiological data to characterize correlates of neural 

activity could assist in identifying neural mechanisms subserving behavioral data. The current 

study sought to replicate Miyake and Friedman’s (2012) Unity and Diversity model including 

physical activity as a predictor across a sample of older adults. The study examined the 

relationship between each EF factor, physical activity, and within-network resting-state 

connectivity. Combining this model with measures of physical activity and resting state data 

could give additional insights to the mechanisms underlying EF in older adults.  
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1.5 Specific Aims and Hypotheses 

1.5.1 Specific Aim 1 

To identify whether individual differences in executive function in older adults as 

evaluated by a modified version of Miyake and Friedman’s U&D model are associated with 

physical activity.  

1.5.2 Hypothesis 1 

We hypothesized that older adults who engage in more physical activity will load on all 

three EF factors showing both unity and diversity. We also hypothesized that older adults who 

engage in less physical activity will load more on the Common EF factor compared to the 

Updating and Shifting factors, which would indicate more unity and less diversity. 

1.5.3 Specific Aim 2 

To examine the relationship between each EF factor (Common EF, Updating, Shifting), 

physical activity, and within resting-state network connectivity in older adults.  

1.5.4 Hypothesis 2 

We hypothesized that older adults who do not engage in regular exercise will show less 

diversity of EF and a lower degree of coherence in resting state networks, specifically the default 

mode network, the frontoparietal and the dorsal attention network
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2 METHODS 

2.1 Participants 

 A sample of 223 older adults ranging from 60-85 years of age was taken from the 

Human Connectome Project in Aging (HCP-A). The HCP-A study is a multisite project that 

collects neurological, behavioral, and biometric data with the goal of creating a normative 

dataset (Bookheimer et al., 2019). This study used data collected at the baseline visit of the 

project. Participants went through an initial phone screening to rule out exclusion criteria: (1) 

current or previous diagnosis of major psychiatric or neurological disorders; (2) individuals with 

severe depression that required treatment for 12 months or longer; (3) any contraindications for 

MRI scan; (4) a score of 30 or greater on the Telephone Interview for Cognitive Status modified 

(TICS-M) (de Jager et al., 2003). Subjects over 80 years old who did not score a 30 or greater on 

the TICS-M were required to pass critical orientation items.  

Following consent, the Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 

2005) was administered to further determine eligibility. The HCP-A has a liberal age dependent 

threshold for the MoCA with the goal of having a “typical” aging sample allowing adults ages 

60-79 to be eligible with a score of 19 or greater, which may have led to individuals with 

cognitive impairment to be included (Bookheimer et al., 2019).  The original cutoff score for 

detecting Mild Cognitive Impairment (MCI) was 26 (Nasreddine et al., 2005), which could lead 

to an increased rate of false positives for older aged individuals and those with less education. 

Recent meta-analyses using a more culturally and educationally diverse sample found that a 

cutoff score of 23 shows better accuracy for detecting MCI (Carson et al., 2018). For this project, 

only subjects with a MoCA score of 23 or greater will be included. A full list of inclusion and 

exclusion criteria is included in the Appendix. 
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Table 1 Sample Characteristics 
  
Age (years) 70.98 ± 7.03 
Education (years) 17.87 ± 2.09 
Sex (number of females) 124 
Race (% White) 83% 
MoCA 26.72 ± 2.05 
Note. MoCA =Montreal Cognitive Assessment 

 

2.2 Behavioral Assessments 

Cognitive assessments come from the NIH Cognitive Toolbox. The Rey Auditory Verbal 

Learning Test (RAVLT) (Rey, 1941) and the Trail Making Test B (Reitan, 1992) were included 

as supplemental measures in the HCP-A. All assessments were completed on a laptop computer 

except for the Trails Making Test B, RAVLT and the International Physical Activity 

Questionnaire (IPAQ) (Booth, 2000), which were completed using pencil and paper and 

interview.  

2.2.1 Inhibition 

Flanker Inhibitory Control and Attention Test (Flanker). This task required participants to 

focus on a target stimulus while inhibiting attention to other stimuli. Participants were presented 

with a target arrow pointing in a certain direction along with two flanking arrows that either face 

the same (congruent) or opposite direction of the target arrow (incongruent). The participant 

selected one of two buttons as quickly and accurately as possible to identify if the arrows were 

congruent or incongruent. Accuracy and reaction time were combined into a computed score 

used for the dependent measure. A maximum score of 10 was possible where higher scores 

indicated a greater ability to inhibit.    
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Proactive Interference (Pro Int) from Rey Auditory Verbal Learning Test (RAVLT). The 

RAVLT is used as a verbal learning and memory measurement (Rey, 1941). For the first five 

trials, participants were read a list of 15 words at the beginning of each trial that they must then 

immediately recall. On the sixth trial, participants were read a list of different, unrelated words, 

that they had to immediately recall. For the final trial, participants were asked to recall the words 

from the first five trails without being prompted. Proactive interference was calculated by 

subtracting the number of correctly recalled words in trial 1 from number of words correctly 

recalled in trial six. Because this calculation resulted in some negative values, the values were 

recoded, so all scores are positive numbers. Proactive interference represented a score of 

inhibition; it means that previously learned material was interfering with learning new material. 

A higher score indicated a greater degree of inhibition and less proactive interference. 

2.2.2 Updating 

List Sorting Working Memory Test (List Sort). Participants were presented with pictures 

of different foods and animals with accompanying text. The goal was to verbally recall and list 

the pictures in order from smallest to largest on just one dimension (food OR animals) and then 

both dimensions (food AND animals). For the two-dimension conditions, participants first listed 

the food objects and then the animals from smallest to largest. Accuracy scores were obtained 

and used as the dependent measure. A maximum score of 26 was possible with a higher score 

indicating greater updating ability. 

Picture Sequence Memory Test (Pic Seq). Participants were presented with pictures of 

objects and activities, along with auditory phrases, in a particular sequence. The goal of the task 

was to recall the sequence in the correct order. The sequences increased in length from six to 18 
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pictures. Accuracy scores were obtained and used as the dependent measure. A maximum score 

of 31 was possible with a higher score indicating greater updating ability. 

2.2.3 Switching/Shifting 

Trail Making Test B (TrailsB). This test measured switching ability that involved 

connecting a set of dots that are made up of numbers and letters. Participants were required to 

connect the dots in ascending order alternating between letters and numbers (1-A-2-B-3-C). 

Time to complete the task was measured in seconds and used as the dependent measure. The 

HCP-A did not have a cut-off score and allowed participants to continue until completed. 

Following Reitan (1992) instructions, a maximum time of 300 seconds was allowed for the 

current study and any scores that were above 300 seconds were made to be equal to 300 seconds. 

A lower score indicated greater switching ability. 

Dimensional Change Card Sort Test (DCCS). This task measured switching ability as 

well as cognitive flexibility. Participants were presented with target pictures that vary along two 

dimensions: shape and color. The goal was to match test pictures with target pictures based on 

one of the dimensions. Some of the trials required participants to switch which dimension is 

being matched. Accuracy and reaction time were combined into a computed score used for the 

dependent measure. A maximum score of 10 was possible where higher scores indicated a 

greater ability to switch. 

2.2.4 Physical Activity  

Short International Physical Activity Questionnaire (IPAQ). The IPAQ is an interview 

survey that calculates minutes of physical activity (Booth, 2000). It asks questions about types of 

physical activity that individuals have done in last seven days. The questions consider the 

intensity of the activity (vigorous, moderate, walking), time spent doing the activity (days per 
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week, hours per day, minutes per day) and the amount of time spent sitting. The amount of 

physical activity per week was represented by MET-minutes (metabolic equivalent intensity 

levels) per week, which was calculated by weighing the reported minutes per week within each 

activity category by a MET expenditure estimate (Craig et al., 2003). MET-minutes per week 

was used as the dependent measure.  

2.3 rsfMRI Acquisition and Pre-processing 

MRI scans were acquired using a Siemens 3T Prisma scanner and a 32-channel head coil. 

A high resolution (0.8mm3) multi-echo T1-weighted 3D magnetization prepared rapid 

acquisition gradient echo (MPRAGE) scan was obtained in the sagittal plane (TE = 

1.8/3.6/5.4/7.2 ms; TR = 2500 ms; FOV = 256 x 240 x 166 mm; FA = 8°; voxel size = 0.8 x 0.8 

x 0.8 mm3; matrix size = 320 x 300 x 208 slices; time = 8.22 min). For the resting-state 

acquisition, participants were instructed to look at a small, white crosshairs on a black 

background. The rsfMRI time course was acquired with a 2D multiband gradient-recalled echo 

(GRE) echo-planar imaging sequence (EPI) (volumes = 488; TE = 37 ms, TR = 800 ms, FOV = 

208 x 208 x 144 mm; FA = 52°; voxel size = 2.0 x 2.0 x 2.0 mm3; matrix size = 104 x 104 x 72 

slices). Four runs lasting 6.5 min each were acquired resulting in a total resting-state acquisition 

time of 26 minutes. 

Minimally pre-processed images were obtained from the HCP-A project and further 

processed and analyzed using CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012) 

(RRID:SCR_009550) release 21.a (Nieto-Castanon & Whitfield-Gabrieli, 2021) and SPM 

(RRID:SCR_007037) release 12.7771 (Penny et al., 2011). Functional and anatomical data were 

preprocessed using a flexible preprocessing pipeline including outlier detection and smoothing 

(Nieto-Castanon, 2020). Potential outlier scans were identified using ART (Whitfield-Gabrieli et 
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al., 2011) as acquisitions with framewise displacement above 0.9 mm or global BOLD signal 

changes above 5 standard deviations (Power et al., 2011; Nieto-Castanon, n.d.) and a reference 

BOLD image was computed for each subject by averaging all scans excluding outliers. Last, 

functional data were smoothed using spatial convolution with a Gaussian kernel of 6 mm full 

width half maximum (FWHM). 

In addition, functional data were denoised using a standard denoising pipeline (Nieto-

Castanon, 2020) including the regression of potential confounding effects characterized by white 

matter timeseries (5 CompCor noise components), CSF timeseries (5 CompCor noise 

components), motion parameters (12 factors) (Friston et al., 1996), outlier scans (below 98 

factors) (Power et al., 2011), session effects and their first order derivatives (2 factors), and 

linear trends (2 factors) within each functional run, followed by bandpass frequency filtering of 

the BOLD timeseries (Hallquist et al., 2013) between 0.008 Hz and 0.09 Hz. CompCor (Behzadi 

et al., 2007; Chai et al., 2012) noise components within white matter and CSF were estimated by 

computing the average BOLD signal as well as the largest principal components orthogonal to 

the BOLD average, motion parameters, and outlier scans within each subject's eroded 

segmentation masks. From the number of noise terms included in this denoising strategy, the 

effective degrees of freedom of the BOLD signal after denoising were estimated to range from 

220.3 to 237.2 (average 235.6) across all subjects (Nieto-Castanon, n.d.). 

2.4 Data Analyses 

 Scores for the behavioral assessments were subjected to trimming and transformation 

used in previous studies to improve normality and reliability (Friedman et al., 2016) (Reineberg 

et al., 2018). Scores that were greater than three standard deviations from the mean were 

replaced with values three standard deviations from the mean for each measure. To avoid 
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problems arising from extreme differences in variable variances, we rescaled Trails B and the 

IPAQ by taking the square root of the dependent measure. 

2.4.1 Aim 1: Confirmatory Factor Analyses 

 Two models were computed using Mplus 8.0 to estimate the unity and diversity of EF in 

older adults with three latent variables: Common EF, Updating and Shifting specific (Muthén 

and Muthén, 1998–2017). Model 1 was based on Friedman et al.’s (2008) bifactor model where 

all cognitive assessments loaded on the Common EF and updating and shifting assessments 

loaded on the Updating and Shifting factors. Model 2 was a structural model that was similar to 

Model 1, but the IPAQ was included as a separate independent variable predicting the three 

latent factors. Factor scores for the three EF variables in Model 1 were extracted and used in 

analysis of Aim 2. The factor variance in both models was fixed to 1.0 to set the scale of the 

variables. Factor loadings were equal for the Updating and Shifting factors to ensure that model 

identification was present. Several fit indices were examined to assess goodness of fit: the chi-

square value (χ2), confirmatory fit index (CFI), and the root-mean-square error of approximation 

(RMSEA). A non-significant χ2 value is considered a good indicator of fit of the data to the 

model. The χ2 is known to be sensitive to sample size so the other two fit indices will also be 

examined. A CFI value greater than 0.9 and a RMSEA value less than 0.06 is considered good fit 

(McDonald & Ho, 2002). 

 
Figure 3 Confirmatory Factor Analysis 
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Figure 4 Structural Model 

 

2.4.2 Aim 2: Within-Network rsfMRI 

 A priori networks based on a publicly available network parcellation of the brain were 

selected as ROIs (Yeo et al., 2011). This parcellation includes seven main resting-state networks, 

but only three were examined for this analysis: default mode (10 ROIs), dorsal attention (6 

ROIs), and frontoparietal (16 ROIs). ROI-to-ROI connectivity (RRC) matrices were estimated 

using CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012) (RRID:SCR_009550) release 21.a 
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between each pair of regions among the ROIs for each network. Functional connectivity strength 
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model (weighted-GLM) (Nieto-Castanon, 2020), estimated separately for each pair of ROIs, 

characterizing the association between their BOLD signal time series. To compensate for 

possible transient magnetization effects at the beginning of each run, individual scans were 

weighted by a step function convolved with an SPM canonical hemodynamic response function 
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network connectivity and EF variables, multiple linear regressions were run predicting within-

network connectivity for each network from the latent EF factor scores and the IPAQ using IBM 

SPSS Statistics (Version 29). Age and sex were included in each regression as covariates. 

Table 2 Descriptive Statistics for Dependent Measures 

Table 3 Correlation Matrix for Dependent Measures 

 
 M SD Min Max Skewness Kurtosis 

Pro Int 6.65 1.98 1.00 12.00 -0.1 0.27 
Flanker 7.84 0.68 5.61 9.64 -0.76 1.55 
Pic Seq 10.33 6.22 0.00 29.08 0.77 0.3 
List Sort 16.28 2.71 8.00 24.00 -0.32 0.16 
DCCS 8.03 0.81 5.92 9.88 -0.25 -0.05 
Trails B (sqrt) 9.67 3.33 5.38 17.32 1.33 0.68 
Trails B   104.60 79.71 28.90 300.00 1.68 1.49 
IPAQ (sqrt) 46.81 20.59 0.00 97.24 0.19 -0.11 
IPAQ 2613.84 2086.61 0.00 9454.72 1.29 1.69 
Note. Pro Int = Proactive Interference, Pic Seq = Picture Sequence Memory Test, List Sort = 

List Sorting Working Memory Test, DCCS = Dimensional Change Card Sort Test, IPAQ = 

Short International Physical Activity Questionnaire, (sqrt) = rescaled values by taking the 

square root. 

                
 Pro Int Flanker Pic Seq List Sort DCCS Trails B IPAQ 

Pro Int  -         
Flanker 0.08  -       
Pic Seq 0.04 0.23**  -      
List Sort 0.04 0.27** 0.21**  -     
DCCS 0.02 0.51** 0.19** 0.31**  -    
Trails B 0.12 -0.09 -0.06 -0.13  -0.15*  -   
IPAQ 0.06 -0.04 -0.08 0.03 0.08 -0.04  -  
Note. *p < .05; **p < .01; Pro Int = Proactive Interference, Pic Seq = Picture Sequence 

Memory Test, List Sort = List Sorting Working Memory Test, DCCS = Dimensional Change 

Card Sort Test, IPAQ = Short International Physical Activity Questionnaire. 
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3 RESULTS 

3.1 Aim 1 

A summary of descriptive and correlational statistics for the behavioral measures used in 

the factor analyses is presented in Tables 1 and 2. For Model 1, both factor loadings for the 

Shifting factor were zero and nonsignificant, which indicated model misspecification. We 

respecified Model 1 (Model 1a) so the latent factor Shifting was removed, and its indicators only 

loaded on the Common EF factor. Model 1a had excellent fit indices χ2 (15) = 7.271, p = .508, 

CFI = 1.000, RMSEA = .001, where five of the six tasks loaded significantly on the Common EF 

and the updating tasks loaded significantly on the Updating factor (Figure 3a). Model 2 was 

adjusted to account for the changes in Model 1a and had good overall fit, χ2 (12) = 13.266, p = 

.350, CFI = .989, RMSEA = .022. Model 2 had similar significant loadings as in Model 1a, but 

the IPAQ did not significantly predict the latent factors (Figure 3b).    

 
Figure 5 Model 1a: Modified Unity and Diversity Model 

 
Note. Long, blue arrows indicate standardized factor loadings. Small, black colored arrows indicate error 
variance. Significant indicators are highlighted in boldface at p < .05. 
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Figure 6 Model 2: Structural Model 

 
Note. Long, blue arrows indicate standardized factor loadings. Small, black colored arrows indicate error 
variance. Significant indicators are highlighted in boldface at p < .05. 
 

3.2 Aim 2 

 To give further insight to the unity and diversity of EF in older adults, we regressed the 

Common EF and Updating factor scores, obtained from Model 1a, as well as IPAQ scores on 

within-network connectivity values, while controlling for age and sex. We found that none of the 

linear regressions predicting within-network connectivity for the three networks (DMN, DA, FN) 

were significant.  

Table 4 Association between within-network connectivity, EF factors, and physical 
activity 

                

Network Variable 
Unstandardized 

Coefficients 
Standardized 
Coefficients t p R2 

B SE Beta (𝜷𝜷) 

DMN 

Common -.018 .010 -.126 -1.728 .085 

.018 
Updating .014 .017 .058 .842 .401 
IPAQ .000 .000 -.018 -.268 .789 
Age 3.70E-05 .001 .002 .031 .976 
Sex -.012 .001 -.051 -.748 .455 
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DA 

Common -.013 .011 -.089 -1.222 .223 

0027 
Updating .017 .018 .067 .966 .335 
IPAQ .000 .000 -.022 -.327 .744 
Age .002 .001 .101 1.41 .160 
Sex -.009 .017 -.034 -.493 .622 

FP 

Common .002 .005 .025 .341 .733 

.015 
Updating .006 .008 .048 .690 .491 
IPAQ .000 .000 .080 1.15 .253 
Age .000 .001 .037 .518 .605 
Sex .008 .008 .071 1.036 .301 

Note. R2 represents the overall R2 for each model. DMN = Default Mode Network, DA = 

Dorsal Attention Network, FP = Frontoparietal Network. 
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4 DISCUSSION 

The mechanism of EF decline in older adults is not well understood especially when 

considering certain lifestyle factors. The current study employed a factor analysis approach to 

investigate aging-related changes in EF and how physical activity may mitigate these changes. 

We expected to replicate the U&D model in our sample, and we also expected that physical 

activity would be associated with the three latent factors. We were not able to replicate the U&D 

model, but instead found that a modified version, only including the Common EF and Updating 

factors, fit the data. The latent EF factors in this modified model were not associated with 

amount of physical activity. We also investigated whether the latent factors and physical activity 

could predict within-network connectivity but found no significant associations. 

4.1 Modified Unity and Diversity Model 

Unlike Miyake and Friedman’s model, we did not observe any evidence of a Shifting-

specific factor. One possible explanation for this finding is that the structure of EFs is different in 

older adults. As previously stated, the U&D model has been successfully replicated in several 

samples of young adults, but few studies have examined it in older adults. Glisky et al. (2020) 

examined several different model structures and found evidence of a two-factor model that 

included the Common EF and Shifting factors. Seer et al. (2021) reported on a modified version 

of the U&D model where the factors were predicting complex motor control. The structural 

model had an acceptable fit and showed that the Common EF and Updating factors predicted 

complex motor control. However, the authors did not report on the baseline CFA model prior to 

the addition of complex motor control as a dependent variable (Seer et al., 2021). Due to the lack 

of studies investigating the U&D model in older adults, it would’ve been useful to examine the 
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baseline CFA model. Even though our models didn’t find evidence of a specific Shifting factor, 

that does not definitively mean it doesn’t exist. 

Our models did display excellent overall fit, but there are some indications that the local 

fit of the models may not be as excellent. In both models, one of the six measurements was not a 

significant indicator (Pro Int), and two of the six (Pro Int and TrialsB) did not have significant R-

squared (R2) values. Also, factor loadings were relatively small in both models for Pro Int, 

TrailsB, and Pic Seq. Specifically in Model 2, physical activity was not a significant predictor for 

the latent factors. These results may be due to the specific behavioral measurements selected for 

the factor analysis. Some tasks used to represent the factors are not commonly used to measure 

the specific EFs of interest, and show lower relative construct validity. For example, Proactive 

Interference and the Picture Sequence Memory Task are not typically used to represent inhibition 

and working memory updating in studies of EF. In a systematic review of studies using latent 

variables to measure EF, Kar et al. (2019) found that most studies used a Stroop paradigm, 

Antisaccade task, and a Stop-Signal task to measure inhibition. To measure working memory 

updating, studies frequently used the n-back, Letter Memory task, the Keep Track task, and the 

Digit Span Backwards task (Karr et al., 2019). 

Although four out of the six measurements had significant R2 values, their numbers 

ranged from small to moderate (.12-.55). This suggests that there is additional variance in the 

indicators that has yet to be explained by the model and could be explained by other variables. 

Several studies have included other latent factors to define EF in older adults. The most common 

additional latent factors are speed of processing (Hedden & Yoon, 2006; de Frias et al., 2009; 

Frazier et al., 2015; Bettcher et al., 2016) and long-term memory access (Fisk & Sharp, 2004; 

Androver-Roig et al., 2012). It is important to note that these studies based their factor structure 
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on the original three-factor model including inhibition, shifting, and updating (Miyake et al., 

2000) rather than the bifactor structure (Friedman et al., 2008).  

4.2 Within-network Connectivity 

The current study investigated whether results from the bifactor model could be related to 

differences in within-network connectivity of specific resting-state networks. Although the 

results weren’t significant, this study helps address a major gap in the literature. We believe this 

is the first study to examine the relationship between the U&D model, physical activity, and 

within-network connectivity of resting-state networks in older adults. Previous studies have 

examined the relationship between within-network connectivity and EFs citing the U&D model, 

but none to our knowledge have defined the EFs using factor analysis. In many instances, studies 

have created composite scores to represent each of the EF factors or used performance on a 

single task as a comparison (Yang et al., 2018; Hausman et al., 2020; Hausman et al., 2022). 

While these methods are helpful in gaining a better understanding of brain-behavior relationships 

in older adults, they don’t directly investigate how the U&D model could relate to functional 

connectivity.  

Within-network connectivity was defined as the average of the pairwise correlations 

between the ROIs that comprised each network. Although this method was reasonable to 

examine within-network connectivity, it may have overlooked other significant results. For 

example, we did not further examine the regional connectivity patterns of ROIs in each network, 

nor did we consider other measures of network connectivity. Previous studies have utilized 

alternate methods to investigate within-network connectivity changes in older adults, specifically 

graph theory (Betzel et al., 2014; Chan et al., 2014). Graph theory approaches define a network 

by parcellating the brain into sets of regions (nodes) and then calculating all possible connections 
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between the regions (edges) (Sala-Llonch et al., 2015). Once a network is defined, several 

descriptive measures can be calculated to characterize its functional connectivity. Common 

descriptive measures include network segregation (within-network connectivity), network 

integration, node centrality (defining hub regions), and network resilience (Rubinov & Sporns, 

2010). Examining more than one metric of functional connectivity can provide a better 

understanding of how the brain is organized. 

4.3 Physical Activity 

 Although physical activity did not significantly predict the EF factors nor within-network 

connectivity in the current study, it continues to be an important lifestyle factor to consider. It is 

well known that participating in aerobic exercise and physical activity can lead to positive 

changes in cognition and brain functioning (Woo et al., 2021). The actual extent of changes can 

depend on several factors: type of exercise/physical activity, frequency, and intensity. Although 

these factors are considered when scoring the IPAQ, the IPAQ only asks about physical activity 

within the last seven days. This can be problematic because it is measuring physical activity at 

one point in time. The IPAQ is also a self-report measure so individuals may over- or 

underestimate their levels of physical activity. An alternate lifestyle factor that may be more 

informative than physical activity is cardiovascular health. A measure of cardiovascular health 

considers not only physical activity, but also smoking status, diet, body mass index, glucose 

concentration, blood cholesterol concentration, and blood pressure (Lloyd-Jones et al., 2010). 

These additional factors provide a more extensive measure of overall health that can impact 

brain-behavior relationships.  
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4.4 Limitations and Future Directions 

The present study is not without limitations, especially regarding the sample’s 

characteristics, behavioral measurements, and the method of analyses. First, our sample was 

highly educated ranging from 14-21 years of education and 83% Non-Hispanic White. These 

characteristics make it difficult to generalize the results to the general population. Future studies 

should use more educationally and racially diverse samples to increase the generalizability. 

Second, the choice of and number of behavioral measurements could be improved upon. As 

previously stated, some of the measurements selected are not typically used to represent the EF 

factors this study examined. The number of assessments used may have also played a factor into 

the results. We used a total of six cognitive assessments to create the latent factors, whereas 

Miyake and Friedman’s studies (Miyake et al., 2000; Friedman et al., 2008; Friedman et al., 

2016) used nine. Using only two indicators per latent factor can lead to instances of model 

identification or specification problems (Kline, 2016). To combat this issue, equality constraints 

are used, but it can still impact the model in small sample sizes. 

Although the current study was limited to what the HCP-A project provided, future work 

should select more common tests to represent the factors and each factor should have a minimum 

of three indicators. This will increase reliability and allow more direct comparisons to other 

studies. Third, the ROI-ROI analysis used in this study may have limited the findings. This 

analysis only examined average within-network connectivity and did not consider the patterns of 

connectivity between each ROI for a given network. Examining hub regions could help target 

specific regions for interventions (Hausman et al., 2022). Future studies should include 

additional analyses to better describe within-network connectivity as well as other network 

characteristics.  
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4.5 Conclusions 

 This study may be the first to examine the U&D model in older adults in combination 

with physical activity and within-network connectivity of resting-state networks. Unlike Miyake 

and Friedman’s model, factor analyses did not find evidence for a Shifting EF factor. Results 

also revealed no associations between the EF factors, physical activity, and within-network 

connectivity. These findings could suggest the presence of an alternate EF structure for older 

adults but are more likely the result of methodological complications. Further analyses with 

alternate behavioral measures and additional functional connectivity metrics are required to 

better understand the mechanisms underlying EF in older adults. 

 

 

  



                                                                                                                      28 

REFERENCES 

Adrover-Roig, D., Sesé, A., Barceló, F., & Palmer, A. (2012). A latent variable approach to 

executive control in healthy ageing. Brain and cognition, 78(3), 284–299. 

https://doi.org/10.1016/j.bandc.2012.01.005. 

Aghjayan, S.L., Bournias, T., Kang, C. et al. (2022). Aerobic exercise improves episodic 

memory in late adulthood: a systematic review and meta-analysis. Commun Med, 2(15), 

1-11. https://doi.org/10.1038/s43856-022-00079-7. 

Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R., & Petersen, R. C. (2011). Physical exercise as 

a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clinic 

proceedings, 86(9), 876–884. https://doi.org/10.4065/mcp.2011.0252. 

Baddeley A. (1992). Working memory. Science, 255(5044), 556–559. 

https://doi.org/10.1126/science.1736359. 

Baggetta, P. & Alexander, P. (2016). Conceptualization and Operationalization of Executive 

Function. Mind, Brain, and Education, 10, 10-33. 10.1111/mbe.12100. 

Bamidis, P. D., Vivas, A. B., Styliadis, C., Frantzidis, C., Klados, M., Schlee, W., Siountas, A., 

& Papageorgiou, S. G. (2014). A review of physical and cognitive interventions in aging. 

Neuroscience & Biobehavioral Reviews, 44, 206–220. 

https://doi.org/https://doi.org/10.1016/j.neubiorev.2014.03.019. 

Barnett,S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy 

for far transfer. Psychological Bulletin,128, 612–637. DOI:https://doi.org/10.1037//0033-

2909.128.4.612. 

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction 

method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37(1), 90-101. 



                                                                                                                      29 

 

Bettcher, B. M., Mungas, D., Patel, N., Elofson, J., Dutt, S., Wynn, M., Watson, C. L., Stephens, 

M., Walsh, C. M., & Kramer, J. H. (2016). Neuroanatomical substrates of executive 

functions: Beyond prefrontal structures. Neuropsychologia, 85, 100–109. 

https://doi.org/10.1016/j.neuropsychologia.2016.03.001. 

Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X. & Sporns, O. (2014). Changes in structural and 

functional connectivity among resting-state networks across the human lifespan. 

NeuroImage, 102, 345-357.  

Bookheimer, S. Y., Salat, D. H., Terpstra, M., Ances, B. M., Barch, D. M., Buckner, R. L., 

Burgess, G. C., Curtiss, S. W., Diaz-Santos, M., Elam, J. S., Fischl, B., Greve, D. N., 

Hagy, H. A., Harms, M. P., Hatch, O. M., Hedden, T., Hodge, C., Japardi, K. C., Kuhn, 

T. P., Ly, T. K., … Yacoub, E. (2019). The Lifespan Human Connectome Project in 

Aging: An overview. NeuroImage, 185, 335–348. 

https://doi.org/10.1016/j.neuroimage.2018.10.009. 

Booth M. (2000). Assessment of physical activity: an international perspective. Research 

quarterly for exercise and sport, 71 Suppl 2, 114–120. 

https://doi.org/10.1080/02701367.2000.11082794. 

Carson, N., Leach, L., & Murphy, K. J. (2018). A re-examination of Montreal Cognitive 

Assessment (MoCA) cutoff scores. International journal of geriatric psychiatry, 33(2), 

379–388. https://doi.org/10.1002/gps.4756. 

Chai, X. J., Nieto-Castanon, A., Ongur, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in 

resting state networks without global signal regression. Neuroimage, 59(2), 1420-1428. 



                                                                                                                      30 

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased 

segregation of brain systems across the healthy adult lifespan. Proceedings of the 

National Academy of Sciences of the United States of America, 111(46), E4997–E5006. 

https://doi.org/10.1073/pnas.1415122111. 

Chen, F. T., Chen, Y. P., Schneider, S., Kao, S. C., Huang, C. M., & Chang, Y. K. (2019). 

Effects of Exercise Modes on Neural Processing of Working Memory in Late Middle-

Aged Adults: An fMRI Study. Frontiers in aging neuroscience, 11, 224. 

https://doi.org/10.3389/fnagi.2019.00224. 

Craig, C. L., Marshall, A. L., Sjöström, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., 

Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International physical 

activity questionnaire: 12-country reliability and validity. Medicine and science in sports 

and exercise, 35(8), 1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB. 

de Frias, C. M., Dixon, R. A., & Strauss, E. (2009). Characterizing executive functioning in older 

special populations: from cognitively elite to cognitively 

impaired. Neuropsychology, 23(6), 778–791. https://doi.org/10.1037/a0016743. 

de Jager, C. A., Budge, M. M., & Clarke, R. (2003). Utility of TICS-M for the assessment of 

cognitive function in older adults. International journal of geriatric psychiatry, 18(4), 

318–324. https://doi.org/10.1002/gps.830. 

Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal 

lobe: the organization of goal-directed behavior. Cognitive psychology, 30(3), 257–303. 

https://doi.org/10.1006/cogp.1996.0008. 



                                                                                                                      31 

Fisk, J. E., & Sharp, C. A. (2004). Age-related impairment in executive functioning: updating, 

inhibition, shifting, and access. Journal of clinical and experimental 

neuropsychology, 26(7), 874–890. https://doi.org/10.1080/13803390490510680. 

Frazier, D., Bettcher, B., Dutt, S., Patel, N., Mungas, D., Miller, J., . . . Kramer, J. (2015). 

Relationship between Insulin-Resistance Processing Speed and Specific Executive 

Function Profiles in Neurologically Intact Older Adults. Journal of the International 

Neuropsychological Society, 21(8), 622-628. doi:10.1017/S1355617715000624. 

Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). 

Individual differences in executive functions are almost entirely genetic in origin. Journal 

of experimental psychology. General, 137(2), 201–225. https://doi.org/10.1037/0096-

3445.137.2.201. 

Friedman, N. P., Miyake, A., Altamirano, L. J., Corley, R. P., Young, S. E., Rhea, S. A., & 

Hewitt, J. K. (2016). Stability and change in executive function abilities from late 

adolescence to early adulthood: A longitudinal twin study. Developmental 

psychology, 52(2), 326–340. https://doi.org/10.1037/dev0000075. 

Friedman, N. P. & Miyake, A. (2017). Unity and Diversity of Executive Functions: Individual 

Differences as a Window on Cognitive Structure. Cortex, 86, 186-204. 

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-

related effects in fMRI time-series. Magnetic resonance in medicine, 35(3), 346-355. 

Glisky, E. L., Alexander, G. E., Hou, M., Kawa, K., Woolverton, C. B., Zigman, E. K., Nguyen, 

L. A., Haws, K., Figueredo, A. J. & Ryan, L. (2020). Differences between young and 

older adults in unity and diversity of executive functions. Aging, Neuropsychology, and 

Cognition, 1-26.  



                                                                                                                      32 

 Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: spectral 

misspecification in a common approach to resting-state fMRI preprocessing reintroduces 

noise and obscures functional connectivity. Neuroimage, 82, 208-225. 

Hausman, H. K., O’Shea, A., Kraft, J. N., Boutzoukas, E. M., Evangelista, N. D., Van Etten, E. 

J., Bharadwaj, P. K., Smith, S. G., Porges, E., Hishaw, G. A., Wu, S., DeKosky, S., 

Alexander, G. E., Marsiske, M., Cohen, R., & Woods, A. J. (2020). The Role of Resting-

State Network Functional Connectivity in Cognitive Aging. Frontiers in Aging 

Neuroscience, 12, 1-10. https://www.frontiersin.org/article/10.3389/fnagi.2020.00177. 

Hausman, H. K., Hardcastle, C., Albizu, A., Kraft, J. N., Evangelista, N. D., Boutzoukas, E. M., 

Langer, K., O'Shea, A., Van Etten, E. J., Bharadwaj, P. K., Song, H., Smith, S. G., 

Porges, E., DeKosky, S. T., Hishaw, G. A., Wu, S., Marsiske, M., Cohen, R., Alexander, 

G. E., & Woods, A. J. (2022). Cingulo-opercular and frontoparietal control network 

connectivity and executive functioning in older adults. GeroScience, 44(2), 847–866. 

https://doi.org/10.1007/s11357-021-00503-1. 

Hedden, T., & Yoon, C. (2006). Individual differences in executive processing predict 

susceptibility to interference in verbal working memory. Neuropsychology, 20(5), 511–

528. https://doi.org/10.1037/0894-4105.20.5.511. 

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. 

(2009). Predicting human resting-state functional connectivity from structural 

connectivity. Proceedings of the National Academy of Sciences of the United States of 

America, 106(6), 2035–2040. https://doi.org/10.1073/pnas.0811168106. 

IBM Corp. (2023). IBM SPSS Statistics for Windows (Version 29.0). Armonk, NY: IBM Corp. 



                                                                                                                      33 

Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia-Barrera, M. A. 

(2018). The unity and diversity of executive functions: A systematic review and re-

analysis of latent variable studies. Psychological Bulletin, 144(11), 1147–

1185. https://doi.org/10.1037/bul0000160. 

Kelley, Amy S., Kathleen McGarry, Rebecca Gorges, and Jonathan S. Skinner. 2015. "The 

Burden of Health Care Costs for Patients with Dementia in the Last 5 Years of 

Life." Annals of Internal Medicine, 163(10): 729-736, doi:10.7326/M15-0381. 

Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford 

Press. 

Lampit, A., Hallock, H. & Valenzuela, M. (2014). Computerized Cognitive Training in 

Cognitively Healthy Older Adults: A Systematic Review and Meta-analysis of Effect 

Modifiers. PLoS Med, 11(11), 1-18. 

Lloyd-Jones, D. M., Hong, Y., Labarthe, D., Mozaffarian, D., Appel, L. J., Van Horn, L., 

Greenlund, K., Daniels, S., Nichol, G., Tomaselli, G. F., Arnett, D. K., Fonarow, G. C., 

Ho, P. M., Lauer, M. S., Masoudi, F. A., Robertson, R. M., Roger, V., Schwamm, L. H., 

Sorlie, P., Yancy, C. W., … American Heart Association Strategic Planning Task Force 

and Statistics Committee (2010). Defining and setting national goals for cardiovascular 

health promotion and disease reduction: the American Heart Association's strategic 

Impact Goal through 2020 and beyond. Circulation, 121(4), 586–613. 

https://doi.org/10.1161/CIRCULATIONAHA.109.192703. 

Mahalakshmi, B., Maurya, N., Lee, S.-D., & Bharath Kumar, V. (2020). Possible 

Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. International 

Journal of Molecular Sciences, 16, 5895. https://doi.org/10.3390/ijms21165895 



                                                                                                                      34 

Maldonado, T., Orr, J. M., Goen, J. R. M. & Bernard, J. A. (2020). Age Differences in the 

Subcomponents of Executive Functioning. J Gerontol B Psychol Sci Soc Sci, 75(6), 31-

55.  

McDonald, R. P., & Ho, M. H. (2002). Principles and practice in reporting structural equation 

analyses. Psychological methods, 7(1), 64–82. https://doi.org/10.1037/1082-989x.7.1.64. 

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A. & Wager, T. D. 

(2000). The unity and diversity of executive functions and their contributions to complex 

“frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 49–100. 

Miyake, A., & Friedman, N.P. (2012). The Nature and Organization of Individual Differences in 

Executive Functions: Four General Conclusions. Curr Dir Psychol Sci, 21(1), 8-14. 

Muthén, L.K. and Muthén, B.O. (1998-2017).  Mplus User’s Guide.  Eighth Edition. Los 

Angeles, CA: Muthén & Muthén 

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., 

Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a 

brief screening tool for mild cognitive impairment. Journal of the American Geriatrics 

Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x. 

National Center for Chronic Disease Prevention and Health Promotion. (2022). Promoting 

Health for Older Adults [Fact Sheet]. Centers for Disease Control and Prevention. 

https://www.cdc.gov/chronicdisease/resources/publications/factsheets/promoting-health-

for-older-adults.htm. 

Nieto-Castanon, A. (2020). Handbook of functional connectivity Magnetic Resonance Imaging 

methods in CONN. Boston, MA: Hilbert Press. doi:10.56441/hilbertpress.2207.6598. 



                                                                                                                      35 

Nieto-Castanon, A. & Whitfield-Gabrieli, S. (2021). CONN functional connectivity toolbox: 

RRID SCR_009550, release 21. doi:10.56441/hilbertpress.2161.7292. 

Nieto-Castanon, A. (submitted). Preparing fMRI Data for Statistical Analysis. In M. Filippi 

(Ed.). fMRI techniques and protocols. Springer. doi:10.48550/arXiv.2210.13564. 

Nguyen, L., Murphy, K., & Andrews, G. (2019). Cognitive and neural plasticity in old age: A 

systematic review of evidence from executive functions cognitive training. Ageing 

research reviews, 53, 100912. https://doi.org/10.1016/j.arr.2019.100912. 

Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (Eds.). (2011). 

Statistical parametric mapping: the analysis of functional brain images. Elsevier. 

Pinho, R. A., Aguiar, A. S., & Radák, Z., (2019). Effects of Resistance Exercise on Cerebral 

Redox Regulation and Cognition: An Interplay Between Muscle and Brain. Antioxidants, 

8(11), 529. https://doi.org/10.3390/antiox8110529. 

Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., & Petersen, S.E., (2014). 

Methods to detect, characterize, and remove motion artifact in resting state fMRI. 

NeuroImage, 84, 320-341. 

Reineberg, A. E., Gustavson, D. E., Benca, C., Banich, M. T. and Friedman, N. P. (2018). The 

Relationship Between Resting State Connectivity and Individual Differences in 

Executive Functions. Frontiers in Psychology, 9, 1-14.  

Reitan, R. (1992). Trail Making Test: Manual for administration and scoring. Tucson: Reitan 

Neuropsychological Laboratory. 

Reuter-Lorenz, P. A. & Cappell, K. A. (2008) Neurocognitive Aging and the Compensation 

Hypothesis. Current Directions in Psychological Science, 17(3), 177-182. DOI: 

10.1111/j.1467-8721.2008.00570. 



                                                                                                                      36 

Rey, A. (1941). L’examen psychologique dans les cas d’encephopathie traumatique (The 

psychological examination of cases of traumatic encephalopathy), Archives de 

Psychologie, 28, 286-340. Corwin, J. & Bylsma, F.W., Translated (1993). The Clinical 

Neuropsychologist, 7, 4-9. 

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and 

interpretations. NeuroImage, 52(3), 1059–1069. 

https://doi.org/10.1016/j.neuroimage.2009.10.003. 

Sala-Llonch, R., Bartrés-Faz, D., & Junqué, C. (2015). Reorganization of brain networks in 

aging: a review of functional connectivity studies. Frontiers in psychology, 6, 663. 

https://doi.org/10.3389/fpsyg.2015.00663. 

Seer, C., Sidlauskaite, J., Lange, F., Rodríguez-Nieto, G., & Swinnen, S. P. (2021). Cognition 

and action: a latent variable approach to study contributions of executive functions to 

motor control in older adults. Aging, 13(12), 15942–15963. 

https://doi.org/10.18632/aging.203239. 

Siman-Tov, T., Bosak, N., Sprecher, E., Paz, R., Eran, A., Aharon-Peretz, J., & Kahn, I. (2017). 

Early Age-Related Functional Connectivity Decline in High-Order Cognitive 

Networks. Frontiers in aging neuroscience, 8, 330. 

https://doi.org/10.3389/fnagi.2016.00330. 

Stillman, C., Donofry, S., & Erickson, K. (2019). Exercise, Fitness and the Aging Brain: A 

Review of Functional Connectivity in Aging. Archives Of Psychology, 3(4). Retrieved 

from https://archivesofpsychology.org/index.php/aop/article/view/98. 



                                                                                                                      37 

Taylor, C. A., Bouldin, E. D., & McGuire, L. C. (2018) Subjective Cognitive Decline Among 

Adults Aged ≥45 Years — United States, 2015–2016. MMWR Morb Mortal Wkly Rep, 

67, 753–757. http://dx.doi.org/10.15585/mmwr.mm6727a1. 

Teixeira-Santos, A. C., Moreira, C. S., Magalhães, R., Magalhães, C., Pereira, D. R., Leite, J., 

Carvalho, S., & Sampaio, A. (2019). Reviewing working memory training gains in 

healthy older adults: A meta-analytic review of transfer for cognitive 

outcomes. Neuroscience and biobehavioral reviews, 103, 163–177. 

https://doi.org/10.1016/j.neubiorev.2019.05.009. 

Tsvetanov, K. T., Henson, R. N. A., Tyler, L. K., Razi, A., Geerlings, L., Ham, T. E. & Rowe, J. 

B. (2016). Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition 

across the Lifespan Despite Accelerated Decay of Regional Brain Activation. The 

Journal of Neuroscience, 36(11), 3115-3126. 

Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Malkowski, E., Alves, H., Kim, J. S., 

Morris, K. S., White, S. M., Wójcicki, T. R., Hu, L., Szabo, A., Klamm, E., McAuley, E., 

& Kramer, A. F. (2010). Functional connectivity: a source of variance in the association 

between cardiorespiratory fitness and cognition? Neuropsychologia, 48(5), 1394–1406. 

https://doi.org/10.1016/j.neuropsychologia.2010.01.005. 

Whitfield-Gabrieli, S., Nieto-Castanon, A., & Ghosh, S. (2011). Artifact detection tools (ART). 

Cambridge, MA. Release Version, 7(19), 11. 

Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox 

for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125-141. 

Wolff, J. L., Spillman, B. C., Freedman, V. A., & Kasper, J. D. (2016). A National Profile of 

Family and Unpaid Caregivers who Assist Older Adults with Health Care 



                                                                                                                      38 

Activities. JAMA internal medicine, 176(3), 372–379. 

https://doi.org/10.1001/jamainternmed.2015.7664. 

Won, J., Callow, D. D., Pena, G. S., Gogniat, M. A., Kommula, Y., Arnold-Nedimala, N. A., 

Jordan, L. S., & Smith, J. C. (2021). Evidence for exercise-related plasticity in functional 

and structural neural network connectivity. Neuroscience and biobehavioral 

reviews, 131, 923–940. https://doi.org/10.1016/j.neubiorev.2021.10.013. 

Yang, M. H., Yao, Z. F., & Hsieh, S. (2019). Multimodal neuroimaging analysis reveals age-

associated common and discrete cognitive control constructs. Human brain 

mapping, 40(9), 2639–2661. https://doi.org/10.1002/hbm.24550. 

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., 

Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, 

R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic 

functional connectivity. Journal of neurophysiology, 106(3), 1125–1165. 

https://doi.org/10.1152/jn.00338.2011



                                                                                                                      39 

APPENDICES  

Appendix A 

Table 5 HCP-A Inclusion and Exclusion Criteria (Bookheimer et al., 2019) 
 

HCP-A Inclusion Criteria  

1. Age 36-100+ 

2. Ability to give informed consent 

HCP-A Exclusion Criteria 

1. During the participant’s lifetime: 

a. Neurologic disease including multiple sclerosis, cerebral palsy, Parkinson’s disease, or Alzheimer’s 
disease 

b. Brain surgery 

c. Major psychiatric disorder, such as bipolar disorder or schizophrenia 

d. Hospitalization for 2 days or more for alcoholism or drug dependence 

e. Head injury causing any of the following:  

i. Loss of consciousness for >30 minutes 

ii. Amnesia for >24 hours 

iii. Change in mental status for >24 hours 

iv. Neuroimaging findings consistent with traumatic brain injury 

v. Persistent (>3 months) post-concussive symptoms following concussion or mild TBI 

f. Two or more non-provoked (e.g. not due to fever) seizures after age 5 years or a diagnosis of 
epilepsy 

g. Any brain tumor including meningiomas 

h. Any cancer treated with chemotherapy and/or radiation to the head or neck, and/or any stage 4 
(metastatic) cancer even if no treated 

i. Hospitalization for brain aneurysm, brain hemorrhage, subdural hematoma or stroke (except TIA is 
allowed) 

j. Rheumatoid arthritis, HIV or lupus or another condition requiring long-term use of steroids or 
other immunosuppressant 

k. If 80 years old or younger: Diagnosis of macular degeneration  

l. Known genetic disorder (e.g. sickle cell disease or cystic fibrosis) 



                                                                                                                      40 

2. Within the last 5 years: 

a. Pharmacologic or surgical treatment by a neurologist, or endocrinologist for a period of 12 months 
or longer, except for thyroid conditions or for back pain or other condition that is clearly not brain-
related. 

b. Severe depression requiring treatment by a psychiatrist for 12 months or longer 

3. Within the last 1 year: 

a. Diagnosis of thyroid problems and/or changing doses of thyroid medication 

b. Heart attack 

4. Current: 

a. Diabetes that has been diagnosed within the past 3 years (diabetes is OK if it is stably controlled 
per participant report of either HbA1c <7.0 or stable control for at least 3 months) 

b. Hearing loss sufficient to prevent communication via telephone 

c. Vision worse than 20/200 

d. Current pregnancy 

e. Unsafe metal or devices in body 

f. Moderate to severe claustrophobia 

g. Use of prescription medication to prevent migraines (migraines allowed if not taking daily 
preventive medications) 

h. Migraine less than 72 hours before the first visit or during the visit 

i. Uncontrolled high blood pressure (>170/100) or working with doctor to stabilize blood pressure 

j. Severe lung, living, kidney or heart disease or other major organ failure 

k. Montreal Cognitive Assessment (MoCA) score of 19 or below for participants aged up to 79 years; 
MoCA score of 17 or below for participants ages 80-89; MoCA score of 16 or below for 
participants age 90 and above  

l. For participants aged 60 – 79, a score of 29 or below on the TICS-M questionnaire. If participants 
ages 80 and above score 29 or below on the TICS-M, we give them a secondary screen to 
determine their eligibility.  
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