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ABSTRACT 

The Differential Test Functioning (DTF) statistic, with the Item Parameter Replication 

(IPR) procedure, can measure Differential Item Functioning (DIF) within the Differential 

Functioning of Items and Tests (DFIT) framework for Item Response Theory (IRT) models. 

However, it comes with many practical costs and theoretical assumptions. In some reasonably 

anticipated circumstances, the DTF statistic cannot be evaluated easily, and DFIT analysis 

consequentially remains beyond the scope of impacted IRT models. A straightforward, 

diagnostic statistic would add value to typical IRT model fitting. It was hypothesized that a 

statistic based on Mahalanobis distances and standard errors of an IRT model could perform as a 

reliable flag for likely DIF. To test this hypothesis, a Monte Carlo simulation study compared the 

performance of the traditional DTF measure to the new statistic. Although easy to calculate, the 

statistic proved unproductive in flagging models with DIF present. Related performance analysis 

and recommendations were provided. 

 

INDEX WORDS: Item Response Theory, Differential Item Functioning, Monte Carlo Simulation, 

High-Performance Computing  
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DEDICATION 

 

 

And Raphael now, to Adam's doubt proposed, 

Benevolent and facile thus replied. 

To ask or search, I blame thee not; for Heaven 

Is as the book of God before thee set, 

Wherein to read his wondrous works, and learn 

His seasons, hours, or days, or months, or years: 

This to attain, whether Heaven move or Earth, 

Imports not, if thou reckon right; the rest 

From man or angel the great Architect 

Did wisely to conceal, and not divulge 

His secrets to be scanned by them who ought 

Rather admire; or, if they list to try 

Conjecture, he his fabric of the Heavens 

Hath left to their disputes, perhaps to move 

His laughter at their quaint opinions wide 

 

— Milton
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1 THE PROBLEM 

Introduction 

Item Response Theory (IRT) is an approach to measurement based on the assumption 

that a trait of interest is indirectly measurable by calculating the likelihood of a set of persons' 

responses to items with quantifiable parameters (Embretson & Reise, 2000; Hambleton et al., 

2010). Differential Item Functioning (DIF) is a phenomenon within Item Response Theory 

where those likelihoods fail to remain consistent between all examinees, usually because of the 

interaction of an extraneous trait with some imperfect items (Oshima & Morris, 2008). A certain 

technical report puts it in clear language: “it means that examinees with identical θs will have 

different chances of getting the item correct (P(θ)), depending on their group. That situation is 

clearly unfair” (Warm, 1978, p. 128). 

 Within IRT, the evaluation of DIF is an evolving subject matter. DIF analysis methods 

carry computational and structural costs; the traditional hypothesis-based testing for DIF is 

complex. Some relatively unexplored avenues of DIF analysis, when applied in a manner 

informed by existing literature, may present a new, simpler option. Examining the measurement 

failures of a model based on the Mahalanobis distance might provide a relatively affordable 

“check engine light” for everyday practitioners and users of IRT to make data-informed 

decisions on whether to invest in using or testing a model further. 

The Growth of IRT Scholarship 

Both IRT and the tools for using it are well-established and continue to develop. IRT 

scholarship, going by its presence in the literature, ages well for an octogenarian: the number of 

publications and the citations they generate are strongly correlated, r(28) = .98, p < .01, when the 
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exponential growth is transformed logarithmically to satisfy the linearity assumption of the 

Pearson’s r: 

Figure 1 

Publications and Citations, via Clarivate Analytics, for “Item Response Theory” 

 

In practice, as well, IRT proliferates. It is stated that “all major educational tests…are 

developed using item response theory” (An & Yung, 2014, p. 1) Within the field of language 

testing, for example, the Rasch model has been found to be held in “wide acceptance” 

(McNamara & Knoch, 2012, p. 556). There are more R packages available for Item Response 

Theory than any other common theoretical framework in psychometrics (CRAN Task View: 

Psychometric Models and Methods, 2022).  

The Development of Computational Capacity 

Similarly, microprocessor capability, going by achievements in production, proceeds 

apace: the density of transistors relative to the passage of time—Moore’s Law—are strongly 

correlated, r(240) = .99, p < .01, with the same transformation:  
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Figure 2 

CPU Transistors per mm2, data via 

https://gist.github.com/emartin59/0345adc1a60ad58433bb9b24113f490b 

 

The development looks like it has never been better in both instances, but the 

development is not as sustainable as it may seem. Defenders of Moore’s law tend to point out 

that continued gains in microprocessor engineering are only possible through multi-faceted 

innovations in diverse aspects of the process (Bohr, 2018; O'Boyle, 2019; Rotman, 2020). In 

research sectors, these hardware innovations are accessed after appropriate changes are made to 

software to capitalize on them (Fikis & Oshima, 2017; Putz et al., 2013; Sheng et al., 2014; 

Wang et al., 2017). However, even popular IRT programs show opportunities directly related to 

computational speed and effectiveness (Fikis & Oshima, 2017). 

Even the physical tools—the computer hardware—used in IRT has an uncertain 

accessibility. Decreases in supply and increases in computer cost have been reported worldwide 

(Asianet-Pakistan, 2021; Garcia, 2020; Leesa-Nguansuk, 2021, 2022; Reporter, 2021). 

Reportedly, in the Philippines, the increased demand for computers in education has even 

inspired a call for government regulation of their price (Asianet-Pakistan, 2020). Economic 
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forecasts call for growth in GPU sectors, such as those used in high-performance computing, but 

increased profits might not translate to increased affordability (M2PressWIRE, 2020). 

Thus, the growth of computational potential does not tell the full story of the efforts 

involved and rising concerns over the affordability of psychometric research and evaluation. 

Models emphasizing parsimony would present tangible advantages and may even make IRT 

accessible to groups that would not otherwise be able to afford the analysis.  

The Nature of School and District Size   

In winter of 2021, Georgia reported 1,572 Milestones scores aggregated by school and 

subject with a median number tested of 69 (GaDOE, 2021). Nationwide, the 17,521 public 

school districts which remained open throughout 2021 reported a median grade size of 56 

students (Common Core of Data (CCD), 2021). 

Research has generally found that smaller class sizes present various, if contextual, 

desirable effects at multiple educational levels (Ake-Little et al., 2020; Bowne et al., 2017; 

Canbeldek & Isikoglu Erdogan, 2017; De Paola et al., 2013; Laitsch et al., 2021; Li & 

Konstantopoulos, 2016, 2017; Shen & Konstantopoulos, 2021). Some studies have claimed that 

leadership practices do not vary, “systematically,” with district size (Burkman et al., 2019). More 

focused inquiry into class size in online environments has also found results suggesting complex 

relationships (Bowne et al., 2017; Lin et al., 2019; Lowenthal et al., 2019; Sorensen, 2015). 

Thus, a great majority of environments where practical psychometric research could 

inform decisions are so small—with literature encouraging that smallness—that IRT may not be 

possible. Any approach to DIF detection with a reduced sample size burden therefore has an 

immediate relevance for educational policy; data-based statements about test fairness might be 

more possible in more diverse environments. 
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The Policymaking Implications of Theory, Practice, and Potential 

From the perspective of the study of educational policy, then, the landscape for today’s 

educational decisionmakers is an intersection of issues and constraints. The need for fair and 

reliable measurement remains a matter not far removed from the media a stakeholder may 

encounter, and continually evolving factors sustain the relevance of questions about what 

measurements are best to implement for the evaluation of education. DIF analysis, though well-

established, may be challenging to implement because of costs and limits from smaller sample 

sized and/or smaller-sized populations from which to draw those samples. If IRT—and the DIF 

analyses to determine if it is being implemented with fairness and equity—were made more 

possible in those circumstances, they would be more effective within their appropriate contexts. 

Problem Statement 

Within IRT, DIF is essential but also expensive. In an examination of fairness in testing 

within the context of IRT, Bialo (2021, p. 8) astutely synthesizes policies from the American 

Educational Research Association, the American Psychological Association, and the National 

Council on Measurement in Education by observing that, “a fair test is one in which scores have 

the same meaning for all test-takers.” Fortunately, one of the primary assumptions of Item 

Response theory is measurement invariance; in an IRT model, the latent trait measured by an 

instrument is on the same scale and is a functions of the same underlying ability construct 

regardless of who takes the test (Hambleton et al., 2010). DIF is the term for when this fails to be 

true, and tests for it have been in development alongside IRT itself (Oshima & Morris, 2008).  

The traditional, hypothesis-based testing used for DIF testing both at the item and test 

level presents a host of theoretical challenges including additional sample size requirements, 

specification of group membership, and constructing models under null and alternative 
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hypotheses (Cuhadar et al., 2021; De Boeck & Cho, 2021; Kopf et al., 2014b; O'Neill et al., 

2020; Sahin & Anil, 2017; Schulze et al., 2022). These theoretical challenges increase practical 

burdens on the computational resources needed to test if a test is fair under the IRT framework 

with DIF analysis (Fikis & Oshima, 2017; Robitzsch & Ludtke, 2022). While alternative 

approaches that avoid some of these challenges and burdens are under continual development, 

there still remain some—such as using the Mahalanobis distance—that have not received in-

depth analysis (Dimitrov, 2017; Lord, 1980; Penny, 1994; Randall & Engelhard, 2010). 

Considering the apparent pace DIF models outpace the growth of classroom sizes and accessible 

computer abilities, there is little reason to overlook the potential use of the Mahalanobis distance 

to aid the researcher in determining how badly they may be needed for a particular IRT model. 

The primary theoretical limitation of existing DIF analysis methods is that a researcher 

must already have some notion of the problem; the need for a hypothesis to test in most DIF 

frameworks creates a certain need for a priori knowledge of problematic instrumentation. The 

primary practical limitation of existing DIF analysis methods is that a researcher must have an 

even larger sample size; certain approaches are simply beyond the scope of possibility for many 

potential decision-makers. In addition to these limitations, DIF tests also present non-trivial costs 

in time and resources. If a method existed by which a model could be characterized as 

warranting a DIF analysis rather than specifically demonstrating DIF, and if that method was 

relatively simple to execute and interpret, then navigating the evaluation process would be more 

straightforward and, perhaps, affordably reliable for practitioners.  

Purpose of Study 

The purpose of this study was to investigate a new statistic for detecting DIF in IRT 

models. It was based on the skewness of the distribution of Mahalanobis distances of the 
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standard errors of estimated item parameters. A simple procedure based on cut-off values 

empirically derived from comparisons with the DTF statistic could accompany reports of an IRT 

model fitting to provide an inexpensive “check engine light” for encouraging a researcher to 

engage in a more expensive DIF analysis. The research question was “How well do Mahalanobis 

distances perform as DIF indicators?” 

To answer this question, this study proposed a simulation to investigate the effectiveness 

of using the skewness of the distribution of Mahalanobis distances of the standard errors of 

estimated item parameters as a “check engine light” to flag models that warrant further DIF 

analysis.  

Significance 

Mechanisms of Item Response Theory and Differential Item Functioning provide a well-

researched and ever-improving theoretical framework for answering questions about test validity 

and fairness, but the cost of these methods is beyond the scope of many environments where 

important, formative educational decisions might be made. There is a great deal of good to be 

said about DIF as a means of investigating the fairness of a test, but policymakers may not be 

able to listen to the necessary explanations. A single, simple statistic with broad generalizability 

and low computational cost could bridge the gap between everyday measurement and more 

focused evaluation even if it came with footnotes. 

Limitations 

The primary limitation of the proposed statistic is a consequence of the method of 

calculation: because the Mahalanobis distance is used without a hypothesis testing framework, 

the interpretation of findings should be considered limited and perhaps even descriptive in 

nature. Just as a “check engine” light would not explain whether the problem is an oil leak, 
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missing catalytic converter, or otherwise, so too would this new statistic only be able to implicate 

rather than demonstrate DIF: it is simple, but it is not conclusive. It is an encouragement rather 

than a replacement of the DTF statistic and DFIT (differential functioning of items and tests) 

procedures in general. The justification and effectiveness of a hypothesis-based test for the 

proposed statistic remains a topic suitable for future research. 

A theoretical limitation of the proposed study arises from assumptions of normality 

necessary to its methods. While the Central Limit Theorem establishes that sampling means are 

normally distributed regardless of the underlying distribution of their samples, parameter 

estimates are not themselves sampling means. Monte Carlo simulation methods provide ways to 

avoid this challenge by examining the mean performance of multiple repetitions to satisfy the 

Central Limit Theorem’s requirements. Nevertheless, the distribution of item parameters in an 

instrument is not automatically the product of a sampling process, and strictly speaking, the 

standard errors calculated from the Hessian matrix could be argued to lack local independence 

since they are jointly estimated in a multivariate space. These theoretical issues may undermine 

the rationale in this and other related studies. What can be made to work in a simulation may not 

automatically generalize to real-world contexts. Examining those real-world models in detail 

remains a potentially meaningful—if not fruitful—topic for further research. 

An additional limitation of the study comes from the nature of Monte Carlo simulations: 

although conditions were manipulated based on existing literature, conditions themselves were 

limited. Other conditions may be of interest to other researchers such as different levels of 

sample size or entirely new conditions such multiple group membership remain topics suitable 

for future research. 

  



  9 

 

2 REVIEW OF THE LITERATURE 

The purpose of this study was to evaluate the performance of a computationally simple 

statistic as an indicator of potential DIF. This statistic was based on the skewness of Mahalanobis 

distances of standard errors of parameter estimates. Unlike traditional test-based DIF analysis 

methods, this statistic needs neither the theoretical framework of an alternative hypothesis nor 

the practical framework of larger samples and multiple models to test. Thus, this statistic might 

add value as a routine “check engine light” to display during practical model fitting in Item 

Response Theory (IRT). 

Accordingly, this study is set both within technical and theoretical aspects of specific 

applications of IRT which warrant a review of some relevant literature. First, an overview of the 

conceptual framework of the study—or, perhaps more astutely, an introduction to its 

mathematical context of IRT—is provided for the benefit of readers for whom the minutiae of 

IRT estimation algorithms are not ready-to-hand. Second, through a specific examination of the 

performance of IRT models, properties of interest are enumerated. Next, the concepts of DIF and 

the measurement of Differential Test Functioning (DTF) are provided. Finally, the Mahalanobis 

distance and Monte Carlo simulation are described to introduce the study’s nature and method. 

Item Response Theory Models 

Gödel’s Incompleteness Theorem posits that no mathematical system can be both sound 

(free of contradiction) and complete (capable of representing everything) and has been stretched 

outside its original context as an apt metaphor for the limits of complex systems (Hofstadter, 

1979). It would be fair to apply this philosophical exercise to Item Response Theory as a limit to 

what any model might be capable of, but it is perhaps more comforting to the researcher to 
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metaphorically apply it as a limit to representations of the math; there is no approach to 

categorizing IRT models without limitations, whether from contradiction or lack of coverage. 

Item Response Theory is a fecund theoretical framework. Efforts to classify IRT models 

display symptoms of that growth. For example, Hambleton et al. (2010) stated that “only a few 

models are in current use” (p. 12) and enumerated them with the following categories: 

1. One-Parameter Logistic Model 

2. Two-Paremeter Logistic Model 

3. Three-Parameter Logistic Model 

4. Other Promising Models 

while shortly after, Linden (1996) produced a well-organized collection of over 100 models and 

sorted them in the following categories: 

1. Common Models 

2. Models for items with polytomous response formats 

3. Models for response time or multiple attempts on items 

4. Models for multiple abilities or cognitive components 

5. Nonparametric models 

6. Models for nonmonotone items 

7. Models with special assumptions about the response process 

where the common models are “the original unidimensional normal-ogive and logistic IRT 

models for items with dichotomously-scored responses” (p. vi). Later, Embretson and Reise 

(2000) offered the following for an introduction: 

1. Binary IRT Models 

a. Unidimensional models 
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i. Traditional logistic models 

ii. Traditional Normal Ogive Models 

iii. Other Unidimensional Models 

1. Models with restrictions on the parameter structure 

2. Models for combining speed and accuracy 

3. Single items with multiple attempts 

4. Models with special forms for ICC 

b. Multidimensional models 

i. Exploratory multidimensional models for binary data 

1. Multidimensional logistic models 

2. Normal Ogive Models 

ii. Confirmatory multidimensional models 

1. Models for noncompensatory dimensions 

2. Models for learning and change 

3. Models with specified trait level structures 

4. Models for distinct classes of persons 

2. Polytomous IRT Models 

a. The Graded-Response Model 

b. The Modified Graded Response Model 

c. The Partial Credit Model 

d. The Generalized Partial Credit Model 

e. Rating Scale Model 

f. The Nominal Response Model 
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g. Continuous Response Model 

and even still observed that “due to space considerations, several potentially important models 

are not described” (p. 101). 

The 1-Parameter Logistic Model 

Textbooks that introduce IRT models start with a unidimensional and dichotomous 

model—the 1-Parameter Logistic (1PL) model: pass/fail items measuring one thing—such as in 

Embretson and Reise (2000): 

 𝑃𝑃(𝑋𝑋𝑖𝑖𝑖𝑖 = 1|𝜃𝜃𝑠𝑠,𝛽𝛽𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜃𝜃𝑠𝑠−𝛽𝛽𝑖𝑖)
𝑒𝑒𝑒𝑒𝑒𝑒(𝜃𝜃𝑠𝑠−𝛽𝛽𝑖𝑖)

 (1) 

where “the simple probability that person s passes item i,” P, depends on a personal trait θs and 

item difficulty βi as well as in Hambleton et al. (2010, p. 12): 

 𝑃𝑃𝑖𝑖(𝜃𝜃) = 𝑒𝑒�𝜃𝜃−𝑏𝑏𝑖𝑖�

1+𝑒𝑒�𝜃𝜃−𝑏𝑏𝑖𝑖�
; 𝑖𝑖 = 1,2, … ,𝑛𝑛  (2) 

where “a randomly chosen examinee with ability θ answers item i correctly” given item 

difficulty b with probability P. Both attribute the model to seminal work in Rasch (1960, p. 168): 

 𝜃𝜃𝑣𝑣𝑣𝑣 = 𝜉𝜉𝑣𝑣
𝜉𝜉𝑣𝑣+𝜃𝜃𝑖𝑖

  (3) 

where the “probability (θvi) that a person (v) gives a correct answer to an item (i)” is described in 

the middle of a much more profound discussion on measurement in mathematical psychology, 

but the latter does implicitly acknowledge the multi-threaded beginnings to the model by briefly 

citing the work of Lord (1952), where students who memorize Rasch’s 1PL model as origination 

ex nihilo might be surprised to see an “Item Characteristic Curve” (p. 7) and consideration of a 

“Discrimination Index” (p. 27) ahead of when they may otherwise anticipate such encounters. 

The parameterization—or labelling—of such related concepts tells more of the model than the 

math itself; for example, with a little effort, as illustrated by Templin (2008): 
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 �
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜋𝜋0𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖
𝜋𝜋0𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + 𝜃𝜃0𝑗𝑗

 (4) 

where notation based on Raudenbush and Bryk (2002, pp. 365-368) describes the probability of 

correct item response, ηij, as a hierarchical model of item difficulty β with individual ability θ, 

most of the features of the 1PL model are replicated in a different approach with its own merits. 

The 2-Parameter Logistic (2PL) Model  

Compared to the 1PL, IRT models developed since its inception offer a more developed 

theoretical framework for researchers. A two-parameter model for dichotomous responses is 

described in Lord et al. (1968, p. 400) as: 

 𝑃𝑃𝑔𝑔(𝜃𝜃) = 𝛹𝛹�1.7𝑎𝑎𝑔𝑔�𝜃𝜃 − 𝑏𝑏𝑔𝑔�� ≡ �1 + 𝑒𝑒−𝐷𝐷𝑎𝑎𝑔𝑔�𝜃𝜃−𝑏𝑏𝑔𝑔��
−1

 (5) 

where Ψ is the logistic cumulative distribution function, θ is an ability, D is a scaling factor to 

bring the logistic model into equivalency with the normal model when set to 1.7, and a and b are 

item parameters such that b behaves similarly to item difficulty in Equation 2 and a is 

“discriminating power” manipulating the slope of the item characteristic curve—or, in another 

manner of speaking, the variance of the underlying distribution of responses (Lord & Novick, 

1968, p. 367). Although useful and theoretically sound, manipulating the distribution in this way 

creates a plethora of mathematical challenges that can scarcely be understated. 

The primary challenge can be appreciated in mathematical terms by examining the 

concept of statistic sufficiency. While discussing the normally-distributed nature of maximum 

likelihood estimators, Hambleton and Swaminathan (1984) observe that sufficient statistics exist 

for the 1PL and 2PL, but not for the 3PL nor “in any case of the normal ogive models” (p. 89). A 

sufficient statistic is one that can be used to replicate a sample or adequately determine an 

unknown parameter without using the original, random sample, such as the mean of a normally-
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distributed population with a known variance or the maximum of a uniformly-distributed 

population (Kennedy, 2006).  

The 3-Parameter Model (3PL) 

The nature of multiple-choice tests introduces the possibility of guessing, and the 3-

Parameter (3PL) model accounts for this guessing by creating a lower asymptote for the 

probability of a correct response. Hambleton et al. (2010, p. 17) describe it as: 

 𝑃𝑃𝑖𝑖(𝜃𝜃) = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)
𝑒𝑒𝐷𝐷𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖)

1+𝑒𝑒𝐷𝐷𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖)
 (6) 

with C representing a “pseudo-chance” parameter; they further cite Lord (1984) to caution 

against considering this as strictly a guessing parameter, but the cognomen has remained in use. 

Cuhadar et al. (2021) found that omitting pseudo-guessing parameters had varying but 

observable effects on estimation. 

Other Parameterization 

Other models exist within the unidimensional, dichotomous framework. For example, a 

4-Parameter model produced an upper asymptote, such that: 

 𝑃𝑃(𝜃𝜃) = 𝑐𝑐 + (𝛿𝛿 − 𝑐𝑐)𝐹𝐹(𝜃𝜃) (7) 

with the intention of minimizing the impact of response entry errors and tested using the SAT, 

GRE, and AP Calculus AB exams, but found “no compelling reason to urge the use of this 

model” (Barton & Lord, 1981, p. 6) Even the 4PL has been revisited and found to have some 

merits in the context of estimation methods not examined in its initial assessment (Culpepper, 

2016) . 

 The first, theoretical polytomous models for IRT were published in the late 1960’s 

around the same time as other early unidimensional variants, but more practical versions 

emerged 20-30 years later (Nering & Ostini, 2010, p. 24). The earliest formulations of the 
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Graded Response Model can be found in the thorough work of Samejima (1968) with discussion 

of both the theoretical model and detailed mathematical examination of estimators; in this 

original formulation, a unidimensional, latent trait is analyzed with free response items that are 

“classified into a certain limited number of categories arranged in the order of attainment or 

intensity” such that: 

 𝑃𝑃𝑣𝑣(𝜃𝜃) = ∏ 𝑃𝑃𝑘𝑘𝑘𝑘(𝜃𝜃)𝑘𝑘𝑔𝑔∈𝑉𝑉  (8) 

where the probability of response pattern V is a function of ability θ, equal to the product of the 

locally independent probabilities of each responses k to every item g  (pp. 3-4). A sample size of 

at least 500 responses is recommended to fit Graded Response Models (Embretson & Reise, 

2000; Reise & Yu, 1990). For smaller samples (75 or 150) some improvements in parameter 

recovery are observed when using Markov Chain Monte Carlo estimation instead of Marginal 

Maximum Likelihood techniques (Kieftenbeld & Natesan, 2012). 

Item Response Theory Performance 

 Much research is conducted to investigate the effectiveness of these related models 

under a wide variety of conditions. For example, within the context of a test of vocabulary, 

Holster and Lake (2016) investigated the misspecification criticisms Stewart (2014) made of 

Beglar (2010) using a 1PL Rasch model instead of a 3PL and found mixed results that, overall, 

encourage further investigation. Furthermore, Crocker (1986) pointed out that the 3PL has a 

disadvantage of requiring large sample sizes, and, later, Finch (2005) noted that even 1,000 

individuals per group in a 20-item test had difficulty with estimation in certain contexts (Cuhadar 

et al., 2021). Kim and Lee (2017) simulated three-parameter models with sample size conditions 

of 500 and 3,000 while investigating the performance of item calibration methods for Bayesian 

estimation procedures and found that the benefits of various options were more observable in the 
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larger condition. Al-zboon et al. (2021) found that the amount of missing data has a significant 

impact on standard error, with more than 5% missing data presenting negative impacts. Han 

(2012) discussed theoretical particulars about interpreting guessing—harkening to the original 

caution against interpreting the third parameter strictly as guessing—and provided an empirical 

argument for fixing the c parameter in 3PL estimation to the probability of a random correct 

guess. 

Sample Size 

A decisionmaker presented with IRT as a potential information source might naturally 

ask the pragmatic question, “How many tests are required?” The answer—the complex, nuanced, 

and multi-faceted answer—might best be simplified into the less-than-actionable aphorism of, “It 

depends.” Sahin and Anil (2017) aptly observe “tremendous discrepancies” in the literature, 

finding that research spanning 33 years offers evidence for anything from N=200 to N=1000 (p. 

322). The latter number is an acknowledged rule-of-thumb, but the number of responses is a 

product of individuals and items. With subsets of a real test of English language proficiency 

prepared using exploratory factor analysis of items and random selection of individuals, under 

Marginal Maximum Likelihood Estimation, Sahin and Anil (2017) proceeded to evaluate 

product-moment correlations, root mean square differences, and χ2 analysis to demonstrate 

minimum sample sizes of N=150 regardless of test length for the 1PL Model and minimum Item-

Response products of around 8,333 for the 2PL and around 33,000 for the 3PL Model. Figure 3 

summarizes these recommendations. Later, Uyar and Ozturk Gubes (2020) did not find 

significant problems when estimating a 2PL with 500 responses and 30 items based in part on 

those recommendations. 
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Figure 3 

Recommended Minimum Sample Size by Test Length from Sahin and Anil (2017) 

 

IRT models vary in complexity and cost. Table 1 summarizes some of them: 

Table 1 

Recommended Sample Sizes for IRT Models 

Model Introduction Minimum Recommendations 
Sample Source 

1PL Rasch (1960) 150 Sahin and Anil (2017) 
2PL Lord et al. (1968) 500 Uyar and Ozturk Gubes (2020) 
3PL Lord (1984) 250-750 Sahin and Anil (2017) 
GRM Samejima (1968) 500 Reise and Yu (1990) 

 

Estimation Procedures 

The beneficial separation of person and item variables in IRT has an impact on how the 

specific numbers in models are determined; an established model may already have known item 

parameters, a new item’s parameters might be estimated with responses from pre-measured 
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individuals, or a model may simultaneously need to estimate both item and person parameters. 

Hambleton et al. (2010) explain that, because of the assumption of local independence, the 

likelihood L of an observed response set un based on the underlying ability θ is the cross-product: 

 𝐿𝐿(𝑢𝑢𝑛𝑛|𝜃𝜃) = ∏ 𝑃𝑃𝑗𝑗
𝑢𝑢𝑗𝑗𝑛𝑛

𝑗𝑗=1 𝑄𝑄𝑗𝑗
1−𝑢𝑢𝑗𝑗 (9) 

and for mathematical reasons, a logarithmic transformation makes both the small values of L and 

ensuing operations easier to work with: 

 
𝑙𝑙𝑙𝑙 𝑥𝑥𝑥𝑥 = 𝑙𝑙𝑙𝑙 𝑥𝑥 + 𝑙𝑙𝑙𝑙 𝑦𝑦 ,
𝑙𝑙𝑙𝑙 𝑥𝑥𝑎𝑎 = 𝑎𝑎 𝑙𝑙𝑙𝑙 𝑥𝑥 ,

∴ 𝑙𝑙𝑛𝑛 𝐿𝐿(𝑢𝑢|𝜃𝜃) = ∑ [𝑢𝑢𝑗𝑗 𝑙𝑙𝑙𝑙 𝑃𝑃𝑗𝑗 + �1 − 𝑢𝑢𝑗𝑗� 𝑙𝑙𝑙𝑙 (1 − 𝑃𝑃𝑗𝑗)]𝑛𝑛
𝑗𝑗=1

 (10) 

and solving the first derivative of the resulting function returns the values for which likelihood is 

greatest. This equation cannot be solved directly even in the 1PL, though, because there are too 

many unknowns. Instead, various procedures can be applied to evaluate what is known fittingly 

as the “maximum likelihood estimate” (p. 35).  

Advantages of Maximum Likelihood Estimation. There are pragmatic advantages to 

using maximum likelihood estimates beyond computational simplicity. When fitting a model for 

θ, for instance, the maximum likelihood estimator is normally distributed with a mean of the true 

value of θ and a variance expressed as: 

 𝑉𝑉�𝜃𝜃�|𝜃𝜃� = [𝐼𝐼(𝜃𝜃)]−1 = 1

−𝐸𝐸�𝜕𝜕
2 𝑙𝑙𝑙𝑙𝐿𝐿
𝜕𝜕𝜃𝜃2

�
= ∑ 𝑃𝑃𝑖𝑖

′2

𝑃𝑃𝑖𝑖𝑄𝑄𝑖𝑖
𝑛𝑛
𝑖𝑖=1  (11) 

or the inverse of the information function I, where E is an expected value, and substituting the 

expected value of θ for the true value in the information function provides a confidence interval 

for the maximum likelihood estimator (p. 89). Hambleton and Swaminathan (1984) use the term 

“maximum likelihood confidence interval estimator” with a direct citation to Lord et al. (1968, p. 

457) that, itself, further discusses the asymptotic efficiency of this estimator based on earlier 
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works (Cramér, 1946, p. 500; Kendall, 1961; Wald, 1942). Even Wald (1942) makes specific 

remarks to related, earlier research in Wilks (1938). In other words, the matter is a subject of 

long-standing research, and IRT models are estimated rather than calculated. 

Algorithmic Estimation Procedures. Some of those estimation procedures, and the 

research presenting them, are well-organized and described in the work of Hambleton and 

Swaminathan (1984). These include the Newton-Raphson method, elaborated in Isaacson and 

Keller (1966), used to approximate the solution of the derivative of the log-likelihood such as 

when estimating person parameters given known item parameters: 

 

𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙 𝐿𝐿(𝑢𝑢|𝜃𝜃) = 0 = 𝑓𝑓(𝑥𝑥)

𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥0) ≈ 0  𝑡𝑡ℎ𝑒𝑒𝑒𝑒 |𝑓𝑓(𝑥𝑥1)| < |𝑓𝑓(𝑥𝑥0)| 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑥𝑥1) = 𝑥𝑥0 − ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ =  𝑓𝑓(𝑥𝑥0)
𝑡𝑡𝑡𝑡𝑡𝑡𝛼𝛼

𝑡𝑡𝑡𝑡𝑡𝑡 𝛼𝛼 = 𝑓𝑓′(𝑥𝑥0)  ∴  𝜃𝜃𝑚𝑚+1 ≡ 𝜃𝜃𝑚𝑚 − � 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑙𝑙𝑙𝑙 𝐿𝐿(𝑢𝑢|𝜃𝜃)�

𝑚𝑚
/ � 𝑑𝑑

2

𝑑𝑑𝜃𝜃2
𝑙𝑙𝑙𝑙 𝐿𝐿(𝑢𝑢|𝜃𝜃)�

𝑚𝑚

 (12) 

where the slope of the likelihood function is used in an application of the distance formula and 

iterated until the improvement passes below a set threshold or the estimate “converges” 

(Hambleton & Swaminathan, 1984, p. 81).  

In the 1PL in particular, starting values for θ (or in terms the above formula, x0) can be 

established by taking the natural logarithm of the proportion of correct responses, and—more 

generally—perfectly correct and entirely incorrect response sets lack global maxima in their 

likelihood functions and are omitted from Newton-Raphson estimation with impacts that were 

then “currently not known” (p. 86). More specifically, the risk of small models yielding 

likelihood functions with multiple local maxima is dealt with by noting Lord (1980, p. 51) to 

support the claim that the risk is small “when working with large number of items (n > 20) as is 

usually the case in practice” (p. 88).  

Joint Maximum Likelihood Estimation. The above Newton-Raphson procedure still 
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does not make the multivariate and nonlinear IRT models for unknown item and ability 

parameters estimable, because estimating item and ability (also called structural and incidental) 

parameters simultaneously creates a multivariate situation: 

 𝑙𝑙𝑙𝑙 𝐿𝐿(𝑢𝑢|𝜃𝜃, 𝑏𝑏, 𝑎𝑎, 𝑐𝑐) =  ∑ ∑ [𝑢𝑢𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙 𝑃𝑃𝑖𝑖𝑖𝑖 + (1 − 𝑢𝑢𝑖𝑖𝑖𝑖) 𝑙𝑙𝑙𝑙 𝑄𝑄𝑖𝑖𝑖𝑖]𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑎𝑎=1   (13) 

where θ, b, a, and c are now vectors of item parameters and u is a vector of responses with 

dimensionality Nn for N individuals on n items, and the Newton-Raphson procedure 

consequentially takes on a multivariate format to find the maximum via derivatives nudged to 

convergence in the similar implementation of the difference formula: 

 

𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓(𝑡𝑡) =  𝑙𝑙𝑙𝑙 𝐿𝐿(𝑢𝑢|𝜃𝜃, 𝑏𝑏,𝑎𝑎, 𝑐𝑐) 
𝑙𝑙𝑙𝑙𝑙𝑙 𝜕𝜕 𝑙𝑙𝑙𝑙 𝐿𝐿

𝜕𝜕𝑡𝑡𝑘𝑘
= 0 =  𝑓𝑓′(𝑡𝑡),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 =  {1 …𝑁𝑁 + 3𝑛𝑛 − 2} 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡′ = [𝜃𝜃′ 𝑏𝑏′ 𝑎𝑎′ 𝑐𝑐′]  

𝑖𝑖𝑖𝑖 𝑓𝑓′�𝑡𝑡𝑗𝑗� ≈ 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒  �𝑓𝑓′�𝑡𝑡𝑗𝑗+1�� < �𝑓𝑓′�𝑡𝑡𝑗𝑗�� 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓′�𝑡𝑡𝑗𝑗+1� = 𝑡𝑡𝑗𝑗 − 𝛿𝛿𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿𝑗𝑗 =  𝑓𝑓
′�𝑡𝑡𝑗𝑗�

𝑓𝑓′′�𝑡𝑡𝑗𝑗�

 (14) 

where t is a p-dimensional vector of parameters—constrained to length k to make it 

determinable—with the first derivative of the likelihood function producing a px1 vector and the 

second derivative providing a pxp matrix; the situation becomes mired in no fewer than eleven 

separate permutations of first and second partial derivatives for the 3PL with the possible 

introduction of Lagrange multipliers into the bargain. Hambleton and Swaminathan (1984) 

portray the situation aptly by noting that Lagrange multipliers are “rather complicated” without 

another word on the subject, settling on recommending a continued use of the two-stage iterative 

process of fixing certain parameters, converging, then fixing other parameters with the resulting 

convergence and repeating until changes are negligible (p. 132). Mathematical challenges to that 

process include local maxima, theoretically impractical convergence, and the Newton-Raphson 

procedure failing if the second derivative matrix becomes indefinite: using the information 

matrix instead of the second derivative is named as “Fisher’s method of scoring” (Hambleton & 

Swaminathan, 1984, p. 135; Rao, 1965, p. 302). The second derivative in this instance is a matrix 
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of partial derivatives called the “Hessian” matrix; researchers encountering this breakdown of 

Newton-Raphson convergence may recognize the name from the error message more than from 

the multivariate calculus. 

Marginal Maximum Likelihood Estimation . Ultimately, the lack of sufficient 

statistics—that is to say, statistics that allow for the independent replication of mathematically 

equivalent samples—for most IRT models means that the two-stage iterative procedure of Joint 

Maximum Likelihood Estimation is theoretically inappropriate. Rather than finding the 

maximum of the likelihood function by solving the derivative to find a critical point, an integral 

can be constructed with respect to θ to eliminate the likelihood function’s dependence on its 

values.  Darrell Bock and Lieberman (1970) is cited as one of the originators of this method 

(Hambleton & Swaminathan, 1984, p. 140). In their work, Darrell Bock and Lieberman (1970) 

decidedly state that such integration “overcomes the difficulty … posed by non-positive-definite 

tetrachoric correlation [or Hessian] matrices, which strictly speaking are not suitable for any 

form of common factor analysis” (p. 180) and describe the unconditional probability: 

 𝑃𝑃(𝑘𝑘 = 𝑘𝑘𝑖𝑖) = ∫ [∏ 𝛯𝛯𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃)𝑛𝑛
𝑖𝑖=1 ]𝜙𝜙(𝜃𝜃)𝑔𝑔𝑔𝑔∞

−∞  (15) 

where Ξ is the likelihood of the response, not unlike 𝑃𝑃𝑗𝑗
𝑢𝑢𝑗𝑗𝑄𝑄𝑗𝑗

1−𝑢𝑢𝑗𝑗, φ is a normal distribution, and g 

appears to be an old formulation of d specifying the integral is with respect to—or perhaps 

given—θ. This is supported by the same formula being later described in Bock and Aitkin (1981, 

p. 445) as: 

 
𝑃𝑃(𝑥𝑥 = 𝑥𝑥𝑖𝑖|𝜃𝜃) = ∑ �𝛷𝛷𝑗𝑗(𝜃𝜃𝑖𝑖)�

𝑥𝑥𝑖𝑖𝑖𝑖�1 − 𝛷𝛷𝑗𝑗(𝜃𝜃𝑖𝑖)�
1−𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗

𝑃𝑃(𝑥𝑥 = 𝑥𝑥𝑖𝑖) = ∫ 𝑃𝑃(𝑥𝑥 = 𝑥𝑥𝑖𝑖|𝜃𝜃)𝑔𝑔(𝜃𝜃)𝑑𝑑𝑑𝑑∞
−∞

 (16) 

with similar variables while explaining how the Gauss-Hermite quadrature approximation as 

described by Stroud and Secrest (1966) allows approximating that integral as a sum of weighted, 
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indexed values that wind up corresponding to specific response patterns. They also suggest using 

the information function for the second derivative during the Newton-Raphson procedure—

substantiating the claim with Rao (1965, p. 370) similarly to Hambleton and Swaminathan 

(1984)—but go on to their main point of explaining how the EM algorithm applies to and 

improves the process. Unfortunately, the explanation is dense: even the acronym of EM is not 

defined, but the importance of missing sufficient statistics for most IRT models is highlighted.  

Generally, Dempster et al. (1977) originally defined the EM algorithm as Expectation 

Maximization, an iterated 2-step procedure suitable for estimating complete data given 

incomplete data; it can fit models like the 3PL when person and item parameters are both 

unknown, overcoming the challenge that insufficient statistics poses to Joint Maximum 

Likelihood Estimation. The EM algorithm is not unique to IRT; it is generally explained that: 

 𝑔𝑔(𝑦𝑦|𝛷𝛷) = ∫ 𝑓𝑓(𝑥𝑥|𝛷𝛷)𝑑𝑑𝑑𝑑𝒳𝒳(𝑦𝑦)  (17) 

where, to paraphrase in IRT terms, the observed data 𝒴𝒴 depend on latent parameters 𝒳𝒳 and 

𝑔𝑔(𝑦𝑦|Φ) is maximized by leveraging the related 𝑓𝑓(𝑥𝑥|Φ) to fit a complete model by 

integrating over sets of the sample space, estimate missing sufficient statistics, and 

repeating the process to refine the estimate of sufficient statistics until convergence is 

reached (p. 2). 

More specifically, Bock and Aitkin (1981) continue to demonstrate how the EM 

algorithm can be used, further substituting conditional probabilities of θ for the maximization: 

 𝐸𝐸(𝜃𝜃|𝑥𝑥𝑖𝑖) =
∫ 𝜃𝜃𝜃𝜃(𝜃𝜃)∏ �𝛷𝛷𝑗𝑗(𝜃𝜃)�𝑥𝑥𝑖𝑖𝑖𝑖�1−𝛷𝛷𝑗𝑗(𝜃𝜃)�1−𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗 𝑑𝑑𝑑𝑑∞
−∞

∫ 𝑔𝑔(𝜃𝜃)∏ �𝛷𝛷𝑗𝑗(𝜃𝜃)�𝑥𝑥𝑖𝑖𝑖𝑖�1−𝛷𝛷𝑗𝑗(𝜃𝜃)�1−𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗 𝑑𝑑𝑑𝑑∞

−∞
 (18) 
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by using Bayes’ theorem and approximating with response patterns as categories (p. 448). 

Muraki (1992) found the EM algorithm suitable to fit models even under a Generalized Partial 

Credit Model for polytomous responses.  

Differential Item Functioning (DIF) 

After sampling the models and estimation types present in IRT, a researcher might 

encounter several follow-up questions full of specific terms when attempting to empirically 

answer the question, “How good is this fitted IRT model?” The terms used are related both 

conceptually and mathematically, but they become more distinguished when considered 

carefully. Just as Regier et al. (2016) examined a large corpus of works from various climates to 

demonstrate that “local communicative needs” can explain the number of terms for snow that 

Franz Boas famously acclaimed in the Eskimo languages, so too might the various, related terms 

used to describe model quality arise from needs within the field. Thus, before examining DTF, 

the construct of Differential Item Functioning (DIF) is best described by briefly examining the 

nature of statistical difference and testing power.  

Statistical Difference 

It is helpful to establish the statistical algorithm of looking for significant differences 

when considering DIF testing. A rather unoriginal example of a statistical difference problem is 

the fishing question: assuming the lengths of fish from two fishing trips are available, can it be 

said that the trips were to different destinations? Any one of the following figures might be 

drawn during the discussion: 
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Figure 4 

Depictions of statistical difference 

   

While the various figures emphasize different concepts, from the assumption of hypotheses to 

the nature of the sample, the initial question could be reduced to arithmetic—to the division of 

differences—to provide a quantitative substantiation of some evaluative heuristic.  

When evaluating the quality of an IRT model, different perspectives similarly draw on 

different facets of the same mathematical whole. A researcher concerned with statistical power 

might look at probabilities of differences. One concerned with reliability might look at a signal-

to-noise ratio. Yet another concerned with model fit might be concerned with the parsimony of 

comparative error rates. Just as a statistical test requires its null and alternative hypotheses, so 

too do these measures of model quality require their local, even linguistic, context. Traditionally, 

DIF is considered a problem that can be measured with hypothesis testing: the question is 

usually, “Given these groups and their measurements, can the null hypothesis that there is no 

difference between them when it comes to this IRT model?” 

Testing Power 

The traditional hypothesis testing for DIF statistical power; the process to reject the null 

hypothesis uses cut-off values to attain a desired power. Statistical power was well-described in 

Wright (2011, p. 73) as “the probability of correctly rejecting a false null condition” and, more 
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visually, empirical power as “the area beyond the null critical value, under the alternative 

distribution” (p. 52) as roughly depicted: 

Figure 5 

Empirical Power 

 

where, technically, the shaded area under the null hypothesis curve indicates a Type I error. 

Since power—statistical and empirical—is concerned with hypotheses, it can be thought of as a 

trait of statistical tests. Not every statistic produces a statistical test, and not every statistical test 

has a known power. Conversely, statistical tests with well understood power can support a priori 

calculations to determine minimum sample sizes required for statistical tests. Software such as 

G*Power helps automate this process (Faul et al., 2009). 

Appropriate Dimensionality. Another way of examining DIF is to determine if it 

effectively measures only intended—usually one—dimension(s). Explicit evaluation of the 

unidimensional measurement of an IRT model is often concerned with interitem correlation 

involving the tetrachoric matrix (Lord & Novick, 1968; McBride & Weiss, 1974, p. 30; Penny, 

1994, p. 31). Geometry plays a role here: the basic formula for rtet makes use of a cosine: 
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 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜋𝜋
1+√𝑂𝑂𝑂𝑂

 (19) 

where OR is the odds ratio, and the cosine is in radians. Generally, the tetrachoric matrix can be 

observed in the construction of odds ratios used in testing the suitability of models. 

Standard Error of the Estimate. Item Response Theory also has traditional 

measurements of Standard Error. Culligan (2011) elegantly traces the evolution standard error 

through Classical Test Theory, reliability measurement, logits, and the 1PL before observing: 

𝑆𝑆𝑆𝑆(𝜃𝜃) =
1

�∑ 𝑃𝑃𝑖𝑖(𝜃𝜃)𝑄𝑄𝑖𝑖(𝜃𝜃)𝑛𝑛
𝑖𝑖=1

 

where the denominator is the “Item Information Function” (p. 7). The challenge of IRT’s non-

constant Standard Errors can be visually appreciated by applying the formula to the instrument 

used in Duncan (2006) to produce Test Characteristic Curves:  

Figure 6 

Test Characteristic Curves with Emphasized Standard Errors 

 

 

The formula also has a particular virtue when noting that the variance-covariance matrix at 

model fitting convergence provided by software such as R’s ltm package can be used as well. 

This measurement, however, lacks the declarative ability of a test-based statistic. 
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Differential Item Functioning Statistics 

If an item does not effectively measure what it is intended to, then it is unreliable. If some 

of the unintended measurement comes from some other property of the subject rather than to 

random error, then the item—and indeed, perhaps even the test it is part of—functions differently 

for different individuals, violating a core assumption of IRT and potentially creating problems 

for the fairness of tests. That item would then exhibit what is called Differential Item 

Functioning. Many approaches exist to test for these sorts of problems. Draxler (2010, p. 708) 

synthesizes the efforts of C.A.W Glas and N.D. Verhelst (1995) to enumerate broad categories of 

test types used for Rasch models as “χ2 tests, likelihood ratio tests, Wald tests, and Lagrange 

multiplier tests” while also observing that all these sorts of tests do not control for Type II errors; 

they are concerned with hypotheses that involve items performing significantly different for 

subgroups of participants and consequentially prioritize statistical power and minimization of 

Type I error. The hypotheses necessary for these tests tend to be formed based on a subgroup’s 

different model performing better than those of the population at large. 

Chi-square Tests. The χ2 distribution is, in fact, more than one distribution; given a 

normally distributed variable, what should the values of k samples look like? Kissell and 

Poserina (2017, p. 120) efficiently characterize the χ2 distribution as “the distribution of a sum of 

squared random variables” where k, the degrees of freedom, is equal to the number of random 

variables in the theoretical sample distribution. These properties allow for calculating expected 

values, and, in turn, the observed values can be assessed for their probability. Multiple 

evaluations are made using this distribution throughout Item Response Theory. Liang and Wells 

(2009) observed that measures of model fit using the χ2 statistic including over-sensitivity with 

large samples – which interacts poorly with the large samples require to fit more complex 
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models in the first place – inflated Type I error rates when grouping examinees on θ, and 

potential misspecification of degrees of freedom for χ2 under the null hypothesis. The latter two 

points are substantiated with the work of Orlando and Thissen (2000) and continue to extend the 

criticisms even to log-likelihood procedures using χ2 in the later works of Orlando and Thissen 

(2003) and the Lagrange multiplier test examine by Glas and Falcón (2003). Glas and Falcón 

(2003) additionally noted that missing data can make Type I error rates “undesirably high, 

especially for short tests” in these tests (p. 87). 

Mantel-Haenszel Method. A χ2 with one degree of freedom can be conducted on the 

“difference between the cases [A and B] and controls [C and D] in the proportion of individuals 

having the factor under test [A and C],” such that: 

 �|𝐴𝐴𝐴𝐴−𝐵𝐵𝐶𝐶|−1 2� 𝑇𝑇�
2
𝑇𝑇

𝑁𝑁1𝑀𝑀1𝑁𝑁2𝑀𝑀2
 (20) 

or, somewhat more accessibly, as testing the assertion: 

 With factor Free of factor 
With disease P1 P2 
Free of disease P3 P4 

 𝑃𝑃1
𝑃𝑃2

= 𝑃𝑃3
𝑃𝑃4

 (21) 

where the population is divided into four distinct proportions (Mantel & Haenszel, 1959, p. 730). 

Holland and Thayer (1988, pp. 130-135) combined this with other contemporary work to apply 

the procedure to IRT models: 

Group Score on Studied Item Total 1 0 
R Aj or pRj Bj or pFj nRj or 1 
F Cj or qRj Dj or qFj nFj or 1 
Total m1j m0k Tj 

 𝑀𝑀𝑀𝑀 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ��∑ 𝐴𝐴𝑗𝑗−𝑗𝑗 ∑ 𝐸𝐸�𝐴𝐴𝑗𝑗�𝑗𝑗 �−1 2� �
2

∑ 𝑉𝑉𝑉𝑉𝑉𝑉�𝐴𝐴𝑗𝑗�𝑗𝑗
 (22) 

where each item is examined for DIF, but a common factor among all items can be determined: 
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 𝛼𝛼�𝑀𝑀𝑀𝑀 =
∑𝐴𝐴𝑗𝑗𝐷𝐷𝐽𝐽 𝑇𝑇𝑗𝑗⁄
∑𝐵𝐵𝑗𝑗𝐶𝐶𝐽𝐽 𝑇𝑇𝑗𝑗⁄

,𝑎𝑎𝑎𝑎𝑎𝑎 𝛥𝛥𝑀𝑀𝑀𝑀 = − 4
1.7
𝑙𝑙𝑙𝑙(𝛼𝛼�𝑀𝑀𝑀𝑀) (23) 

to create a scaled measurement of DIF centered around 0. In addition to evaluating DIF itself, the 

MH statistic has also been used to develop effect sizes for other measurements of DIF (Wright & 

Oshima, 2015). This method has been found to outperform Lord’s χ2 and likelihood ratio tests 

(Diaz et al., 2021). However, sample sizes remain important: Mazor and et al. (1991, p. 8) found 

over half of DIF items (mostly, difficult or poorly-discriminating items) were missed in some 

conditions and “there would seem to be little justification for using sample sizes any smaller than 

200” with the MH procedure as a result. MH has been found to be effective even in polytomous 

IRT models (Wen-Chung & Ya-Hui, 2004). Wright and Oshima (2015) developed a measure of 

effect size for Differential Functioning of Item and Test analysis. While discussing similarities in 

the performance of NCDIF and MH statistics, the research observes that Mantel-Haenszel 

techniques overestimated DIF for easy and difficult items due to area-based measures failing to 

account for sample sizes present in areas of the ICC curve; in other words, it appears that cell 

loadings may be a concern.  

Likelihood Tests. Wilks (1944, pp. 150-152) described a ratio where:  

 𝜆𝜆 = 𝑃𝑃𝜔𝜔(𝑂𝑂𝑛𝑛)
𝑃𝑃𝛺𝛺(𝑂𝑂𝑛𝑛)

 (24) 

such that On is a particular parameter, and λ is the likelihood ratio of the null hypothesis that Pω 

and PΩ are equivalent; it is shown that “the likelihood ratio test for H0 is seen to be the same as 

the (Student) [sic] test” and −2 log 𝜆𝜆 follows a χ2 distribution with degrees of freedom equal to 

the number of probabilities assumed to be equal under the null hypothesis (e.g. 2 for a reference 

and single focal group.) Waller (1981, p. 119) propose using the likelihood ratio test for a 

“goodness-of-fit statistic” to compare IRT models. Brown et al. (2015) criticize likelihood ratio 

tests between the 2- and 3-parameter IRT models because setting a guessing parameter to zero to 
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compare the 2PL as a special 3PL “violates one of the assumptions of the likelihood ratio test 

and renders the usual χ2 distribution inappropriate for the comparison” (p. 335) and empirically 

demonstrated inaccurate Type I error rates; they suggest both stepwise removal of individual 

item guessing parameters and using p-values from a null distribution rather than a standard 

reference distribution for likelihood ratio tests. Both χ2 and log-likelihood tests of contingency 

tables—or tetrachoric matrices—are problematic when cells—or expected values—are small 

(Bartholomew & Shing On, 2002; Cai, 2008, p. 314). 

Wald Tests. The Wald test, explained in Wald (1943) with mathematical proofs, has 

been applied to assessing model fit in Item Response Theory (Draxler, 2010; Fischer, 1995). In 

particular, the Wald test informed development of the Lord (1980) χ2 test. IRTPRO software 

makes use of the combination of Lord’s χ2, concurrent calibration as detailed in Kim and Cohen 

(1998), and the supplemental expectation maximization algorithm from Cai (2008) to evaluate 

DIF without selecting anchor items in the Wald-2 test option. Wald-2 provides concurrent 

calibration where reference group means are fixed normally to estimate focal group parameters, 

then the focal group parameters are fixed to that estimate in a looping procedure similar to the 

EM algorithm with advantageous performance noted in unequal sample sizes (Langer, 2008; 

Woods et al., 2013). Concurrent calibration procedures benefit from iterative estimation or other 

purification procedures before the final analysis is conducted (Fikis & Oshima, 2017; González-

Betanzos & Abad, 2012; Kopf et al., 2014a, 2014b; Wang, 2004; Woods, 2009).  

Area Tests. Lord (1980) pointed out that when there is no DIF, the Item Characteristic 

Curves for reference and focal groups are congruent with the overall ICC. Afterwards, Raju 

(1988) developed and proved formulae for computing the area between two item characteristic 

curves for a focal and reference group on a given item: 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑆𝑆𝑆𝑆) =  (1 − 𝑐𝑐)(𝑏𝑏2 − 𝑏𝑏1)

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑈𝑈𝑈𝑈) = (1 − 𝑐𝑐) �2(𝑎𝑎2−𝑎𝑎1)
𝐷𝐷𝑎𝑎1𝑎𝑎2

𝑙𝑙𝑙𝑙 �1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐷𝐷𝑎𝑎1𝑎𝑎2(𝑏𝑏2−𝑏𝑏1)
𝑎𝑎2−𝑎𝑎1

�� − (𝑏𝑏2 − 𝑏𝑏1)� (25) 

where the curves are on the same scale and have identical guessing parameters (p. 496). These 

proofs informed the development of the Differential Functioning of Items and Tests approach 

established in Raju et al. (1995) which also includes examining Test Characteristic Curves for 

Differential Test Functioning. Penny (1994) used the Mantel-Haenszel χ2 statistic to evaluate 

Differential Item Functioning (DIF) in the difference of definite integrals of Item Characteristic 

Curves. A 3-Paramter, unidimensional, monotonal model was fitted to data using maximum 

likelihood estimators in LOGIST. Although the tests were found feasible, the study observes that 

the method has different amounts of sensitivity for different parameters and raises the question of 

using the Mahalanobis distance as a response. The study also notes that demonstrably aberrant 

items are worth omitting in DIF Analysis; the error these items add to measurements can 

obfuscate DIF in other items.  

Anchor Item Selection. If IRT models are tested for DIF based on separately estimated 

parameters, such as with many procedures that compare models to test a null hypothesis, then it 

is necessary to ensure that those parameters are on the same scale. This is done traditionally by 

“anchoring” reference and focal group estimates to the same scale by constraining items in 

common to both datasets, in essence using particular item(s) for calibration of θ. During some of 

the procedures developed to test for differential item functioning, however, the situation becomes 

theoretically complex. When using a test statistic to identify anchor items for subsequent tests, 

Type I and Type II errors can change roles when these tests are used to screen intermediately for 

proper items rather than identity improper ones (Fikis & Oshima, 2017). Schulze et al. (2022) 

suggest averaging model parameters using Bayesian methods as a test of measurement 
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invariance when anchor items cannot be specified and comparing between groups.  Robitzsch 

and Ludtke (2022, p. 59) further examine linking approaches with PISA data and add to the body 

of evidence that approaches which do not force invariance assumptions to scale estimates 

provide superior DIF detection; they even observe computational times of 10 minutes reduced to 

“at most 3s” with such algorithms.  

Comparative Studies. Writing in the context of quality-of-life healthcare measurement, 

Jin-Shei et al. (2005) identified three methods for DIF analysis in small sample size 

environments favoring the 2PL. The first was a 1-PL IRT/Rasch method based on t-tests between 

item parameters with logit differences where N>200, citing the work of Wright and 

Panchapakesan (1969), and they “adapted the concept of the MH D-DIF index classification 

system” to set logit thresholds for borderline DIF (Jin-Shei et al., 2005, p. 288). The second was 

logistic regression, citing Crane et al. (2004) and Zumbo (1999), with significant χ2 differences 

in models with and without focal group identifying DIF to interpret with a 0.13 ΔR2 cut-off as an 

effect size; they observed that effect size remained an opportunity for further research. Finally, 

they mentioned the DFIT framework, citing Flowers et al. (1999) and Raju et al. (1995), noting 

the practical appeal of analyzing differential function at the test level and suggest χ2 testing to 

evaluate the significance of any differences between focal and reference group functioning; 

DFIT can be interpreted as a reliability measure because it is formed from non-compensatory 

DIF. Jin-Shei et al. (2005) note that within their line of research, using more than one DIF 

analysis method is “common” (p. 291). 

Fikis and Oshima (2017) investigated an algorithm for identifying and omitting aberrant 

items prior to conducting DIF Analysis. A 3-Parameter, unidimensional, monotonal model—

albeit with a fixed guessing parameter—was fitted to data using marginal maximum likelihood 
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estimators in IRTPRO. The software ships with the Wald-2 anchorless DIF test, which combines 

samples and instruments by recoding unshared items as missing data in a single model. The use 

of the algorithm resulted in more effective DIF Analysis, but the increased calculations added 

undesirable computational complexity. The study questions the theoretical implications of using 

statistic tests in ways they were not originally designed to be used; the theoretical roles of Type I 

and Type II error may alter when using a test for identification as a test for omission.  

Elosua and Wells (2013) examined, among other things, the performance of mean-

covariance structure, ordinal logistic regression, and likelihood ratio tests to detect DIF in a 

polytomous IRT model. They found that likelihood ratio tests exhibited increased Type I error 

rates and theorized that items “may be corrupted,” (p. 339) suggest examining how anchor item 

selection impacts the performance of the test, and recommend the generalized Mantel-Haenszel 

method of Fidalgo and Madeira (2008) and Fidalgo and Scalon (2009) for non-uniform DIF.  

Ippel and Magis (2020) developed improved asymptotic standard error formulae for 

weighted likelihood and Bayes modal estimation of θ which outperformed existing methods, and 

it was additionally found that Exact Standard Error exhibited superior performance in all 

conditions; Exact Standard Error is: 

 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝜃𝜃�� = �∑ 𝑝𝑝(𝑡𝑡)�𝜃𝜃���𝜃𝜃�(𝑡𝑡) − 𝜃̅𝜃�2𝑇𝑇
𝑡𝑡=1   (26) 

where t represents a single response per each possible response set—with 2n possibilities for an 

n-item test—that create a sample for estimating 𝜃𝜃� and “𝜃̅𝜃 = ∑ 𝑝𝑝(𝑡𝑡)�𝜃𝜃��𝜃𝜃�𝑡𝑡𝑇𝑇
𝑡𝑡=1  is the average ability 

estimate of the sample distribution,” but standard error for item parameters was unexamined (p. 

466). 
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Differential Test Functioning (DTF) 

The work of Raju et al. (1995) brings together the area-based approaches to reliability 

measurement and DIF testing with a framework that considers impact at the level of the test; 

since decisions are made based on test scores, it naturally follows that measurement 

discrepancies are most problematic when they affect the overall instrument. The concept of 

compensatory differential item function (CDIF) is examined in traditional IRT models, 

polytomous, and multidimensional contexts by existing literature (Flowers et al., 1999; Oshima 

& Morris, 2008; Raju, 1988; Raju et al., 1995). 

The DFIT framework includes multiple formulae and algorithms, including: 

 𝐷𝐷𝐷𝐷𝐷𝐷 =  𝐸𝐸𝑓𝑓[𝐷𝐷(𝜃𝜃𝑠𝑠)2] (27) 

where “the expected value of the squared difference between focal and reference groups, where 

the expectation is taken across the θ distribution from the focal group,” which is more easily 

understood when depicted visually for the Test Characteristic Curves for the instrument in 

Duncan (2006) data: 

Figure 7 

DTF depicted as the area between reference and focal TCFs 
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and, consequentially, the guessing parameter must be the same in both models to prevent the area 

between curves from being infinite.  

DIF, and DTF, have enjoyed continued development much like the rest of IRT; in the 

course of examining a DIF detection method using explanatory covariates, De Boeck and Cho 

(2021, p. 712) describe the state of the literature as an “unstoppable continuation of DIF method 

research.” Significance testing under the DFIT model originally followed an iterative procedure 

where items with CDIF were pruned from the model until DTF is found to be insignificant via a 

χ2 testing; the non-retained items become flagged as DIF items (Oshima & Morris, 2008; Raju et 

al., 1995). Later developments included the Item Parameter Replication (IPR) procedure where 

cut-off values for NCDIF were empirically determined for a particular test scenario by 

simulating multiple sets of estimated parameters with constrained variance-covariance matrices 

to generate a null hypothesis distribution that can provide cut-off values for desired power levels 

(Oshima & Morris, 2008; Oshima et al., 2006). Further work has developed effect size 

measurements for the NCDIF statistic; not only can a significant difference be empirically 

determined, but it can also be practically interpreted (Wright, 2011; Wright & Oshima, 2015). It 

has been noted that Item Parameter Replication benefits from using variance-covariance matrices 

for both the reference and the focal group as opposed to just the reference group (Cervantes, 

2012; Cervantes, 2017). The variability difference problem has also been addressed by using a 

weighted distribution to improve DTF, with observable improvements in the Type I error rates as 

sample size increases (Chalmers et al., 2016). The overall performance of IPR critical values has 

also been empirically verified, with results observing lower power when DIF was because of 

discrimination (the a term in the 2PL) differences and overall benefits from iterative linking 

(Seybert & Stark, 2012). Similar approaches to IPR’s method of generating data under a null 
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hypothesis for comparison in a D-QQ plot has also found potential power gains while avoiding 

the necessity of anchor items (Yuan et al., 2021). 

While advantageous and methodical, using DFIT with IPR cut-offs to answer the 

question, “Does this instrument have problems?” requires a small simulation study for each 

iteration. Each time DTF is measured to check for insignificance, the cut-off values must needs 

be redetermined with fresh variance-covariance matrices from the smaller and smaller set of 

items as determined by their CDIF. This pruning method carries the virtues of purification 

methods as examined in Fikis and Oshima (2017) but necessitates even more computational 

complexity and care with anchor item selection. Metaphorically, it is like carving a pair of shoes 

from wood: the shoe must be tried on by more than one wearer and problematic bits carved 

away, then retried by another group of wearers, and potentially worked again until the fit is right 

for use by a pre-determined proportion of wearers, with whatever is left on the floor deemed as 

undesirable in the final product. The fit might be great, but so is the cost. 

Mahalanobis Distance 

In some ways, it is tempting to perceive DIF as a reliability problem, because in some 

ways, that is correct. Unfortunately, though, most of the methods to find DIF are statistical tests 

that operate under a hypothesis test framework requiring specifications and data beyond the 

original scope of their original models. The conditions that may warrant a DIF analysis are more 

poorly defined and investigated than the conditions required to conduct a DIF analysis. Even 

when these issues are dealt with, the threat of bad anchors has created a need for additional 

computation through the process of item purification. Item purification itself has theoretical 

issues to consider based on tests of null hypotheses being used to ultimately retain, rather than 

reject, items. Procedures such as Item Parameter Replication require even more computation to 
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iterate through cut-off values. The researcher looking over various formulae would recognize the 

common themes of significant statistical difference and the presence of error in estimation, and 

one might be tempted to solve these two and more challenges by combining them. 

The Mahalanobis distance determines multivariate normality by reducing even 

potentially correlated variables to a one-dimensional or Euclidean distance; distances are 

transformed by measuring them from the multivariate point of a particular centroid in the same 

space after accounting for their correlation (Mahalanobis, 1936). Outliers are datapoints which 

are outside “a swarm around the centroid in multivariate space” formed by most of the data 

(Fidell & Tabachnick, 2003, p. §3.2.3). Rao (1965) describes the test of Mahalanobis distance as: 

 𝐷𝐷𝑝𝑝2 = ∑∑𝑠𝑠𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗 (28) 

where d is the difference in sample means of multiple variables of different populations (p. 480).  

The Mahalanobis distance is well-suited to providing a reliability statistic capable of 

flagging IRT models for more thorough DIF analysis. Its potentially simple application in χ2 

testing could provide the significance testing that DFIT solved only through the extensive Item 

Parameter Replication purification framework developed in Oshima et al. (2006). Indeed, item 

purification for DIF detection has even received some critical scholarship, such as the 

supposition by Magis and Facon (2013, p. 309) that “item purification does not improve both the 

Type I error control and the power” after showing how Delta plots work as well or better in 

smaller sample sizes. Its multivariate scaling properties can help account for the differences in 

IRT parameter performance that can lead to challenges in DTF calculation such as the lower 

power in cases of DIF based on the discrimination (or a parameter in the 2PL) observed in 

Seybert and Stark (2012). Furthermore, it can potentially be constructed to avoid the significant 

challenge of both anchor item selection described by Dimitrov (2017) and measurement 
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invariance between reference and focal groups as enumerated by Chalmers et al. (2016). Penny 

(1994, p. 100) suggests further research using the Mahalanobis distance, observing that its 

unweighted comparison of item parameters might aid in “providing a direct assessment of DIF as 

defined by Lord (1980).” That decorated work of Lord (1980)—if one might call over 2,000 

known citations a decoration—includes specific mention of using the Mahalanobis distance to 

directly compare models’ parameters. Unfortunately, though, none of those works citing Lord 

(1980) mention the Mahalanobis distance in an accessible manner. The approach remains less-

investigated, much like the 4PL mentioned in Barton and Lord (1981). 

 Bechger and Maris (2015) applied the statistic to the detection of DIF. In their study, they 

propose that comparing items’ relative parameters is a more meaningful way to look for DIF 

than individual items, calling it “differential item pair functioning.” The case for this approach is 

made when considering a few traits of models. First, the way that IRT models produce estimates 

with varying scales for parameters requiring anchoring between reference and focal groups for 

meaningful comparisons. Second, existing DIF methods are known to be sensitive to true group 

differences and they tend to display inflated Type I error rates by flagging them as DIF items. 

Overall, they make a point of noting how altering the composition of an instrument can change 

its presentation of DIF. Their proposal is based on this theory: because the statistics that would 

be required for a traditional null hypothesis are not what is estimated in reference and focal 

group models, they re-arrange the null hypothesis as a zero difference in relative difficulties 

rather than as an equality between difficulties.  

Their solution is to create a matrix of pairwise differences of parameters between groups. 

After pointing out some met assumptions on multivariate normality and independence, they 
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observe that testing the matrix they created is accomplishable by a χ2 test of Mahalanobis 

distances: 

 𝜒𝜒𝛥𝛥𝛥𝛥2 ≡ 𝛽̂𝛽𝑇𝑇 ∑ 𝛽̂𝛽−1  (29) 

where β is an arbitrary column of the difference between parameters of the two models with 

degrees of freedom 1 fewer than the number of items. They conclude by presenting an omnibus 

DIF test based on simultaneous pairwise comparisons of these differences, grouping them into 

“clusters,” where DIF items form isolates. Importantly, they demonstrate with a real-world 

dataset that choosing bad anchor items mis-identifies DIF. The study notably indicated that 

samples of less than 500 in reference or focal groups presented challenges to DIF identification. 

Their “main message … is that DIF can only be defined in terms of the identified parameters” 

(337).  Pohl et al. (2021, p. 489) extend this work by applying k-means cluster analysis to further 

classify invariant items' difference in relative item difficulties, offering what was called the “first 

comprehensive results” of such an application. The Mahalanobis distance is also frequently 

mentioned in multivariate research (Tabachnick & Fidell, 2007). Specific mention of the 

Mahalanobis distance in DIF research, though, is currently sparse. 

In conclusion, the current study thus proposes using the Mahalanobis distance, which has 

been both suggested and effectively used in the literature, to examine standard errors, which 

themselves have seen some use in the literature in various forms, to assess whether an 

instrument’s items should be tested for DIF.  
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3 METHODOLOGY 

Overview 

The purpose of this study was to compare the performance of a computationally 

advantageous statistic to the traditional DTF statistic. The proposed new statistic is the skewness 

of the Mahalanobis distances of the standard errors of an estimated model. It is theorized that it 

may function as an indicator of potential differential item functioning (DIF) that, unlike 

traditional DIF analysis methods, requires neither the theoretical framework of an alternative 

hypothesis nor the practical framework of larger samples and multiple models. Consequentially, 

this statistic might add value as a routine “check engine light” to indicate the need for more 

testing. 

To conduct that comparison, a simulation was conducted to measure both statistics’ 

values and computational costs in some typical IRT conditions. Correlations of the values were 

then compared, and the nature of any correlation across simulation conditions was analyzed.  

Monte Carlo Simulation Method 

The presumption of simulation as a valid method of inquiry presents risks of creating a 

hyperreal which may alter the relationship between observation and observer by displacing 

reality with a new, meaningful construct (Baudrillard, 1994). Even so, the use of Monte Carlo 

(MC) estimation and simulation studies in IRT is well-established. Harwell et al. (1996) 

summarized methods and concerns up until that point, in particular noting that, “perhaps the 

most popular outcome variable in MC studies in IRT is the root mean square deviation (RMSD)” 

(p. 270). Millsap (2011, p. 167) later observes that even Markov Chain Monte Carlo estimation 

approaches continue to “have grown in popularity” in real-world IRT applications as a means of 

dealing with its complex, multivariate distributions.  
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Using Standard Errors for the new Statistic 

Lord and Novick (1968, p. 374) theorize that, among other things, a normally distributed, 

unidimensional “latent space” of θ will yield a response set U which is multivariate normal. This 

theory does not, however, suggest that every test is made of items with normally distributed 

parameters. Thus, while it may be initially tempting to consider parameter estimates as 

multivariate values that can be tested for multivariate normality, such an assumption is perilous. 

Even if the standard error of parameters is theoretically independent, the values in the Hessian 

matrix lack independence, technically making χ2 tests inappropriate. The Standard Error remains 

theoretically suited to describing the accuracy of a parameter estimate. This study used the 

skewness of the standard errors rather than testing for their normality as a result.  

Using DTF for Comparison 

Differential Test Functioning (DTF) is part of the Differential Functioning of Items and 

Tests (DFIT) framework that can provide measures of both Compensatory Differential Item 

Functioning (CDIF) and Non-compensatory Differential Item Functioning (NCDIF) for items 

(Raju et al., 1995). It can be calculated by taking the area under the difference of test 

characteristic curves: 

 𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐸𝐸𝑓𝑓�𝐷𝐷𝑖𝑖|𝑊𝑊2 � = ∫𝐷𝐷𝑖𝑖|𝑊𝑊2 𝑔𝑔𝑓𝑓(𝑊𝑊)𝑑𝑑𝑑𝑑 (30) 

and, “in practice, DTF is defined in relation to focal group members only” (Millsap, 2011, p. 

224). This means that calculating DTF requires linking parameter estimates, potentially 

specifying anchor items, and identifying focal and reference groups. DTF is used within the 

DFIT framework as a pruning statistic: in the IPR method, procedures are conducted to eliminate 

bad items until DTF appears satisfactory (Oshima & Morris, 2008; Oshima et al., 2006).  
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Design 

Instrumentation, sampling, and conditional components of the simulation were based on 

Fikis and Oshima (2017) which, in turn, was informed by in Seybert and Stark (2012) to evaluate 

conditions with various types of typical DIF. Conditional, replication, and analytical components 

of the study were further informed by related research. Conditions both of interest from the 

perspective of IRT modelling and specifically of DIF itself were included. This study also 

includes conditions related to the imperfect specification of models during DIF analysis. 

Instruments: Test Length and DIF Amount Conditions 

Simulation conditions replicated those of Fikis and Oshima (2017) and Seybert and Stark 

(2012) by using two forms of instruments, one a 30-item test and another a 15-item subtest of the 

same instrument using the following parameters in the 3PL. The 15-item subset was determined 

based on the subset used in the previous research: 
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Table 2 

Item Parameters 

Item Difficulty (b) Discrimination (a) Pseudo-Random (c) 

1 -0.07 0.49 0.19 
2a 0.21 0.92 0.15 
3 0.54 1.26 0.05 
4b -0.03 0.61 0.18 
5 0.01 1.74 0.12 
6 1.96 0.5 0.12 
7b 0.04 0.96 0.13 
8 -0.09 0.59 0.18 
9 -1.16 0.82 0.17 
10a 0.02 1.26 0.11 
11 0.2 0.82 0.07 
12 -0.43 0.75 0.15 
13b -0.06 1.49 0.09 
14 -0.34 0.97 0.12 
15 0.05 1.49 0.12 
16 -0.25 0.89 0.15 
17a 0.06 1.45 0.07 
18 0.31 0.75 0.18 
19b 0.04 1.43 0.08 
20 0.13 0.6 0.22 
21 0.52 0.83 0.09 
22b -0.96 0.56 0.19 
23 -0.79 0.67 0.2 
24 0.37 0.7 0.18 
25a -0.71 1.03 0.14 
26 -0.19 0.89 0.21 
27 0.74 1.23 0.06 
28b -0.44 0.9 0.18 
29 -0.17 1.23 0.12 
30 0.53 0.69 0.17 

where a notes DIF items under all DIF conditions and b notes DIF items under 33% DIF; DIF is 

simulated by altering the difficulty parameter of the focal group. 

Sampling: Sample Size and DIF Magnitude Conditions 

Sample sizes were chosen both from theoretical and practical perspectives. The initial 

sample size conditions in Fikis and Oshima (2017) were both informed by the recommended 
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sample sizes for model estimation in Sahin and Anil (2017) and Uyar and Ozturk Gubes (2020) 

as well as by the typical American school’s combined grade level size of 50 based on Common 

Core of Data (CCD)  (2021).  

Sampling also included a condition to vary the magnitude of DIF to generate observable 

DIF. Wright and Oshima (2015) observed that impact could affect the evaluation of DIF while 

discussing “comparing the comparables” (p. 7) as recommended by Dorans and Holland (1992). 

Simulation participants were generated from random normal distributions—N(0,1)—but the 

difficulty parameters for DIF items was manipulated between 0.5 and 1. 

Other Properties 

Generating Model Conditions. Cuhadar et al. (2021) identified some significant 

consequences to failing to appropriately specify the pseudo-random C-parameter in IRT models 

when it comes to measurement invariance analysis; consequentially, conditions including 

ignoring, fixing, and estimating this third parameter were included in the study. 

Replications. Pekmezci and Avsar (2021) investigated the number of replications 

appropriate for simulations in unidimensional IRT models and empirically recommend at least 

625 replications for studies concerned with Type I error rates for all models concerned. Because 

of this recommendation and given the simplicity of the pre-screening statistic under 

investigation, 625 replications were used. 

Procedures 

This study proposed a simulation of 120 condition permutations with 625 repetitions per 

condition. The study combined the percent of DIF and the magnitude of DIF into one condition 

to retain a fully factorial design structure: 
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Table 3 

Simulation Conditions 

Condition Values Inspiration 
Test Length 15 

30 
Fikis and Oshima (2017) 

Sample Size 50 
250 
500 
1000 

Common Core of Data (CCD)  (2021) 
Sahin and Anil (2017) 
Uyar and Ozturk Gubes (2020) 
Fikis and Oshima (2017) 

DIF Presence (None) 
20% @ -0.5 
33% @ -1 
20% @ -0.5 
33% @  -1 

Wright and Oshima (2015) 
Fikis and Oshima (2017) 

Model Selection 2PL2 
PL with fixed c 
3PL 

Cuhadar et al. (2021) 

and the general procedure in each repetition was as follows: 

1. Generate random item responses based on test length, sample size, DIF 

percentage, and magnitude condition using a model based on the model condition 

where for a 3PL: 

𝑃𝑃(𝜃𝜃)𝑖𝑖𝑖𝑖 = � �𝑃𝑃𝑖𝑖�𝜃𝜃𝑗𝑗� = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)
𝑒𝑒𝐷𝐷𝑎𝑎𝑖𝑖(𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖)

1 + 𝑒𝑒𝐷𝐷𝑎𝑎𝑖𝑖(𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖)

𝑛𝑛𝑖𝑖

𝑖𝑖=1

𝑛𝑛𝑗𝑗

𝑗𝑗=1
 

or C = .2 for the 2PLC condition, or C = 0 for the 2PL condition, then: 

a. Begin with θj, a random normal number per participant 

b. D, the scaling parameter, is 1.7 

c. Prepare item parameters b, a, and c for the reference group by following 

the specifications in Table 2 and the number of items condition. 

d. Prepare item parameters b, a, and c for the focal group the same way, but 

additionally increase the b-parameter for items identified with DIF 
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according to the DIF condition (0%, 20%, 33%) by an amount from the 

magnitude condition (0.5, 1.) 

e. Randomly select 25% of the sample to classify as the focal group. 

f. Calculate P(θij) for each item response 

g. Compare P(θij) to a random uniform number; if  P(θij) is greater than the 

random uniform number, then the item response is coded as 1 for a correct 

response. Otherwise, it is coded as 0 for an incorrect response.  

The result is one matrix per 625 repetitions per 120 conditions of width equal to 

the number of items (15 or 30) and length equal to the sample size (50, 250, 500, 

1000) condition values, or 90,000 matrices of dimensionality anywhere from 

15x50 to 30x1000. Other conditions are applied during later analysis stages. 

2. Estimate a full model based on a 2PL: 

𝑃𝑃𝑖𝑖(𝜃𝜃) =
1

1 + 𝑒𝑒−1.7𝑎𝑎𝑖𝑖(𝜃𝜃−𝑏𝑏𝑖𝑖)
 

The ltm package provides methods for estimating these models. Each repetition 

will include a full model using all items and all participants in the simulated data; 

this represents the “default settings” option an everyday practitioner might use. 

3. Determine the skew of Mahalanobis distance of standard errors for the full model: 

a. Evaluating the Hessian matrix 𝐻𝐻�𝜃𝜃�� at model convergence. 

b. Inverting 𝐻𝐻�𝜃𝜃�𝑀𝑀𝑀𝑀� and find square roots of its trace to approximate the 

standard error of estimated parameters, 𝑆𝑆𝑆𝑆�𝜃𝜃�𝑀𝑀𝑀𝑀� 

c. Separating 𝑆𝑆𝑆𝑆�𝜃𝜃�𝑀𝑀𝑀𝑀� by item and parameter for a multivariate dataset, for 

example a 2PL fit to 30 items will have 30 points of 2-dimensional data 
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d. Determining the Mahalanobis distances for each item’s 𝑆𝑆𝑆𝑆�𝜃𝜃�𝑀𝑀𝑀𝑀� by: 

i. Determining the centroid by averaging on all variables, and 

ii. Measuring the distance of each item’s Standard Errors from it 

e. Noting the skewness of the Mahalanobis distances for each model 

The ltm R package includes a method for extracting the standard errors under a 

traditional IRT parameterization, the e1071 package provides a skewness 

function, and the base stats package includes a Mahalanobis distance function. 

4. Estimate DFIT models (equated focal and reference) using the ltm R package. 

a. Specify reference and focal groups.  

b. Fit an IRT model for the reference group’s responses. 

c. Choose three DIF-free items at random as anchors. 

d. Constrain focal group item parameters for anchor items to values found 

for the reference group to scale θ values. 

e. Determine DTF using the dfit R package for model parameters fit with ltm 

5. Examine the time taken to conduct each stage: how much slower is DTF? 

6. Compare DTF values to skewness values: are they related? 

In other words, traditional DIF analysis under the DFIT approach fits focal and reference 

models and then can invoke IPR to determine the appropriate cut-offs for the DTF statistic to 

determine whether the NCDIF values of items should be examined to prune items in a stepwise 

procedure. This is computationally complex, expensive, and presents many opportunities for 

error. In practice, the first run of a model might inform whether more analysis is done, so the 

study may constrain itself to this first pass. By contract, examining the Mahalanobis distances of 

parameters of a single model for all examinees is procedurally straightforward and 
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computationally simple. Thus, the study proposes to compare DTF and the skewness of 

Mahalanobis distances of standard errors of parameter estimates. If they are found to be 

correlated, then the cut-off values established via the former statistic may have more attainable 

analogues in the latter. This could provide a faster way to invoke DFIT or, more generally, 

provide a deterministic method to suspect DIF that is more resilient and easier to compute. 

Software 

Uyar and Ozturk Gubes (2020) compared the accuracy of BILOG-MG, Mplus, and R’s 

ltm for performing Maximum Likelihood Estimation of a 2PL under varying sample sizes and 

test lengths; they concluded that, despite observable differences, all three software options were 

viable choices. Given this outcome and its price, R was used for all aspects of the study: as free 

software, R would be most readily available to any evaluator. The ltm, DFIT, and slurmR 

packages facilitated the study. 

The R workspace created by the simulation was large; specific variables were extracted 

to a smaller dataset during the supercomputer simulation process. The study intended to compare 

the DTF statistic to a new statistic based on implementation of the Mahalanobis distance on 

standard errors of parameter estimates. Variables extracted from models for analysis thus include 

DTF and the Mahalanobis-distance statistic. To analyze the theoretical relationship between 

these diagnostic statistics, item-level parameter estimates were extracted. For the practical 

aspects of the study, times to calculate these models and statistics were also extracted. 

Data Cleaning 

The original simulation produced 90,000 sets of trial data with three IRT models apiece 

from each of 625 repetitions through 120 permutations of four condition types, but these 

repetitions included small sample sizes with locally independent, uniform sampling in the 
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simulation of test responses. This resulted in the presence of generated test response data that 

would be perceived as unlikely and estimations that, consequentially, appear as outlying 

parameter estimates: some cleaning was warranted prior to analysis to focus analysis to trends 

within responses that would likely be retained for analysis in the field. A cleaned, simplified 

dataset was prepared for analysis based on identifying outliers via parameter estimates for the 

full model. A standardized statistic was calculated similar to root mean standard error (RMSE): 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑥𝑥�𝑖𝑖−𝑥𝑥𝑖𝑖)2

𝑛𝑛𝑖𝑖

𝑛𝑛𝑖𝑖
𝑖𝑖=1  (31) 

whose value is not unlike an averaged Euclidean distance of each model’s item estimations from 

their true values. To account for multiple parameter traits and varying dimensionalities, this 

Euclidean distance was extended to incorporate both parameters’ standardized differences as 

dimensions then comparing to a cut-off value of 4 in all dimensions for each trial’s full model, t, 

with respect to its condition, c, roughly such that with each item, i: 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  �∑ � 𝑏𝑏�𝑡𝑡,𝑖𝑖−𝑏𝑏��𝑡𝑡,𝑖𝑖
𝜎𝜎�𝑏𝑏�𝑐𝑐,𝑖𝑖−𝑏𝑏𝑐𝑐,𝑖𝑖�

�
2

𝑛𝑛𝑖𝑖
𝑖𝑖=1 + �∑ � 𝑎𝑎�𝑡𝑡,𝑖𝑖−𝑎𝑎��𝑡𝑡,𝑖𝑖

𝜎𝜎�𝑎𝑎�𝑐𝑐,𝑖𝑖−𝑎𝑎𝑐𝑐,𝑖𝑖�
�
2

𝑛𝑛𝑖𝑖
𝑖𝑖=1  (32) 

In other words, since the measures of interest were instrument-wide, trials with models 

containing outliers were algorithmically identified as follows: 

• Transform each trial’s item parameter estimates to differences from true values 

• Render differences into z-scores based on distribution across the condition 

• Express estimates as Euclidean distances based on parameter type and DIF 

presence, resulting in 4 variables: difficulty/discrimination, DIF/no DIF 

• Prepare cut-offs based on Euclidean distances equivalent to z=4 in all dimensions 

For example, in trial 23 out of 90,000, the values for the process were: 
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Table 4 

A Full Model’s Standardized Parameter Estimates for Data Cleaning, Trial 23 

Item Estimate  True Value  Difference  Standardized 
B A  B A  B A  B A 

1 0.41 1.03  -0.07 0.49  0.48 0.54  0.18 0.45 
2 0.54 2.77  0.21 0.92  0.33 1.85  0.20 2.65 
3 0.66 2.00  0.54 1.26  0.12 0.74  0.21 1.68 
4 0.13 0.81  -0.03 0.61  0.16 0.20  0.13 0.17 
5 0.18 4.16  0.01 1.74  0.17 2.42  0.14 4.41 
6 1.87 1.17  1.96 0.50  -0.09 0.67  0.39 0.63 
7 -0.14 1.13  0.04 0.96  -0.18 0.17  0.10 0.58 
8 0.29 1.31  -0.09 0.59  0.38 0.72  .016 0.80 
9 -0.83 0.92  -1.16 0.82  0.33 0.10  -0.01 0.32 
10 0.05 23.29  0.02 1.26  0.03 22.03  0.12 28.55 
11 0.34 1.78  0.20 0.82  0.14 0.96  0.16 1.40 
12 -0.53 0.85  -0.43 0.75  -0.10 0.10  0.04 0.23 
13 -0.10 2.55  -0.06 1.49  -0.04 1.06  0.10 2.38 
14 -0.35 3.97  -0.34 0.97  -0.01 3.00  0.06 4.16 
15 0.36 1.45  0.05 1.49  0.31 -0.03  0.17 0.99 

To proceed, first conceive of a dartboard for each item with rings representing a z-value of 1 for 

either parameter, resulting in something not unlike the following for Item 1: 

Figure 8. 

Depiction of Estimation Error and Euclidean Distance 
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The blue line represents the Euclidean distance between (0,0) and (0.18, 0.45) and is equal to 

0.48. Now, extend this to a dartboard not for a single item, but a single model’s parameters, 

creating four multidimensional dartboards for every DIF-free difficulty parameter, every DIF-

free discrimination parameter, every DIF-containing difficulty parameter, and every DIF-

containing discrimination parameter. Although it is quite beyond humans to conceive of high-

dimensional dartboards, R can do it with the dist function: 

dist(rbind( 
  c(0.45, 2.65, 1.68, 0.17, 4.41,  
    0.63, 0.58, 0.8, 0.32, 28.55,  
    1.4, 0.23, 2.38, 4.16, 0.99), 
  rep(0, times = 15) 
)) 

The resulting value is 29.53, which can be compared to a cut-off value of 4 in all dimensions: 

dist(rbind( 
  rep(4, times = 15), 
  rep(0, times = 15) 
)) 

The resulting value is 15.42; trial 23’s DIF-free discrimination parameter estimates were thus 

among those found to be so extreme as to be problematic. A researcher looking at a 

discrimination estimate of 28.55 for Item 10 would likely come to the same conclusion and omit 

it from subsequent analysis. With this deterministic algorithm defined, the cut-offs can be 

evaluated for each trial’s full model by the computer. The cut-off process rejected approximately 

7.5% of all simulation trials from the analysis, spread among study conditions as follows: 
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Table 5 

Trials Omitted from Analysis based on Outlying Estimates (6,752 rejections total) 

Condition Omissions 
Test Length  

15 3,184 
30 3,568 

Sample Size  
50 6,705 
250 44 
500 3 
1000 0 

DIF Presence  
(None) 3,136 
20% @ -0.5 1,030 
20% @ -1 1,072 
33% @ -0.5 1,148 
33% @ -1 1,366 

Generating Model  
2PL 3,080 
2PL+C 1,680 
3PL 1,992 

Outlier Distribution 

The small sample size condition clearly bears responsibility for most of the outliers, but a 

disproportionate amount of 2PL models were also observed to present problems. Figure 9 depicts 

the situation visually with density plots of the total drift—the sum of all four unidimensional 

Euclidean distances of parameter estimation differences of all items described above—under 

varying conditions. Thus, not only does the N=50 condition fail to converge more than any other, 

but the models that do manage to converge are full of more bad estimates than any other model!  
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Figure 9 

Outlier Identification under Various Condition Groupings 
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4 RESULTS 

The simulation study produced outcome variables in three categories: the parameter 

estimates for models, the DIF diagnostics including both DTF and the Mahalanobis distance-

based statistic (MD), and the time cost of models and measures. The simulation was conducted 

on a supercomputer allocation of 48 threads for a total of 18 days, 12 hours of CPU time with a 

maximum usage of 194 gigabytes of memory, but some models did not converge. 

Non-Convergence Errors 

Using the tryCatch() R method, the simulation was able to gracefully recover from errors 

and record where they occurred throughout the study. This allowed for recording frequencies: 

Table 6. 

Convergence and Evaluation Error Frequencies, by condition (out of 90,000 trials) 

Condition Models  Statistics1 
Full Reference Focal  DTF MD 

Test Length       
15 15 34 1,567  7,254 23 
30 4 21 5,079  5,711 23 

Sample Size       
50 19 55 6,635  11,363 46 
250 0 0 11  1,362 0 
500 0 0 0  212 0 
1000 0 0 0  28 0 

DIF Presence       
(None) 14 15 1,229  6,470 34 
20% @ -0.5 1 7 650  3,156 16 
20% @ -1 1 19 1,436  3,128 11 
33% @ -0.5 2 3 1,208  3,424 14 
33% @ -1 1 11 2,123  3,483 11 

Generating Model       
2PL 16 26 1,933  3,058 28 
2PL+C 3 15 1,986  5,743 5 
3PL 0 14 2,727  4,161 13 

1 83,296 trials had all models fit and were suited for statistics 
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As the anecdote goes, “the absence of data is data,” and observing which conditions 

presented problems with model convergence and statistic evaluation empirically confirmed that 

small sample sizes make IRT difficult: the majority of all problems occurred in the smallest 

sample size condition. Within convergent trials, DTF calculation failed over 400% more 

frequently than the Mahalanobis-based statistic. 

In the study’s fitted IRT models, the focal group model for the small sample size 

condition is tremendously small, N=12, and below acceptable levels for IRT analysis; estimating 

parameters for this group with the additional challenge of constraints from the reference group 

presented a scenario in which failure was expected, but its amount was unknown. This small-

sized condition was chosen based on real-world school sizes to empirically reveal not if the 

models would break—such an outcome is to be expected—but how often and how badly those 

failures occurred. The convergence failures are high, but they represent the least problematic 

error type; the error screen an everyday researcher would be presented with is difficult to 

misinterpret as a successful analysis. Within successful convergence, however, DTF statistics 

failed to calculate almost twice as often in this condition. 

An examination of randomly-selected error conditions revealed the cause: often, in these 

poorly-estimated models, the discrimination parameter, a, was erroneously placed at a negative 

level. This causes DTF measurement to fail using the DFIT package due to mathematical 

constraints not unlike those present in Raju’s area method when pseudo-random (c) parameters 

are unequal; the resulting curves do not conform to the calculus which estimates their areas. 

Overall Findings 

Simulation findings, including parameter estimates and DIF statistics, were examined by 

condition, with the overall outcomes within each condition level. The correlation between the 
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traditional DIF measure of DTF and the new, proposed DIF measure based on the Mahalanobis 

distances of parameter estimation standard errors, was calculated within each condition 

permutation. This allowed for the influence of each combination of variables to be undistorted by 

amalgamation within that group. Additionally, the number of degrees of freedom available for 

that correlation in turn allows for comparison of the availability of DTF within each scenario. In 

several scenarios, mostly situated within the N=50 conditions, the DTF statistic could not be 

calculated often enough to attempt a correlation. For the DIF presence condition, composed of a 

combination of DIF magnitude and DIF percent, some permutations of the simulation combined 

to create a fully factorial design, but the original data generation included unequal groups as a 

result. For these cases, a random subsample of 625 trials was selected from available data to 

provide comparable sample sizes for analysis. 

The outcomes are summarized in Table 7 by condition level and include parameter 

estimation information in the form of RMSE, the DIF measurement statistics, and the time it 

took for each condition to provide these various outcome variables. Table 8 goes into more detail 

per condition and includes the correlations between DIF measurement statistics. In all these 

tables, generally speaking, values closer to 0 are better except in cases where DIF should be 

measured and for correlation statistics. Correlation is observed varying through permutations of 

simulations conditions, suggesting that the relationship between the DIF measurement statistics 

may vary depending on those conditions. Further analysis were conducted to explore these 

potential relationships. Additionally, general trends in RMSE clearly demonstrate the benefits of 

additional data in the form of sample size and test length.
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Table 7. 

Overall Simulation Outcomes by Condition 

Condition Parameter RMSE M(SD)   DTF  MD  Seconds to Compute M(SD) 
b a   M (SD)  M (SD)  Full Model DTF MD1 

Test Length              
15 0.70 (0.625) 1.00 (0.791)   0.68 (1.026)  2.19 (0.433)  0.82 (0.400) 2.25 (0.331) 0.54 (2.048) 
30 0.68 (0.619) 0.94 (0.759)   1.93 (2.703)  3.64 (0.787)  2.66 (1.445) 8.42 (1.076) 0.55 (0.252) 

Sample Size              
50 0.95 (0.924) 1.34 (1.066)   3.31 (4.518)  2.67 (0.863)  0.59 (0.282) 4.33 (3.287) 0.54 (0.232) 
250 0.65 (0.537) 0.91 (0.674)   1.55 (2.177)  2.81 (0.967)  1.13 (0.565) 4.66 (2.752) 0.54 (0.251) 
500 0.63 (0.506) 0.87 (0.658)   1.11 (1.832)  2.92 (0.965)  1.79 (0.943) 5.10 (2.965) 0.54 (0.223) 
1000 0.61 (0.482) 0.86 (0.651)   0.96 (1.585)  3.16 (0.965)  3.09 (1.697) 6.15 (3.535) 0.56 (2.786) 

DIF Presence              
(None) 0.97 (0.810) 0.68 (0.611)   0.52 (1.404)  2.91 (0.966)  1.74 (1.400) 5.19 (3.120) 0.54 (0.213) 
20% @ -0.5 0.97 (0.780) 0.68 (0.619)   0.57 (1.154)  2.92 (0.969)  1.72 (1.395) 5.27 (3.155) 0.53 (0.148) 
20% @ -1 0.98 (0.779) 0.68 (0.615)   1.02 (1.596)  2.94 (0.972)  1.74 (1.394) 5.27 (3.192) 0.54 (0.146) 
33% @ -0.5 0.96 (0.738) 0.71 (0.641)   1.34 (1.975)  2.85 (0.944)  1.74 (1.420) 5.27 (3.225) 0.57 (3.538) 
33% @ -1 0.95 (0.734) 0.71 (0.634)   3.83 (2.694)  2.90 (0.959)  1.75 (1.403) 5.44 (3.280) 0.54 (0.455) 

Generating Model              
2PL 0.58 (0.472) 1.23 (0.884)   1.68 (2.640)  3.04 (0.926)  1.76 (1.416) 5.04 (3.089) 0.55 (2.544) 
2PL+C 0.76 (0.702) 0.76 (0.623)   1.10 (1.885)  2.80 (0.984)  1.71 (1.387) 5.53 (3.282) 0.54 (0.265) 
3PL 0.72 (0.648) 0.93 (0.731)   1.07 (1.619)  2.89 (0.960)  1.74 (1.403) 5.27 (3.165) 0.54 (0.264) 

Note. RMSE = Root Mean Square Error; DTF = Differential Test Functioning Statistic; MD = Mahalanobis Distance-based Statistic 

1 Time for Mahalanobis Distance-based Statistics given in milliseconds; 0.54 milliseconds = 54/1000 of a second 
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Table 8. 

Simulation Findings and Correlation Between DTF and MD by Permutation 

Ni Model DIF N  RMSE  DTF  MD  Correlation 
 b a  M (SD)  M (SD)  df r p(.05) 

15 2PL (None) 50  0.71 (0.643) 1.87 (1.360)  1.96 (1.725)  2.04 (0.383)  391 .01 .828 
   250  0.58 (0.428) 1.24 (0.823)  0.30 (0.305)  2.24 (0.348)  619 -.07 .093 
   500  0.54 (0.400) 1.29 (0.872)  0.14 (0.127)  2.33 (0.269)  623 -.07 .084 
   1,000  0.53 (0.385) 1.23 (0.834)  0.06 (0.060)  2.41 (0.211)  623 -.06 .152 
  20% @ -0.5 50  0.78 (0.780) 1.47 (1.073)  1.84 (1.656)  2.01 (0.378)  268 -.03 .631 
   250  0.56 (0.419) 1.26 (0.849)  0.35 (0.284)  2.2 (0.364)  608 0 .950 
   500  0.56 (0.407) 1.22 (0.823)  0.11 (0.106)  2.31 (0.276)  623 0 .998 
   1,000  0.55 (0.398) 1.19 (0.808)  0.11 (0.089)  2.4 (0.201)  623 .03 .524 
  20% @ -1 50  0.78 (0.724) 1.55 (1.078)  3.99 (3.303)  2.05 (0.366)  112 -.03 .755 
   250  0.54 (0.406) 1.38 (0.931)  0.47 (0.417)  2.23 (0.285)  621 -.02 .689 
   500  0.55 (0.409) 1.21 (0.818)  0.28 (0.225)  2.26 (0.29)  623 -.05 .177 
   1,000  0.54 (0.391) 1.24 (0.841)  0.18 (0.133)  2.36 (0.194)  623 .01 .879 
  33% @ -0.5 50  0.86 (0.772) 1.40 (0.985)  2.40 (1.912)  1.98 (0.379)  107 -.28 .004 
   250  0.57 (0.434) 1.24 (0.837)  1.04 (0.682)  2.25 (0.375)  618 0 .953 
   500  0.55 (0.406) 1.24 (0.834)  0.49 (0.303)  2.38 (0.247)  622 .06 .158 
   1,000  0.56 (0.410) 1.17 (0.796)  0.77 (0.286)  2.41 (0.204)  623 .07 .075 
  33% @ -1 50  0.77 (0.793) 1.52 (1.129)  4.28 (3.232)  2.06 (0.385)  246 .01 .891 
   250  0.63 (0.481) 1.15 (0.794)  2.71 (1.025)  2.26 (0.364)  605 0 .995 
   500  0.59 (0.436) 1.17 (0.797)  2.79 (0.754)  2.39 (0.291)  621 .02 .541 
   1,000  0.55 (0.408) 1.19 (0.811)  2.20 (0.451)  2.47 (0.215)  623 .06 .105 
 2PL+C (None) 50  1.06 (0.980) 1.07 (0.858)  1.57 (1.490)  1.98 (0.354)  43 .37 .012 
   250  0.76 (0.641) 0.63 (0.423)  0.22 (0.206)  2.03 (0.492)  564 .05 .213 
   500  0.68 (0.567) 0.67 (0.454)  0.12 (0.116)  2.07 (0.515)  601 .02 .594 
   1,000  0.66 (0.527) 0.64 (0.459)  0.09 (0.077)  2.22 (0.427)  621 .03 .465 
  20% @ -0.5 50  1.18 (1.070) 1.12 (0.855)  1.46 (1.627)  2.00 (0.380)  32 .25 .149 
   250  0.74 (0.671) 0.63 (0.430)  0.19 (0.181)  2.13 (0.463)  524 -.01 .754 
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Table 8. 

(Continued) 

Ni Model DIF N  RMSE  DTF  MD  Correlation 
 b a  M (SD)  M (SD)  df r p(.05) 

15 2PL+C 20% @ -0.5 500  0.67 (0.542) 0.65 (0.455)  0.54 (0.326)  2.09 (0.505)  605 -.02 .644 
   1,000  0.68 (0.551) 0.65 (0.453)  0.08 (0.073)  2.13 (0.473)  620 .05 .205 
  20% @ -1 50  1.07 (1.006) 1.27 (1.036)  1.76 (1.585)  1.95 (0.407)  121 .14 .110 
   250  0.70 (0.588) 0.80 (0.559)  0.55 (0.387)  2.08 (0.492)  568 -.06 .129 
   500  0.70 (0.566) 0.62 (0.430)  0.22 (0.161)  2.12 (0.495)  610 0 .932 
   1,000  0.68 (0.555) 0.63 (0.438)  0.20 (0.127)  2.18 (0.455)  620 -.03 .445 
  33% @ -0.5 50  0.92 (0.869) 1.13 (0.854)  1.43 (1.357)  2.02 (0.370)  146 -.01 .933 
   250  0.73 (0.617) 0.74 (0.516)  0.45 (0.336)  1.99 (0.530)  566 -.03 .427 
   500  0.72 (0.585) 0.66 (0.456)  0.64 (0.298)  2.06 (0.533)  613 -.01 .773 
   1,000  0.67 (0.543) 0.67 (0.467)  0.47 (0.189)  2.18 (0.457)  621 .06 .111 
  33% @ -1 50  1.12 (0.949) 1.11 (0.884)  1.31 (1.087)  1.97 (0.39)  53 .01 .957 
   250  0.80 (0.684) 0.73 (0.501)  2.29 (0.863)  1.97 (0.545)  520 -.01 .846 
   500  0.70 (0.571) 0.68 (0.477)  1.78 (0.549)  2.14 (0.482)  614 .02 .677 
   1,000  0.68 (0.549) 0.65 (0.460)  1.25 (0.329)  2.22 (0.456)  617 .03 .505 
 3PL (None) 50  0.94 (0.964) 1.34 (1.131)  1.48 (1.492)  1.99 (0.365)  79 -.09 .401 
   250  0.66 (0.541) 0.92 (0.650)  0.31 (0.335)  2.11 (0.489)  575 .05 .270 
   500  0.65 (0.514) 0.89 (0.609)  0.10 (0.090)  2.21 (0.482)  612 0 .984 
   1,000  0.65 (0.494) 0.83 (0.584)  0.07 (0.065)  2.40 (0.366)  623 -.03 .520 
  20% @ -0.5 50  1.11 (1.071) 1.17 (1.020)  1.27 (1.179)  2.02 (0.343)  54 .09 .523 
   250  0.64 (0.514) 0.92 (0.630)  0.18 (0.182)  2.10 (0.489)  596 .03 .450 
   500  0.70 (0.553) 0.80 (0.554)  0.08 (0.072)  2.17 (0.515)  610 .05 .238 
   1,000  0.64 (0.490) 0.84 (0.588)  0.07 (0.069)  2.51 (0.294)  622 .06 .141 
  20% @ -1 50  0.75 (0.818) 1.52 (1.120)  2.42 (1.922)  2.03 (0.364)  266 .06 .355 
   250  0.65 (0.516) 0.90 (0.627)  0.34 (0.253)  2.10 (0.496)  579 -.01 .796 
   500  0.63 (0.491) 0.88 (0.614)  0.23 (0.178)  2.36 (0.388)  613 0 .974 
   1,000  0.66 (0.515) 0.84 (0.588)  0.45 (0.186)  2.39 (0.370)  623 .08 .057 
  33% @ -0.5 50  0.89 (0.842) 1.21 (0.879)  1.28 (1.196)  1.98 (0.370)  139 -.07 .432 
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Table 8. 

(Continued) 

Ni Model DIF N  RMSE  DTF  MD  Correlation 
 b a  M (SD)  M (SD)  df r p(.05) 

15 3PL 33% @ -0.5 250  0.75 (0.613) 0.88 (0.611)  0.81 (0.526)  2.04 (0.497)  596 -.02 .644 
   500  0.64 (0.502) 0.89 (0.620)  0.65 (0.324)  2.36 (0.352)  619 -.05 .175 
   1,000  0.68 (0.527) 0.81 (0.561)  0.44 (0.194)  2.43 (0.333)  621 .03 .420 

15 3PL 33% @ -1 50  0.90 (0.912) 1.39 (0.943)  3.23 (2.701)  1.99 (0.400)  62 -.05 .678 
   250  0.74 (0.610) 0.77 (0.535)  1.61 (0.725)  2.09 (0.500)  598 .06 .149 
   500  0.74 (0.578) 0.75 (0.518)  1.91 (0.571)  2.19 (0.469)  620 .02 .671 
   1,000  0.67 (0.520) 0.81 (0.570)  1.24 (0.300)  2.42 (0.331)  621 -.03 .427 

30 2PL (None) 50  0.67 (0.571) 1.72 (1.282)  7.98 (8.337)  3.37 (0.692)  153 -.04 .658 
   250  0.57 (0.411) 1.08 (0.746)  1.77 (1.939)  3.68 (0.693)  597 .01 .836 
   500  0.53 (0.396) 1.10 (0.761)  0.64 (0.814)  3.91 (0.567)  623 .15 0 
   1,000  0.51 (0.377) 1.06 (0.745)  0.37 (0.494)  4.15 (0.354)  623 -.03 .477 
  20% @ -0.5 50  0.74 (0.757) 1.67 (1.185)  4.59 (4.263)  3.36 (0.695)  129 -.11 .223 
   250  0.57 (0.424) 1.01 (0.696)  1.01 (1.136)  3.75 (0.640)  612 -.02 .556 
   500  0.53 (0.396) 1.06 (0.733)  0.42 (0.506)  3.91 (0.541)  622 -.02 .655 
   1,000  0.50 (0.367) 1.12 (0.776)  0.87 (0.654)  4.21 (0.303)  623 0 .918 
  20% @ -1 50  0.74 (0.683) 1.49 (1.077)  6.06 (6.590)  3.37 (0.695)  95 .03 .736 
   250  0.53 (0.403) 1.17 (0.800)  3.25 (2.814)  3.69 (0.669)  613 .01 .756 
   500  0.55 (0.406) 1.00 (0.700)  1.69 (1.007)  3.88 (0.546)  621 -.06 .115 
   1,000  0.53 (0.386) 1.03 (0.722)  1.49 (0.822)  4.15 (0.305)  623 -.04 .382 
  33% @ -0.5 50  0.68 (0.580) 1.61 (1.112)  14.83 (15.874)  3.34 (0.702)  41 .19 .220 
   250  0.55 (0.417) 1.14 (0.779)  4.28 (3.106)  3.58 (0.734)  604 .04 .317 
   500  0.53 (0.396) 1.10 (0.764)  2.44 (1.770)  3.91 (0.589)  623 .06 .147 
   1,000  0.52 (0.391) 1.09 (0.756)  1.87 (1.040)  4.11 (0.365)  623 -.04 .295 
  33% @ -1 50  0.69 (0.617) 1.62 (1.067)  — —  3.28 (0.761)  — — — 
   250  0.58 (0.438) 1.04 (0.718)  5.51 (2.966)  3.63 (0.707)  593 -.06 .166 
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Table 8. 

(Continued) 

Ni Model DIF N  RMSE  DTF  MD  Correlation 
 b a  M (SD)  M (SD)  df r p(.05) 

30 2PL 33% @ -1 500  0.53 (0.398) 1.14 (0.783)  7.68 (3.082)  3.87 (0.588)  623 0 .950 
   1,000  0.56 (0.423) 1.00 (0.701)  6.63 (1.666)  4.16 (0.406)  623 -.02 .567 

30 2PL+C (None) 50  0.95 (0.901) 1.21 (1.055)  5.44 (4.179)  3.34 (0.642)  37 -.11 .493 
   250  0.67 (0.552) 0.67 (0.460)  0.75 (0.759)  3.29 (0.904)  574 -.02 .646 
   500  0.64 (0.541) 0.63 (0.438)  0.33 (0.329)  3.62 (0.827)  611 -.09 .029 
   1,000  0.59 (0.498) 0.60 (0.423)  0.12 (0.128)  3.91 (0.709)  623 .05 .191 
  20% @ -0.5 50  0.78 (0.723) 1.23 (1.064)  4.67 (4.348)  3.36 (0.717)  107 .05 .602 
   250  0.63 (0.525) 0.72 (0.503)  0.77 (0.803)  3.54 (0.859)  569 0 .949 
   500  0.68 (0.558) 0.65 (0.460)  0.3 (0.338)  3.40 (0.926)  615 -.04 .358 
   1,000  0.64 (0.531) 0.64 (0.455)  0.36 (0.301)  3.80 (0.752)  623 -.04 .379 
  20% @ -1 50  1.08 (1.012) 1.02 (0.874)  — —  3.38 (0.601)  — — — 
   250  0.69 (0.579) 0.72 (0.516)  1.73 (1.446)  3.27 (0.926)  568 .02 .569 
   500  0.63 (0.520) 0.64 (0.462)  1.02 (0.743)  3.49 (0.862)  619 -.03 .461 
   1,000  0.63 (0.513) 0.57 (0.405)  0.87 (0.466)  4.04 (0.624)  621 -.04 .336 
  33% @ -0.5 50  1.39 (1.256) 1.05 (0.845)  — —  3.40 (0.592)  — — — 
   250  0.78 (0.663) 0.69 (0.471)  1.57 (1.404)  3.16 (0.926)  547 -.04 .330 
   500  0.72 (0.599) 0.65 (0.460)  0.77 (0.637)  3.27 (0.929)  609 -.03 .500 
   1,000  0.66 (0.555) 0.69 (0.498)  1.09 (0.632)  3.40 (0.842)  621 -.07 .080 
  33% @ -1 50  1.42 (1.206) 0.94 (0.720)  — —  3.30 (0.630)  — — — 
   250  0.65 (0.536) 0.72 (0.504)  7.51 (3.320)  3.54 (0.854)  569 -.03 .499 
   500  0.70 (0.584) 0.68 (0.482)  5.39 (1.870)  3.45 (0.903)  613 -.08 .037 
   1,000  0.65 (0.539) 0.67 (0.477)  5.11 (1.256)  3.85 (0.753)  623 -.02 .568 
 3PL (None) 50  1.03 (1.038) 1.42 (1.134)  5.42 (4.854)  3.40 (0.626)  74 -.01 .900 
   250  0.66 (0.522) 0.81 (0.561)  1.06 (1.105)  3.60 (0.839)  567 .04 .309 
   500  0.63 (0.518) 0.81 (0.555)  0.39 (0.486)  3.38 (0.949)  621 0 .984 
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Table 8. 

(Continued) 

Ni Model DIF N  RMSE  DTF  MD  Correlation 
 b a  M (SD)  M (SD)  df r p(.05) 

30 3PL (None) 1,000  0.61 (0.497) 0.80 (0.569)  0.15 (0.152)  3.83 (0.734)  623 .06 .110 
  20% @ -0.5 50  0.95 (0.914) 1.59 (1.177)  3.35 (3.203)  3.31 (0.662)  43 -.08 .623 
   250  0.65 (0.518) 0.83 (0.573)  1.37 (1.317)  3.57 (0.824)  606 .05 .217 
   500  0.66 (0.526) 0.79 (0.551)  0.79 (0.667)  3.55 (0.864)  617 -.07 .074 
   1,000  0.62 (0.498) 0.80 (0.565)  0.21 (0.209)  3.96 (0.658)  623 -.04 .372 
  20% @ -1 50  1.17 (1.076) 1.23 (0.944)  6.86 (5.026)  3.39 (0.641)  16 0.1 .693 
   250  0.66 (0.529) 0.82 (0.579)  1.49 (1.339)  3.35 (0.879)  594 -.03 .461 
   500  0.63 (0.499) 0.81 (0.566)  0.74 (0.652)  3.76 (0.839)  619 0 .923 
   1,000  0.60 (0.473) 0.78 (0.557)  0.78 (0.464)  4.2 (0.54)  623 .07 .067 
  33% @ -0.5 50  1.18 (1.029) 1.23 (0.892)  — —  3.28 (0.72)  — — — 
   250  0.67 (0.542) 0.88 (0.607)  2.84 (2.176)  3.32 (0.912)  604 -.04 .348 
   500  0.69 (0.555) 0.77 (0.531)  1.26 (0.939)  3.62 (0.876)  616 -.03 .411 
   1,000  0.62 (0.492) 0.79 (0.554)  1.14 (0.657)  3.96 (0.628)  623 .06 .142 
  33% @ -1 50  0.90 (0.833) 1.45 (0.982)  — —  3.32 (0.663)  — — — 
   250  0.65 (0.522) 0.86 (0.601)  4.4 (2.507)  3.48 (0.874)  603 .05 .181 
   500  0.67 (0.541) 0.82 (0.576)  4.27 (1.78)  3.31 (0.929)  622 .02 .659 
   1,000  0.65 (0.518) 0.75 (0.529)  4.75 (1.175)  3.82 (0.725)  622 .03 .511 

Note. Ni = number of items, Model = generating model, DIF = DIF presence, N = sample size, b = difficulty, a = discrimination, DTF 
= differential test functioning statistic, MD = Mahalanobis distance-based statistic, Correlation = Pearson correlation between DTF 
and MD. 
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Parameter Estimation 

Within the full model, parameter estimates exhibited varying accuracy both within and 

between conditions, perhaps because of both the influence of random number generation and 

conditions. The smallest conditions (N=50, Ni=15) had only 2.5% of the data that the largest 

conditions (N=1000, Ni=30) did, allowing for more influence from outliers arising from random 

number generation. Part of the simulation data generation uses uniform sampling distributions, 

potentially intensifying this effect. Additionally, one of the conditions with the most DIF but the 

least amount of data (N=50, Ni=30, 2PL, 33% DIF @ -1) demonstrated an intense difficulty in 

calculating; the entire condition struggled to produce DTF statistics to measure correlation. 

Appendix A presents detailed charts of the mean differences between estimated and actual 

parameters, and their standard deviations, across simulation conditions for all items. 

To efficiently analyze parameter accuracy between conditions of varying test length, and 

to facilitate analyses of variance, a dimensionality reduction procedure using an unstandardized 

version of the adapted RMSE from the data cleaning procedures were used. For example, in trial 

75,626, the parameter estimations were first rescaled as errors, or differences from the true 

values, then were first transformed into Z-scores based on findings within the condition (in this 

case, Ni = 30, N = 1,000, DIF = 0%, Magnitude = -0.5, Model = 2PLC) to create standardized 

measures of mean differences for data cleaning:  
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Table 9. 

Example Estimator Simplification for Trial 75,626 

Item Trial Estimate  True Value  Difference  Standardized  
B A  B A  B A  B A  

1 -0.75 0.64  -0.07 0.49  -0.68 0.15  -0.25 -0.13  
2 -0.32 1.06  0.21 0.92  -0.53 0.14  -1.63 0.13  
3 0.29 1.09  0.54 1.26  -0.25 -0.17  1.63 -0.44  
4 -0.71 0.67  -0.03 0.61  -0.68 0.06  -1.39 -1.40  
5 -0.26 1.90  0.01 1.74  -0.27 0.16  1.11 0.93  
6 1.47 0.52  1.96 0.50  -0.49 0.02  -0.64 1.54  
7 -0.39 1.09  0.04 0.96  -0.43 0.13  -0.30 -0.65  
8 -0.41 0.80  -0.09 0.59  -0.32 0.21  2.23 0.37  
9 -1.55 1.15  -1.16 0.82  -0.39 0.33  -0.47 -0.77  
10 -0.41 1.37  0.02 1.26  -0.43 0.11  -1.20 -0.45  
11 -0.3 0.96  0.20 0.82  -0.50 0.14  -0.63 -0.05  
12 -0.86 1.06  -0.43 0.75  -0.43 0.31  0.14 0.24  
13 -0.43 1.89  -0.06 1.49  -0.37 0.40  -0.67 1.83  
14 -0.85 1.12  -0.34 0.97  -0.51 0.15  -1.78 -1.45  
15 -0.29 1.74  0.05 1.49  -0.34 0.25  -0.12 1.17  
16 -0.72 1.23  -0.25 0.89  -0.47 0.34  -0.85 0.61  
17 -0.28 1.66  0.06 1.45  -0.34 0.21  0.07 1.04  
18 -0.11 0.83  0.31 0.75  -0.42 0.08  0.73 -0.47  
19 -0.27 1.60  0.04 1.43  -0.31 0.17  0.64 0.42  
20 -0.33 0.83  0.13 0.60  -0.46 0.23  1.02 0.91  
21 0.09 0.88  0.52 0.83  -0.43 0.05  0.08 -0.08  
22 -1.47 0.81  -0.96 0.56  -0.51 0.25  0.09 -0.02  
23 -1.16 1.03  -0.79 0.67  -0.37 0.36  0.67 0.61  
24 -0.17 0.68  0.37 0.7  -0.54 -0.02  -0.42 -1.62  
25 -0.99 1.53  -0.71 1.03  -0.28 0.50  0.73 0.63  
26 -0.67 1.13  -0.19 0.89  -0.48 0.24  -1.02 -0.15  
27 0.41 1.09  0.74 1.23  -0.33 -0.14  -0.19 0.92  
28 -0.81 1.27  -0.44 0.90  -0.37 0.37  0.15 0.55  
29 -0.54 1.45  -0.17 1.23  -0.37 0.22  -0.30 -0.34  
30 -0.04 0.80  0.53 0.69  -0.57 0.11  -0.80 0.20  

Thus, each standardized parameter (in this case, DIF-free difficulty and DIF-free estimation) was 

expressed as a Euclidean distance of 30-dimensional vectors and summed, giving 

Distance(Standardized) = 9.64, within range for retention in the dataset. Next, for analysis, those raw 

difference, or estimation errors, are instead amalgamated into Euclidean distances for each 

parameter for all items, i, in trial t: 
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 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐵𝐵 + 𝐴𝐴) =  �∑ �𝑏𝑏�𝑡𝑡,𝑖𝑖 − 𝑏𝑏𝑡𝑡,𝑖𝑖�
2𝑛𝑛𝑖𝑖

𝑖𝑖=1 + �∑ �𝑎𝑎�𝑡𝑡,𝑖𝑖 − 𝑎𝑎𝑡𝑡,𝑖𝑖�
2𝑛𝑛𝑖𝑖

𝑖𝑖=1  (33) 

This allows for the estimation of the entire instrument to be expressed as a single number. Thus, 

the 30 DIF-free difficulty parameters and 30 DIF-free discrimination parameters for trial 75,626 

are simplified to a sum of two Euclidean distances each measured in 30 orthogonal dimensions, 

or Distance(Difference) = 3.69. This allowed for comparing conditions with a single variable: 

Table 10 

Parameter Estimation Accuracy by Condition, M(SD) 

Condition Parameter RMSE M(SD)  Simplified Distance 
b a  M (SD) 

Test Length      
15 0.70 (0.625) 1.00 (0.791)  4.13 (2.191) 
30 0.68 (0.619) 0.94 (0.759)  5.81 (3.226) 

Sample Size      
50 0.95 (0.924) 1.34 (1.066)  9.05 (4.458) 
250 0.65 (0.537) 0.91 (0.674)  4.33 (1.016) 
500 0.63 (0.506) 0.87 (0.658)  3.98 (0.788) 
1000 0.61 (0.482) 0.86 (0.651)  3.71 (0.664) 

% DIF Items      
0 0.68 (0.611) 0.97 (0.810)  4.89 (3.046) 
20% 0.68 (0.617) 0.97 (0.780)  4.95 (2.873) 
33% 0.71 (0.638) 0.95 (0.736)  5.06 (2.708) 

Magnitude      
-0.5 0.70 (0.630) 0.97 (0.778)  4.96 (2.950) 
-1 0.68 (0.614) 0.96 (0.773)  4.97 (2.809) 

Generating Model      
2PL 0.58 (0.472) 1.23 (0.884)  4.78 (2.229) 
2PL+C 0.76 (0.702) 0.76 (0.623)  5.13 (3.146) 
3PL 0.72 (0.648) 0.93 (0.731)  4.97 (3.133) 

Another, more ordinal way of examining these accuracies was to sort by these simplified 

distances and examine which conditions are associated with the lowest and highest values. As 

expected from the above averages, the largest sample size condition is one of the most 

consistently accurate: 
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Table 11 

Best and worst estimated full models by average parameter fit 

Ni N DIF Magnitude Model 
30 1,000 0 -0.5 2PLC 
30 1,000 0 -1 2PLC 
30 500 0 -0.5 2PLC 
30 500 0 -1 2PLC 
30 250 0 -0.5 2PLC 
15 1,000 0 -0.5 2PLC 
15 1,000 0 -1 2PLC 
15 500 0 -0.5 2PLC 
15 500 0 -1 2PLC 
30 1,000 0 -1 3PL 

 

Ni N DIF Magnitude Model 
15 50 33% -1 3PL 
15 50 33% -0.5 3PL 
30 50 33% -1 2PLC 
30 50 33% -0.5 3PL 
30 50 20% -1 3PL 
30 50 33% -0.5 2PLC 
15 50 20% -1 2PL 
15 50 33% -1 3PL 
15 50 33% -0.5 3PL 
30 50 33% -1 2PLC 

 

A more traditional analysis of variance between condition groups was used to identify 

which conditions were associated with significant differences in parameter estimates. A three-

way analysis of variance demonstrated the problem of large sample sizes: all factors and 

interactions demonstrated statistical significance. Practical significance was examined using η2 

and showed test length, sample size, and the interaction between the two as practically 

significant. Using traditional effect size cut-off values of .01, .06, and .14, the interaction effect 

displayed small practical significance, test length a medium, and sample size a large impact:  
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Table 12 

Analysis of Variance for Full Model’s Simplified Parameter Estimate 

Condition Sum of Squares df Mean Square F p(F) η2 
Test Length 58,713 1 58,713 18,224.31 < .01 .09 
Sample Size 332,758 3 110,919 34,428.73 < .01 .48 
DIF Presence 901 4 225 69.90 < .01 < .01 
Generating Model 278 2 139 43.17 < .01 < .01 
Length x Size 17,524 3 5,841 1,813.09 < .01 .03 
Length x DIF 1,019 4 255 78.08 < .01 < .01 
Length x Model 1,226 2 613 190.23 < .01 < .01 
Size x DIF 959 12 80 24.80 < .01 < .01 
Size x Model 3,203 6 534 165.72 < .01 < .01 
DIF x Model 1,499 8 187 58.17 < .01 < .01 
Length x Size x DIF 1,002 12 83 25.91 < .01 < .01 
Length x Size x Model 1,343 6 224 69.47 < .01 < .01 
Length x DIF x Model 829 8 104 32.15 < .01 < .01 
Size x DIF x Model 1,446 24 60 18.70 < .01 < .01 

The very high sample sizes presented by this simulation undermine some of the interpretability 

of an analysis of variance, because statistical significant is more assured from sample size alone. 

Analyzing practical significance allowed for more focus. Based on this analysis, an examination 

of permutations between test length and sample size conditions was conducted: 

Table 13. 

Simulation Outcomes for Test Length (Ni) and Sample Size (N) Conditions 

Condition Simplified Distance  DTF  MD  
M (SD)  M (SD)  M (SD)  

Ni = 15          
N = 50 7.30 (3.302)  2.25 (2.229)  2.01 (0.376)  
N = 250 3.68 (0.819)  0.70 (0.869)  2.12 (0.464)  
N = 500 3.30 (0.393)  0.58 (0.817)  2.22 (0.438)  
N = 1,000 3.12 (0.258)  0.44 (0.601)  2.34 (0.366)  

Ni = 30          
N = 50 10.91 (4.759)  6.28 (7.202)  3.36 (0.665)  
N = 250 4.98 (0.740)  2.40 (2.696)  3.50 (0.837)  
N = 500 4.67 (0.404)  1.64 (2.340)  3.62 (0.829)  
N = 1,000 4.30 (0.353)  1.47 (2.033)  3.97 (0.637)  
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Some of the impact of test length on the unstandardized, unidimensional parameter 

estimation distance used for analysis is natural: more sampling creates more opportunities for 

distance, not unlike how the mean of a χ2 distribution behaves as its k (degrees of freedom) value 

increases. By examining both test length and sample size conditions at the same time, this natural 

increase was more readily apparent. Examining RMSE under the same permutations showed a 

reasonably anticipated control for this behavior, but showed similar trends nonetheless: 

Table 14. 

Simulation Outcomes for Test Length (Ni) and Sample Size (N) Conditions, Continued 

Condition Simplified Distance  RMSE (b)  RMSE (a)  
M (SD)  M (SD)  M (SD)  

Ni = 15          
N = 50 7.30 (3.302)  1.33 (1.051)  0.93 (0.909)  
N = 250 3.68 (0.819)  0.94 (0.707)  0.67 (0.559)  
N = 500 3.30 (0.393)  0.91 (0.684)  0.64 (0.509)  
N = 1,000 3.12 (0.258)  0.90 (0.676)  0.62 (0.489)  

Ni = 30          
N = 50 10.91 (4.759)  1.35 (1.080)  0.96 (0.940)  
N = 250 4.98 (0.740)  0.87 (0.637)  0.63 (0.512)  
N = 500 4.67 (0.404)  0.84 (0.626)  0.62 (0.503)  
N = 1,000 4.30 (0.353)  0.83 (0.623)  0.60 (0.475)  

   

DIF Measurement 

One of the straightforward but important purposes of this study was to examine if there 

was a correlation between the easy-to-calculate Mahalanobis distance based statistic for full 

models and the DTF statistic when evaluated between reference and focal models. These DIF 

statistics performed as follows: 
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Table 15. 

Simulation DIF Statistics, by Condition 

Condition  DTF  MD  
 M (SD)  M (SD)  

Test Length        
15  0.68 (1.026)  2.19 (0.433)  
30  1.93 (2.703)  3.64 (0.787)  

Sample Size        
50  3.31 (4.518)  2.67 (0.863)  
250  1.55 (2.177)  2.81 (0.967)  
500  1.11 (1.832)  2.92 (0.965)  
1000  0.96 (1.585)  3.16 (0.965)  

DIF Presence        
(None)  0.52 (1.404)  2.91 (0.966)  
20% @ -0.5  0.57 (1.154)  2.92 (0.969)  
20% @ -1  1.02 (1.596)  2.94 (0.972)  
33% @ -0.5  1.34 (1.975)  2.85 (0.944)  
33% @ -1  3.83 (2.694)  2.90 (0.959)  

Generating Model        
2PL  1.68 (2.640)  3.04 (0.926)  
2PL+C  1.10 (1.885)  2.80 (0.984)  
3PL  1.07 (1.619)  2.89 (0.960)  

Correlation of DIF Measurements 

The per-condition examination of correlation between the traditional DTF and new 

Mahalanobis distance-based DIF measurement statistics is listed in Table 8. The correlations 

varied: r ranged between -.28 and .37 with a median value of 0. The completeness of these 

variables was also diverse: df ranged between 32 and 623. All cases where df was below 520 

were observed in permutations with the low sample size (N=50) condition; all of the low sample 

size conditions were below this value. Furthermore, the correlation with a moderate relationship 

demonstrated only had a df of 43 and one of the highest RMSE values for the difficulty 

parameter; the poor performance of this permutation—another within the small sample size 

condition—warrants cautionary interpretation. The remaining correlations suggesting a small 

relationship (.09 < R2 > .01) also occur within the small sample size condition and presented 
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RMSE on the difficulty parameter higher than the median value. In other words, as the quality of 

DTF measurements increased, the correlation between them decreased. 

Consequentially, analysis of the relationship between these two statistics, across all 

conditions, showed little meaningful correlation. The new statistic was, probably due to large 

degrees of freedom, positively correlated to and weakly predicted by DTF, r = .21, F(1, 68922) = 

2877, p < .01. Test length remains the most distinguished feature in the relationship, but 

separating the dataset by test length resulted in contrary correlations, r(35130) = -.05, p < .01 for 

15-item conditions and r(33790) < .01, p < .01 for 30-item conditions. Some of these 

relationships were more easily given context when examined visually, such as the 

aforementioned relationship of interest between established DTF and the new Mahalanobis 

distance-based statistics.  
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Figure 10 

Measure Comparisons 
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DTF 

DTF was measured with the DFIT R package. It performed as anticipated with a notable 

ability to distinguish between models with and without DIF items. Figure 11 depicts the 

relationship between DTF and DIF and implies a certain amount of empirical power: 

Figure 11 

DTF across DIF conditions 

 

Specifically, 26% of trials with DIF present had DTF statistics exceeding the 95th 

percentile of DTF for trials with no DIF present (approximately 2.05). Or, alternatively speaking, 

91% of all trials having DTF values greater than that cut-off actually contained DIF. This was 

with just one iteration of DFIT analysis and randomly-selected anchor items into the bargain. 

Further graphical examinations of DTF across other conditions are included in Figure 17 in 

Appendix B. The proportion of DIF trials exceeding that empirical cut-off value for various 

conditions was: 

Table 16 

DIF Trial Proportions by Condition 
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Condition  DTF  P(DIF)  M (SD)   
Test Length       

15  0.68 (1.026)  .08  
30  1.93 (2.703)  .24  

Sample Size       
50  3.31 (4.518)  .14  
250  1.55 (2.177)  .21  
500  1.11 (1.832)  .16  
1000  0.96 (1.585)  .13  

DIF Presence       
(None)  0.52 (1.404)  —   
20% @ -0.5  0.57 (1.154)  .05  
20% @ -1  1.02 (1.596)  .13  
33% @ -0.5  1.34 (1.975)  .17  
33% @ -1  3.83 (2.694)  .68  

Generating Model       
2PL  1.68 (2.640)  .23  
2PL+C  1.10 (1.885)  .12  
3PL  1.07 (1.619)  .13  

Note. P(DIF) = Proportion of DIF trials with DTF > 95th percentile of DTF for all DIF-Free trials 

Examining the amount of DIF identified in this manner helps illustrate the improvement 

of the DTF statistic under certain conditions, most obviously the percent of DIF but also notable 

is the magnitude of DIF. These proportions should be interpreted with caution in light of the 

disproportionate amount of errors encountered in evaluating the DTF statistics in the first place. 

This relationship between DTF and the presence of DIF was analyzed in more detail with the 

inclusion of other simulation conditions as potentially conflating factors:  
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Table 17. 

Analysis of Variance for DTF and Simulation Conditions 

Condition Sum of Squares df Mean Square F p(F) η2 
Test Length 27,022 1 27,022 16,029.30 < .01 x.09 
Sample Size 21,221 3 7,074 4,196.00 < .01 x.07 
DIF Presence 96,482 4 24,120 14,308.16 < .01 x.31 
Generating Model 4,355 2 2,178 1,291.83 < .01 x.01 
Length x Size 8,198 3 2,733 1,621.09 < .01 x.03 
Length x DIF 22,559 4 5,640 3,345.41 < .01 x.07 
Length x Model 1,467 2 734 435.15 < .01 < .01 
Size x DIF 1,387 12 116 68.54 < .01 < .01 
Size x Model 626 6 104 61.91 < .01 < .01 
DIF x Model 3,664 8 458 217.71 < .01 .01 
Length x Size x DIF 2,818 12 235 139.28 < .01 .01 
Length x Size x Model 82 6 14 8.08 < .01 < .01 
Length x DIF x Model 1,652 8 206 122.47 < .01 < .01 
Size x DIF x Model 3,355 24 140 82.94 < .01 .01 

Using traditional η2 cut-off values of .01, .06, and .14, multiple influences on DTF can be 

observed in the study. A large effect was observed from the DIF presence condition; medium 

effects were observed from the test length and sample size conditions as well as interactions 

between test length and DIF presence; and small effects were observed from the model type 

condition as well as interaction effects between test length and sample size as well as DIF 

presence and generating model. A three-way interaction between sample size, DIF presence, and 

generating model was observed. Many of these interactions effects align with common sense and 

were thus desirable as confirmation of the measure working as intended: in so many ways, DTF 

varied with the varying presence of DIF. Most potential interactions, however, were not found to 

be practically significant.  

Mahalanobis Distance Statistic 

The Mahalanobis distance-based statistic did not demonstrate similar amounts of 

empirical power for the detection of DIF items in a test. It was calculated very quickly using R 

functions and properties of the ltm object. Parameter estimates’ standard errors are carefully 
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extracted into a matrix object from the ltm object with the summary function to invoke IRT 

parameterization, then transformed into Mahalanobis distances with the Mahalanobis function 

using the cov function on the resulting matrix to transform the coordinates appropriately. Finally, 

the skewness of the resulting vector can be evaluated via the psych library, such that: 

 
𝐷𝐷 =  �(𝑥𝑥 − 𝑚𝑚)𝑇𝑇𝑆𝑆−1(𝑥𝑥 − 𝑚𝑚)

𝑀𝑀𝑀𝑀 =  𝜇𝜇�3 =  
∑ (𝐷𝐷𝑖𝑖−𝐷𝐷�)3𝑁𝑁𝑖𝑖
𝑖𝑖
(𝑁𝑁𝑖𝑖−1)𝜎𝜎3

 (34) 

where x is the matrix of row observations of multiple column variables, m is the vector of those 

variables’ means, S is the covariance matrix of those variables, and the T denotes a transposed 

vector, creating a univariate result of appropriately scaled values. This statistic was recorded for 

each condition as one of the primary outcomes in the study. For example, in trial 75,626: 
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Table 18. 

Example Preparation of Mahalanobis Distance-based Statistic for Trial 75,626  

Item Estimate  Standard Error  MD  
B A  (B) (A)   

1 -0.75 0.64  (0.135) (0.082)  1.64  
2 -0.32 1.06  (0.075) (0.099)  0.75  
3 0.29 1.09  (0.077) (0.097)  0.84  
4 -0.71 0.67  (0.126) (0.084)  1.30  
5 -0.26 1.90  (0.053) (0.152)  3.75  
6 1.47 0.52  (0.242) (0.078)  14.64  
7 -0.39 1.09  (0.075) (0.101)  0.62  
8 -0.41 0.80  (0.095) (0.087)  1.10  
9 -1.55 1.15  (0.144) (0.130)  5.30  
10 -0.41 1.37  (0.065) (0.118)  0.52  
11 -0.3 0.96  (0.081) (0.094)  0.96  
12 -0.86 1.06  (0.095) (0.106)  0.01  
13 -0.43 1.89  (0.055) (0.156)  4.52  
14 -0.85 1.12  (0.090) (0.110)  0.01  
15 -0.29 1.74  (0.056) (0.140)  2.10  
16 -0.72 1.23  (0.078) (0.114)  0.15  
17 -0.28 1.66  (0.057) (0.136)  1.62  
18 -0.11 0.83  (0.088) (0.087)  1.42  
19 -0.27 1.60  (0.058) (0.130)  1.16  
20 -0.33 0.83  (0.091) (0.088)  1.17  
21 0.09 0.88  (0.085) (0.088)  1.41  
22 -1.47 0.81  (0.171) (0.101)  4.55  
23 -1.16 1.03  (0.117) (0.110)  0.56  
24 -0.17 0.68  (0.103) (0.081)  1.60  
25 -0.99 1.53  (0.080) (0.145)  2.91  
26 -0.67 1.13  (0.082) (0.107)  0.13  
27 0.41 1.09  (0.079) (0.097)  0.76  
28 -0.81 1.27  (0.081) (0.119)  0.25  
29 -0.54 1.45  (0.065) (0.126)  0.75  
30 -0.04 0.80  (0.091) (0.085)  1.51  

Note. B = Difficulty, A= Discrimination 

For this trial, then, the new Mahalanobis Distance-based statistic is the skewness of the 

Mahalanobis distances of the parameter estimate standard errors, or 3.62. This process was 

conducted for each full model. Typical values for this statistic between various conditions were: 
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Table 19 

Mahalanobis Distance Statistic Across Conditions, M(SD) 

Condition    MD  Time1 
   M (SD)  M (SD) 

Test Length        
15    2.19 (0.433)  0.54 (2.048) 
30    3.64 (0.787)  0.55 (0.252) 

Sample Size        
50    2.67 (0.863)  0.54 (0.232) 
250    2.81 (0.967)  0.54 (0.251) 
500    2.92 (0.965)  0.54 (0.223) 
1000    3.16 (0.965)  0.56 (2.786) 

% DIF Items        
0    2.91 (0.966)  0.54 (0.213) 
20%    2.93 (0.970)  0.54 (0.147) 
33%    2.88 (0.952)  0.55 (2.532) 

Magnitude        
-0.5    2.90 (0.961)  0.55 (2.045) 
-1    2.92 (0.965)  0.54 (0.295) 

Generating Model        
2PL    3.04 (0.926)  0.55 (2.544) 
2PL+C    2.80 (0.984)  0.54 (0.265) 
3PL    2.89 (0.960)  0.54 (0.264) 

Note. MD = Mahalanobis Distance-based statistic, Time = milliseconds to calculate 

 

The Mahalanobis distance statistic is also depicted visually throughout various conditions 

in Appendix B, where it is easier to visually observe differences between conditions. The statistic 

displayed insensitivity to DIF, DIF magnitude, and underlying model type. The statistic showed 

some differences, visually, with test length, and only the smallest sample size condition showed 

different behavior; this is where the smallest variance was observed in the new Mahalanobis 

distance based statistic, and it was the only condition where values between levels were not 

within a standard deviation of other values. In other words, the statistic did not vary with the 

presence of DIF nor the manipulation of simulation conditions other than test length. 
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Further Item-Level DIF Statistic Analysis 

After weak relationships at the instrument level were observed, a deeper examination of 

item-level performance of the Mahalanobis Distance based Statistic compared to NCDIF was 

prepared to determine if any correlation was present when instruments were disaggregated.  

Figure 12 depicts this examination, and illustrates the behavior of the Mahalanobis distance and 

NCDIF statistic in items with and without DIF; NCDIF displays a more useful, responsive 

performance. Even at the time level, there was no meaningful correlation between these 

measurements, r(1540738) = -.04, p < .001. 

Figure 12 

NCDIF and new statistic based on item context 

 

The underlying hypothesis of the study was that standard errors of estimates in a full 

model may contain useful information on the presence of DIF. To thoroughly explore whether 
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that hypothesis held true, the basic Euclidean distance used to calculate the rotated and scaled 

Mahalanobis distance for each item’s parameter’s standard error was prepared: 

Figure 13 

NCDIF and unidimensional item-level standard error of estimates 

 

The results did not demonstrate as clear a relationship between these standard errors and DIF as 

the NCDIF statistic, which is related to DTF at the item-level, provided. A final comparison was 

prepared of all 2,023,080 estimated b-parameters and their item’s NCDIF statistic: 

Figure 14 

Item-level performance of NCDIF and b-parameter standard error

 

The limitation in the hypothesis is clear: parameter standard errors did not strongly react to DIF.  
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Instruments resilient to DIF items. Since DIF was only injected into the difficulty 

parameter in the study, a further analysis of variance was conducted using just the performance 

of difficulty parameter estimates to focus on the influence of DIF rather than an overall model 

performance with DIF potentially in it: 

Table 20. 

Analysis of Variance for Difficulty Parameter RMSE by Condition 

Condition Sum of Squares df Mean Square F p(F) η2 
Test Length 8 1 8 21.03 < .01 < .01 
Sample Size 1,282 3 427 1,177.62 < .01 .04 
DIF Presence 22 4 6 15.26 < .01 < .01 
Generating Model 434 2 217 598.11 < .01 .01 
Length x Size 14 3 5 13.02 < .01 < .01 
Length x DIF 17 4 4 11.94 < .01 < .01 
Length x Model 7 2 3 9.15 < .01 < .01 
Size x DIF 10 12 1 2.34 < .01 < .01 
Size x Model 85 6 14 39.06 < .01 < .01 
DIF x Model 11 8 1 3.64 < .01 < .01 
Length x Size x DIF 60 12 5 13.86 < .01 < .01 
Length x Size x Model 23 6 4 10.55 < .01 < .01 
Length x DIF x Model 29 8 4 10.10 < .01 < .01 
Size x DIF x Model 46 24 2 5.32 < .01 < .01 

Based on this analysis, sample size remains a significant factor on the parameter estimation 

accuracy of models, and the amount of DIF in the study may not have been impactful enough for 

a DIF item to distort other parameters estimated at the same time. Interestingly, test length no 

longer appears practically significant from the strict perspective of test-wide RMSE of the 

difficulty parameter. This should be cautiously interpreted in the context of convergence failures. 

Computation Time 

Rudimentary timestamp-based methods recorded the duration of each step. This consisted 

of temporary variables recording the time prior to and just after each calculation. While more 

robust methods for profiling the performance of R code execution exist, the consistency of this 

method and its low overhead proved sufficient to serve as a means of comparing conditions and 
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statistics. Complexity, as might be expected, lead to noticeable increases in computation time. 

Iterative methods such as Item Parameter Replication would involve even more execution time 

than the iterations in the study, confirming the problem of scaling time cost. The Mahalanobis 

Distance-based statistic was evaluated orders of magnitude faster than DTF. A curious, decrease 

in DTF evaluation time is observed in N=250 conditions; no explanation was found. To wit: 

Table 21. 

Computation Time, in Seconds, for Test Length (Ni) and Sample Size (N) Conditions 

Condition Full Model  DTF  MD1 
M (SD)  M (SD)  M (SD) 

Ni = 15         
N = 50 0.32 (0.032)  2.41 (0.337)  0.53 (0.260) 
N = 250 0.57 (0.045)  1.92 (0.128)  0.53 (0.301) 
N = 500 0.85 (0.057)  2.14 (0.139)  0.53 (0.159) 
N = 1,000 1.40 (0.089)  2.63 (0.149)  0.56 (3.927) 

Ni = 30         
N = 50 0.88 (0.063)  9.74 (1.118)  0.54 (0.197) 
N = 250 1.69 (0.087)  7.38 (0.433)  0.55 (0.189) 
N = 500 2.73 (0.127)  8.04 (0.444)  0.55 (0.272) 
N = 1,000 4.74 (0.182)  9.67 (0.423)  0.55 (0.311) 
1 Mahalanobis Distance-based Statistic, time in milliseconds 
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Figure 15 

Computation times for simulation components 
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5 DISCUSSION 

The purpose of this study was to examine the performance of a new statistic, based on 

implementation of the Mahalanobis distance on the standard errors of model estimators, 

compared to the DTF statistic. It proposed that current trends in classroom size, scaling costs of 

DIF analysis, and looming constraints in computational resources create a landscape where the 

best DIF analyses are becoming more challenging to do well. It theorized that IRT models with 

DIF might demonstrate detectable patterns in parameter estimation error that could allow for 

detection of DIF without the need to specify groups nor fit additional models.  

Comparison of DIF Measurements 

The relationship between the existing DTF statistic and the new Mahalanobis distance-

based statistic was hypothesized to justify using the latter as a simplified pre-screening method to 

efficiently judge when the former may warrant robust evaluation. This relationship would 

depend on a strong correlation between the statistics throughout the testing conditions in which 

DIF occurs. The study manipulated some key variables including sample size, test length, and 

the presence of DIF to simulate these while measuring both DTF and the new Mahalanobis 

distance-based statistic. Throughout all 120 conditions, however, fewer than 10 displayed a small 

correlation between these statistics, those correlations themselves lacked statistical significance, 

however. Only a single condition displayed a moderate correlation, with statistical significance, 

and none demonstrated a large, significant correlation 

The condition with a significant and moderate correlation involved the shorter test, the 

smallest sample size, the 2PLM with fixed pseudo-random parameter in the generating model, 

and no DIF presence. Out of all 120 conditions, it presented the sixth highest RMSE on the 

difficulty parameter, suggesting one of the least reliably interpretable estimates by IRT. 
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Additionally, this condition set was in the bottom 10% of groups in terms of available degrees of 

freedom for the correlation evaluation; just as the IRT model performed poorer in this model, so 

too did the DTF statistic fail to evaluate at an elevated rate. These failures were, coincidentally 

enough, mostly due to parameter estimates for the focal group failing to converge or, in many 

cases, producing wild, untenable numbers at convergence unsuitable for DTF calculation.  

While these traits could have been interpreted as a relationship that was not resilient in 

the presence of DIF, the relatively poor performance of IRT and DIF analysis in this condition 

suggest a different interpretation. As conditions improve to produce more meaningful IRT 

estimates and DIF measurement, the relationship between DTF and the new Mahalanobis 

distance-based statistic disappears. This was more likely to be a demonstration of no correlation 

than of a lost one, then, since the correlation arises out of inaccuracies. This does make a certain 

amount of sense: since the new Mahalanobis distance-based method is focused on the parameter 

estimation standard errors of the full model, it could be correlated to a DIF measurement when 

that DIF measurement only has measurement error to detect. In other words, this could be a 

further indicator that the new approach is not sensitive to the presence of DIF. 

Outcome Interpretations 

The study compared the performance of two DIF measurement methods, DTF and a new 

Mahalanobis distance-based statistic, within the context of a simulation study altering conditions 

expected to influence parameter estimation effectiveness. Computation time as recorded 

throughout the study as another dimension for comparison. Several relationships were examined 

in the course of investigating the way that DIF interacted with parameter estimation, the actual 

detection and measurement of that DIF, and the computational cost of these IRT models.  
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Parameter Estimation 

Test Length Conditions. Test length had a complex influence on parameter estimation. 

Although some of the best-estimated models included the longer condition, the proportion 

remains similar to those observed in the worst models. The variation, however, of the parameter 

differences varies much more for the smaller condition. In other words, more variety was 

observed within the Ni=15 condition than between the Ni=15 and Ni=30 conditions. The 

disproportionate problems with smaller sample sizes were further exacerbated by smaller test 

length, which may have skewed results. 

Sample Size Conditions. The sample size condition was associated with multiple 

simulation problems, as expected, but in multiple ways that illustrate the perils of using IRT with 

small datasets. A sample size of 50 is below the recommended size for IRT in the literature 

(Sahin & Anil, 2017; Uyar & Ozturk Gubes, 2020). Many educational leaders in the United 

States would preside over schools with grade level memberships of similar size (Common Core 

of Data (CCD), 2021). As a result, this study specifically included the small sample size 

condition of N=50 to examine just how badly models performed and, potentially, if the new 

Mahalanobis distance based statistic offered a way to deal with those failures. 

Those conditions performed terribly in IRT, and the Mahalanobis distance based statistic 

did not rescue them. The small sample size condition failed to converge more often than any 

other condition. Additionally, the models that did converge within the small sample size 

condition presented more outliers—more bad estimates—than any other condition as well, vastly 

underperforming every other permutation of the simulation study. Furthermore, within trials 

where all models converged, DTF statistics failed to evaluate over 10% of the time just in these 
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smaller sample size conditions. Thus, the new Mahalanobis distance-based statistic did not 

demonstrate any particular ability to “recover” from these problems small sample sizes present.  

Other Conditions. The study altered other conditions including the magnitude of DIF, 

the proportion of DIF items, and the underlying IRT model selected to generate the data. Within 

the study, the levels for these conditions did not present practically significant variation to the 

estimation of parameters when examined at the test level. Possible reasons for this are similar to 

those in other areas of the study; the sample sizes and test lengths, relative to the smaller 

proportions of DIF itself, presented enough measurable content that these other fluctuations were 

not problematic. This aligns with findings that have inspired test-level examinations of DIF with 

interests in non-compensatory or other practical qualifiers to DIF (Cervantes, 2012; Chalmers et 

al., 2016; De Boeck & Cho, 2021; Penny, 1994; Wright, 2011). Additionally, one of the 

condition permutations with the greatest potential amount of DIF with the least potential 

opportunity to measure it (N=50, Ni=30, 2PL, 33% DIF @ -1) experienced non-convergence 

problems for the DTF statistic in the majority of cases. 

Summary. Parameter estimation performed as expected in areas where IRT is commonly 

known to struggle, but some interesting effects were demonstrated by this study. Not every 

model performed entirely as might be expected by over-application of those common knowledge 

constraints, however, and the particular ways in which smaller conditions survived IRT analysis 

may be worthy of further study. 

DIF Measurement 

Overall, the study found that the DTF statistic can detect the presence of DIF in 

instruments even with single passes and simple anchoring. The power of DTF is known to 

increase with the use of such procedures, but the rising computational costs and demands on 
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sampling data are similarly elevated (Fikis & Oshima, 2017; González-Betanzos & Abad, 2012; 

Kopf et al., 2014b; Wang, 2004; Woods, 2009; Yuan et al., 2021). This study focused on a quick 

implementation of DTF that a casual researcher unfamiliar with the subtleties of IRT may apply 

to a model in the hopes of gaining some assurance that the test in question is fair. The DTF 

statistic showed an ability to do that, and comparison with the new Mahalanobis distance-based 

statistic did not demonstrate a similar ability in the proposed, new method. Some variability in 

the effectiveness of DTF was also observed throughout study conditions. 

Focal Group Size. When examining the performance of DTF measurement in the 

context of information available from the recording of simulation errors, the influence of focal 

group size as a subset of sample size is apparent. Focal group size was not altered in any 

simulation conditions; it remained a fixed, small percentage (25%) of sample size representative 

of some small, under-represented group of interest. It is difficult to interpret these ancillary, 

implied findings related to focal group size, and other studies have not made a point of directly 

examining them. The work of Wright (2011), for example, used equal sized focal and reference 

groups but, like this study, did not vary group size as a condition. Seybert and Stark (2012) was 

the source for item parameters for the study, but that simulation did not alter its focal group size, 

either, in the process of item purification. Although this study was able to report how many trials 

failed to produce DTF statistics and that many of those situations involved small focal group 

representation, more study may be warranted to produce a better-informed interpretation. 

Visual Depictions Suggest Complex Properties. When examining performance 

visually, such as with the charts in Appendix B, the proportion of DIF items through both test 

length and DIF percentage is more visible than other conditions. The magnitude of DIF did not 

present anywhere near the same amount of influence over the model, perhaps being the least 
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influential condition in the study at every turn. Alterations to the pseudo-random parameter used 

to generate forms did not appear to interfere with the evaluation of DIF, but that underlying 

model type presented enough variation to be somewhat noticed in terms of parameter estimation 

accuracy when examined graphically. 

Mahalanobis Distance-based Statistic. The new Mahalanobis Distance-based statistic 

showed, more than anything else, sensitivity to test length above and beyond what may have 

been expected from a standardized measurement. It could be that this statistic demonstrates a 

greater sensitivity to model complexity than to model quality. Multiple DIF detection techniques, 

in fact, make use of log-odds and other measurements to examine both complexity and fitness to 

make judgments about DIF in a test (Diaz et al., 2021; Fidalgo & Madeira, 2008; Finch, 2005; 

Holland & Thayer, 1988). While the statistic did not display sensitivity to DIF within full models 

without group specification, this observed sensitivity to test item length could imply a suitability 

for use in more traditional algorithms such as item purification, where simplified models are 

used to reject bad items on the basis of their failure to improve measurement rather than on the 

basis of their significant differences in measurement (Fikis & Oshima, 2017; González-Betanzos 

& Abad, 2012). 

Computation Time 

The study was able to successfully measure the time required to determine DTF, and that 

time was observed to scale with model complexity even in one-pass DIF analysis. Although the 

seconds may at first seem trivial, these costs only compound with each iteration of group 

definition, and iterative procedures such as item purification and the item parameter replication 

procedure for evaluating NCDIF only further exacerbate this challenge with unknown costs: 
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stepwise methods could quickly become prohibitive to the everyday researcher without the 

resources both in computational time and interpretive time to make meaning from data.  

The principle virtue of the Mahalanobis distance-based statistic was that it could be 

calculated very, very fast—increases measured by factors in the hundreds—and resulted in errors 

far less often. Compared to the DTF statistic, the resources required scaled much better with the 

increasing complexity of underlying IRT models throughout the simulation. The Mahalanobis 

distance-based statistic may not have immediately predicted the presence of DIF, but it had a 

predictable cost capable of justifying real-time implementation. 

Although the Mahalanobis distance did not prove to be a good way to conduct group-free 

DIF analysis nor provide a “check engine light” for IRT models, the processes of the study did 

demonstrate the benefits of high-performance computing. There is a chance that mere random 

sampling could depict more of a relationship between the Mahalanobis distance and DIF than 

really exists if restricted to the condition sizes and repetition counts allowed with R on typical 

computers. Indeed, in small trial versions of the study, significant findings were found; only by 

using the large number of repetitions recommended in the literature was the full picture made 

apparent, and only through the privilege of supercomputing were those days of computing time 

made practically possible. With them, the statistics were allowed to demonstrate their true 

properties, which proved enlightening even if some proved to be uninspiring. This study would 

have been impossible to conduct without supercomputers; over 5,000 core hours were used in the 

process of conducting, refining, and analyzing the study. Those resources would not have been 

accessible without the use of multithreaded approaches to R. Appendix C goes into some detail 

with portions of R code and commentary on their function and development potential. 
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Future simulation studies without such luxuries would benefit from considered 

preparation for dividing the study into more approachable, combinable batches. For example, the 

hundreds of gigabytes of RAM used for this study were only necessary because of a combination 

of multi-threading, scaling costs for R and the code structure maintaining all simulation results in 

the workspace. Other software, such as SAS, uses flat files and routinely moves data from RAM 

to disk; there are R packages that attempt to replicate this behavior, and in some environments a 

researcher may find them rewarding. 

Implications 

The study compared the performance of DTF and a new Mahalanobis distance-based 

statistic for the pre-screening of IRT models for DIF. Generally, it found that DTF was effective 

but slow and sensitive, while the new statistic was ineffective but fast and resilient. Conditions in 

the study demonstrated that DTF was more effective with more DIF to detect in items and 

persons while some interactions between these aspects could be seen. Parameter estimates, in the 

presence of DIF, did not always vary. These findings all culminate in implications for both the 

researcher and policymaker. 

Sample Size sets Scope 

The main challenge highlighted at the outset of the study was the problem presented by 

small sample sizes. In typical classrooms and grade levels at some typical schools, there simply 

would not be enough instruments to conduct a proper IRT analysis, much less a DIF inquiry. The 

study provided empirical evidence and presented findings of the multi-faceted threats presented 

by these small sample sizes: existing literature, most probably due to challenges in catching 

errors in code, did not describe the situation as fully. Both convergence problems and outliers 

within those remaining, convergent models were the source of most of the messy, “junk” data in 
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the simulation. Any method that relies on small sample size IRT models, including focal models 

for DIF tests, takes on this risk; the remaining need for DIF methods that do not specify 

separately-estimated focal models is highlighted by the implications of this study. 

IRT remains Costly 

This study helped show how IRT and DIF investigations would not work well in many 

environments where it could be tempting to use readily available software to point and click into 

a results table. The implications are bleak: a proper IRT-based DIF analysis remains out of reach 

for a great proportion of schools without the organizational capacity to implement 

instrumentation capable of being aggregated into sample sizes reaching into the hundreds. 

Communicating the rigorous needs of IRT models, particularly the increased demands on models 

where fairness and DIF analysis are concerns, may be a challenge for educational leaders. 

Consider, for example, a high stakes test in a small school district where a community is only 

casually informed about testing. An administrator may have to explain that well-substantiated 

statements about the fairness of a test depend on the privilege of sample sizes beyond their 

ability to procure, and this situation may itself have consequences related to the implementation 

of those high stakes tests in the first place. In other words, the risks of testing might, in these 

small environments, outweigh the benefits of the measurements produced. Alternatively, these 

findings might be interpreted to justify collaboration to combine data sources and analytical 

resources to produce the sample sizes necessary. Some variables remain to be examined, such as 

focal group size, but this study does provide a substantiated argument for taking steps to 

amalgamate data, combine groups, and increase sample sizes in ways that might present 

additional costs for assessment. One simply cannot cut corners when it comes to sample size. 

Furthermore—even in such cases where “just enough” instruments could be administered to fit a 
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model—the size of the focal group could itself be small enough to make DIF analysis 

problematic. The findings in this study show that a DIF analysis can break down at multiple 

stages, and perhaps the most unlucky cases are those that can and do produce results that are, 

nevertheless, perilous to interpret. 

DIF remains Iterative 

DIF measurements in this study did show that simple implementation with even 

randomly-selected anchors and small focal group specifications can result in successful, reliable 

detection of DIF. Through, in particular, the significant variation of test length on both DIF 

measures investigated, iterative procedures remain the most potentially viable way to conduct 

DIF analysis. Further suggestions for these investigations will follow. 

Limitations and Future Research 

Linking and Grouping Accuracy 

Improper anchor item selection has a negative effect on the functioning of DIF analyses 

(Fikis & Oshima, 2017). Due to constraints on simulation length, however, conditions including 

improper anchor item specification could not be conducted. Additionally, the improper 

identification of group membership has not received much attention in the existing literature. 

This presents two, related opportunities for further research. First. conditions which intentionally 

misclassified respondents may produce interesting results; Cappelli (2021) examined the impact 

of ignoring cross-classification, a more nuanced but related topic, with some improvements 

observed in that more accurate classification approach. Second, conditions which intentionally 

select inappropriate or weak anchor items could determine how resilient iterative methods are to 

inappropriate starting points.  
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Through alterations to sample size alone, group membership errors could theoretically 

affect the effectiveness of DIF analyses. With group transience and dynamic identity being a 

popular topic in modern society, examining the interactions between improperly specified or 

even less-cohesive groups could shed light on where DIF methods may pass or fail as ways to 

examine fairness in contexts that are observed with rising frequency in educational settings 

Estimated Model Types 

Due to constraints on simulation complexity and the unexplored relationships of how the 

new Mahalanobis distance-based statistic may perform under different dimensionalities, the 

study could not include conditions where different model types were used to estimate the 

simulated data. The 2PL was used to evaluate all cases. Conditions with varying models for data 

generation allowed for some examination of improper model specification, and these conditions 

provided far less variation in performance of all measures than other conditions. Nevertheless, a 

potential remains to examine explicitly how estimation with pseudo-random parameters might 

affect other components observed in the study; Cuhadar et al. (2021) similarly found that 

ignoring the pseudo-random parameter presented challenges, but the more detailed relationships 

between parameter omission and the impacts on difficulty parameters observed in that study 

were not replicated among the results of this study. Future research may benefit from conditions 

and parameters more similar to that research to generate findings better suited to direct 

comparison. Han (2012) suggested fixing the pseudo-random parameter similar to the 2PL-C 

condition used in the study’s data generation phase, but that hypothesis was not directly tested 

with an analysis condition. Another potential improvement or extension of this study would 

include that now common-place practice to explore its effectiveness and impact on DIF analysis, 

especially in scenarios where the guessing parameter might differ between groups: c-parameter 
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based DIF is relatively unexplored in the literature and mathematically hamstrung by common 

tools used to calculate it. With test preparation curricula including the elimination of “distractor” 

options as a test-taking strategy, this c-DIF could be the source of no small amount of disparity 

between groups with varying access to educational resources and a potentially significant area 

for direct, scholarly investigation.  

Iterative Methods 

In this study, two DIF measurement devices were compared. First, the established DTF 

statistic was applied once to a full model, and this simple invocation showed potential usefulness 

even without iterative refinements. The Item Parameter Replication method allows for 

determining item-level NCDIF cut-offs, and advances in effect size measurements have been 

explored in applications of DFIT and DTF mostly related to the Mantel-Haenszel statistic (Finch 

& French, 2023; Wright & Oshima, 2015). 

This study focused on test-wide statistics and, as a result, did not engage in the iterative 

process of Item Parameter Replication for the determination of cut-off values for individual item 

parameters as might be conducted in a traditional DFIT analysis. Oshima and Morris (2008) go 

into some detail on how this process can provide more accurate results by generating NCDIF 

cut-off values tailored to the properties—namely, the covariance between parameters—of a 

given instrument. Cervantes (2012) further develops and demonstrates how these covariates 

being estimated for both focal and reference groups can further improve purification, but this 

presents even greater mathematical cost and the potential for failed calculations in a DIF 

analysis. Thus, generally speaking, it is not difficult to find some iterative aspect in most DIF 

approaches, whether explicitly stepwise or more subtly Bayesian in nature; even likelihood ratio 

tests involve the progressive comparison of models (Brown et al., 2015). The new Mahalanobis 
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distance-based statistic did display sensitivity to test length more than any other factor, not 

unlike the χ2 statistic Mahalanobis distances are traditionally tested with. Alas, in this study, 

attempts to invoke χ2 tests for the full model DIF detection proved unfruitful, though. In spite of 

this, the Mahalanobis distance based statistic might have potential use in iterative methods such 

as the full purification method proposed by Fikis and Oshima (2017). In that approach, a test of 

i-items is compared with all possible permutations of i-1 items for the reduction of evaluated 

DIF, but it still specifies reference and focal groups; something on the order of 2(i-1) models 

must be fit at each step to engage in that process. If the Mahalanobis distance based statistic’s 

sensitivity to test length and interaction between that condition and amount of DIF are truly 

prominent, as this study suggests, then using it for a similar full purification process could still 

massively simplify the mathematics involved by avoiding the necessity of group specification 

and reference and focal group model fitting. With the appropriate multithreaded environment, 

such feedback could still be within “realtime” perceptibility given the tremendous speed at which 

this study demonstrated the statistic can be calculated across models of increasing complexity. 

A future study examining this property could, for example, prepare permutations of i-1 

instruments and compare how the Mahalanobis distance differences perform relative to typical 

model fit indices such as the Bayes Information Criterion readily available in the ltm package. 

Examinations of model fit, after all, can use fit indices to demonstrate modelling benefits relative 

to modelling complexity (Glas & Falcón, 2003; Liang & Wells, 2009; Orlando & Thissen, 2000, 

2003).  

Geometry 

During data cleaning procedures and for some analyses of variance, simplified Euclidean 

distances of amalgamated item parameter estimation differences—somewhat similar to RMSE—



  96 

 

were used to reduce the dimensionality of a model to something suitable for analysis and 

reporting. Although the Mahalanobis distance used in creating the new statistic appropriately 

deals with potential multivariate correlation by scaling and rotating the sample space before 

determining distances, these basic Euclidean distances did not. The averaged errors in parameters 

were treated as additive rather than orthogonal on the basis of the central limit theorem, and they 

were able to produce analysis and findings which conformed to commonly-held wisdom. 

However, a more rigorous investigation of these relationships and a proof of the relationship 

between various parameters in an IRT model may be warranted prior to future research. Such an 

inquiry may even yield insights into further applications of the Mahalanobis distance for 

detecting DIF in iterative, model fit-based approaches. 

Optimizable Code 

The simple timestamping used provided clear demonstrations of the rising cost of model 

fitting and the initial stages of DIF analysis throughout various conditions. There are methods 

that are more robust; in particular, optimization of memory management is an area for fruitful 

potential for any researcher engaging with R. Both the rbenchmark and microbenchmark 

packages supply functions that could apply in this study, the latter particularly well-suited for 

relatively fast processes such as the calculation of the Mahalanobis distance. Neither package 

has, from what can be seen in the literature, been extensively examined in psychometric 

manuscripts; comparing the two may even be a viable subject for inquiry, much as various 

model-fitting methods are compared to each other in other studies. Varying methods of 

measurement could be a worthwhile condition for study, but such research might warrant its own 

framework. A suitable framework might even go so far as to compare estimation times from 

other applications such as IRTPRO, adding to the literature in terms of computational cost 
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where, traditionally, only computational accuracy has been examined (Glas & Falcón, 2003; Kim 

& Cohen, 1998; Woods et al., 2013). 

Cost Assessment. Another dimension of inquiry completely unexamined by this study is 

financial cost. In risk management, cryptographic methods are expressed in terms of the bottom-

line cost in terms of hardware to determine a password; rather than treat a method as foolproof, 

the decision instead is made on the financial investment of bypassing protection compared to the 

financial value of whatever is being protected. As this study is particularly interested in the 

access to IRT in the field, the lack of dollars associated with findings is a gap in its contribution 

to the literature. In fact, the total financial cost of instrumentation and analysis may be worth 

preparing; the process as much as the findings could offer real, practical application to educators 

and administrators both in public and private sectors. A limiting factor is the lifespan of 

hardware usually used in such calculations: the time required is divided by the lifespan of, for 

example, a GPU, and the proportion applied to its market price to produce a rough estimate. 

Naturally, such calculations would not remain current for very long. A researcher interested in 

this inquiry would be well-advised to prepare formulae that could be invoked by future readers. 

Computer Lab Clusters. This study demonstrates the value added from supercomputing 

environments, but that value is not as privileged as the high sample sizes for classrooms aspiring 

to IRT analysis! An aspiring researcher could implement SLURM on the workstations in a 

computer lab or classroom; the idle cycles and vacant RAM of these devices go wasted if not 

used, and a manuscript on implementing the process would be of interest to at least one 

researcher. Advances in workspace management, including the availability of natively-supported 

BASH on Windows, have created an environment ripe with untapped and unprecedented 

potential. The 200 gigabytes of RAM and 48 CPU cores used in the initial study could easily be 
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allocated across 20-30 lackluster, idle PCs in a computer lab, and the 18.5 days of core time 

could turn into one night for such machines. The researcher who develops a tool for a college 

department to leverage a computer lab into a cluster is one who could save that department no 

small amount of capital.  

Conclusions 

The attempt to create a “check engine light” for IRT models did not meet with success in 

this study. The quest for DIF analysis without group membership specification did not find a 

panacea with the use of Mahalanobis distances of standard errors of parameter estimates in fitted 

IRT models in this study, but the quest does not end with it, either. The challenges faced by IRT 

in terms of scaling time and computational cost, as well as the problematic restrictions of small 

sample sizes for DIF analysis, are well-established by this study with empirical data. 

Unfortunately, in spite of empirical data confirming the more calculable nature of the 

Mahalanobis distance based statistic, the ability to use it to detect DIF in a groupless, full IRT 

model was not observed. Further investigation may reveal techniques that can make use of the 

statistic without invoking counter-productive algorithms that undermine its speedy calculation. 

That speed is the foundation of “realtime,” DIF analysis free of anchor item and group 

specification challenges, and such a method could even empower more automated solutions to 

account for test fairness during their unsupervised calculations. Such an application warrants 

further attempts to develop. 

This study demonstrated the capabilities of R in high-performance computing contexts, 

but also suggests some refinement on where to develop potential measurements of DIF and 

overall IRT model quality. For example, this study has shown that DTF experiences some 

challenges with low percentages of DIF in smaller sample sizes beyond just the ultimately 
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problematic N=50 condition; methods to increase focal group size or minimize the impact of that 

small size such as propensity score matching or the use of correlates may broaden opportunities 

for DIF analysis that are otherwise demonstrably difficult from this study’s findings.   
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APPENDICES 

Appendix A: Relative full model parameter estimates across conditions 

Table 22 
Relative Estimation Differences, B Parameter, by Condition, M(SD) 

Item Sample Size  DIF Percent 
50 250 500 1000  0 20% 33% 

1 -0.68 -0.45 -0.46 -0.43  -0.49 -0.47 -0.51 
(1.63) (0.63) (0.6) (0.57)  (0.88) (0.87) (0.94) 

2 -0.21 -0.17 -0.2 -0.18  -0.09 -0.23 -0.24 
(0.62) (0.41) (0.41) (0.4)  (0.4) (0.48) (0.47) 

3 0.26 0.26 0.24 0.25  0.25 0.26 0.24 
(0.59) (0.38) (0.36) (0.36)  (0.4) (0.43) (0.42) 

4 -0.48 -0.39 -0.41 -0.39  -0.37 -0.35 -0.51 
(1.16) (0.55) (0.54) (0.52)  (0.7) (0.66) (0.73) 

5 -0.2 -0.18 -0.21 -0.19  -0.19 -0.18 -0.21 
(0.47) (0.38) (0.38) (0.37)  (0.38) (0.39) (0.4) 

6 1.32 1.52 1.4 1.37  1.4 1.42 1.41 
(3.11) (1.5) (1.17) (1.08)  (1.78) (1.82) (1.7) 

7 -0.27 -0.24 -0.26 -0.24  -0.21 -0.2 -0.35 
(0.63) (0.43) (0.43) (0.41)  (0.43) (0.45) (0.51) 

8 -0.49 -0.4 -0.42 -0.4  -0.42 -0.41 -0.44 
(1.33) (0.56) (0.54) (0.52)  (0.71) (0.75) (0.81) 

9 -1.27 -1.12 -1.14 -1.11  -1.15 -1.13 -1.18 
(1.78) (0.98) (0.98) (0.95)  (1.18) (1.14) (1.19) 

10 -0.29 -0.27 -0.3 -0.28  -0.19 -0.32 -0.33 
(0.58) (0.43) (0.43) (0.42)  (0.4) (0.48) (0.48) 

11 -0.08 -0.05 -0.07 -0.05  -0.06 -0.05 -0.08 
(0.65) (0.38) (0.37) (0.36)  (0.41) (0.42) (0.47) 

12 -0.68 -0.59 -0.61 -0.58  -0.61 -0.59 -0.63 
(1.12) (0.62) (0.62) (0.6)  (0.73) (0.73) (0.75) 

13 -0.28 -0.27 -0.29 -0.27  -0.24 -0.23 -0.38 
(0.53) (0.42) (0.42) (0.41)  (0.41) (0.41) (0.49) 

14 -0.53 -0.48 -0.5 -0.47  -0.49 -0.48 -0.51 
(0.81) (0.54) (0.54) (0.52)  (0.57) (0.58) (0.63) 

15 -0.18 -0.16 -0.18 -0.16  -0.17 -0.16 -0.18 
(0.47) (0.37) (0.37) (0.36)  (0.38) (0.39) (0.4) 
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Table 23 

Relative Estimation Differences, B Parameter, by Condition, M(SD) (continued) 

Item Sample Size  DIF Percent 
50 250 500 1000  0 20% 33% 

16 -0.51 -0.44 -0.46 -0.43  -0.46 -0.42 -0.49 
(0.88) (0.52) (0.53) (0.5)  (0.57) (0.54) (0.67) 

17 -0.24 -0.23 -0.25 -0.22  -0.15 -0.26 -0.3 
(0.5) (0.4) (0.41) (0.39)  (0.37) (0.42) (0.45) 

18 -0.12 -0.06 -0.08 -0.05  -0.07 -0.05 -0.1 
(0.82) (0.4) (0.4) (0.37)  (0.49) (0.48) (0.53) 

19 -0.23 -0.2 -0.22 -0.2  -0.17 -0.14 -0.32 
(0.52) (0.39) (0.4) (0.38)  (0.38) (0.38) (0.46) 

20 -0.33 -0.27 -0.3 -0.26  -0.29 -0.26 -0.31 
(1.22) (0.51) (0.51) (0.47)  (0.66) (0.67) (0.73) 

21 0.18 0.19 0.16 0.19  0.18 0.2 0.15 
(0.71) (0.39) (0.37) (0.36)  (0.4) (0.44) (0.51) 

22 -1.26 -1.1 -1.12 -1.07  -1.1 -1.07 -1.21 
(2.12) (1) (0.99) (0.94)  (1.29) (1.27) (1.24) 

23 -1.02 -0.91 -0.93 -0.88  -0.93 -0.9 -0.96 
(1.76) (0.84) (0.85) (0.8)  (1.09) (0.98) (1.12) 

24 -0.06 -0.02 -0.05 -0.02  -0.04 -0.01 -0.06 
(0.89) (0.41) (0.4) (0.38)  (0.48) (0.53) (0.55) 

25 -0.89 -0.83 -0.85 -0.81  -0.77 -0.86 -0.9 
(1.15) (0.75) (0.77) (0.73)  (0.8) (0.81) (0.9) 

26 -0.5 -0.43 -0.46 -0.42  -0.45 -0.42 -0.49 
(0.89) (0.53) (0.54) (0.51)  (0.59) (0.56) (0.67) 

27 0.42 0.42 0.39 0.42  0.42 0.43 0.38 
(0.64) (0.45) (0.42) (0.42)  (0.46) (0.5) (0.47) 

28 -0.69 -0.63 -0.65 -0.62  -0.61 -0.58 -0.74 
(0.97) (0.63) (0.65) (0.61)  (0.68) (0.64) (0.79) 

29 -0.38 -0.34 -0.37 -0.33  -0.35 -0.32 -0.38 
(0.61) (0.45) (0.46) (0.44)  (0.47) (0.46) (0.52) 

30 0.1 0.11 0.09 0.11  0.1 0.13 0.08 
(1.03) (0.4) (0.39) (0.37)  (0.57) (0.6) (0.52) 
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Table 24 

Relative Estimation Differences, B Parameter, by Condition, M(SD) (continued) 

Item Test Length  Magnitude  Generating Model 
15 30  -.05 -1  2PL 2PL+C 3PL 

1 -0.48 -0.5  -0.51 -0.48  -0.1 -0.71 -0.65 
(0.82) (0.97)  (0.91) (0.88)  (0.49) (1.04) (0.92) 

2 -0.18 -0.19  -0.17 -0.21  0.03 -0.35 -0.23 
(0.46) (0.45)  (0.45) (0.47)  (0.32) (0.5) (0.43) 

3 0.26 0.24  0.25 0.26  0.39 0.06 0.32 
(0.42) (0.42)  (0.42) (0.42)  (0.4) (0.4) (0.38) 

4 -0.41 -0.42  -0.41 -0.41  -0.11 -0.59 -0.52 
(0.69) (0.72)  (0.71) (0.69)  (0.38) (0.79) (0.74) 

5 -0.19 -0.2  -0.2 -0.19  -0.03 -0.34 -0.21 
(0.39) (0.4)  (0.4) (0.39)  (0.3) (0.44) (0.37) 

6 1.42 1.4  1.42 1.41  1.59 1.18 1.47 
(1.7) (1.83)  (1.76) (1.78)  (1.6) (1.83) (1.84) 

7 -0.25 -0.26  -0.25 -0.26  -0.05 -0.42 -0.27 
(0.47) (0.47)  (0.47) (0.47)  (0.33) (0.55) (0.43) 

8 -0.42 -0.43  -0.43 -0.41  -0.11 -0.6 -0.54 
(0.72) (0.79)  (0.77) (0.74)  (0.39) (0.9) (0.77) 

9 -1.16 -1.15  -1.17 -1.14  -0.98 -1.27 -1.2 
(1.15) (1.18)  (1.2) (1.13)  (0.9) (1.31) (1.23) 

10 -0.28 -0.29  -0.26 -0.3  -0.12 -0.44 -0.28 
(0.46) (0.46)  (0.44) (0.47)  (0.34) (0.54) (0.41) 

11 -0.06 -0.07  -0.07 -0.06  0.12 -0.29 -0.01 
(0.44) (0.43)  (0.44) (0.43)  (0.32) (0.51) (0.35) 

12 -0.61 -0.61  -0.62 -0.6  -0.39 -0.77 -0.66 
(0.74) (0.74)  (0.76) (0.72)  (0.48) (0.88) (0.73) 

13 -0.27 -0.29  -0.28 -0.28  -0.13 -0.43 -0.26 
(0.44) (0.45)  (0.44) (0.45)  (0.35) (0.51) (0.4) 

14 -0.49 -0.5  -0.5 -0.48  -0.31 -0.65 -0.5 
(0.58) (0.6)  (0.6) (0.59)  (0.42) (0.72) (0.55) 

15 -0.16 -0.18  -0.18 -0.16  0 -0.32 -0.18 
(0.39) (0.39)  (0.39) (0.39)  (0.3) (0.43) (0.36) 
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Table 25 

Relative Estimation Differences, B Parameter, by Condition, M(SD) (continued) 

Item Test Length  Magnitude  Generating Model 
15 30  -.05 -1  2PL 2PL+C 3PL 

16 — -0.46  -0.47 -0.44  -0.24 -0.6 -0.52 
— (0.6)  (0.63) (0.57)  (0.39) (0.69) (0.6) 

17 — -0.24  -0.22 -0.25  -0.09 -0.39 -0.22 
— (0.42)  (0.42) (0.42)  (0.33) (0.48) (0.38) 

18 — -0.07  -0.09 -0.06  0.21 -0.23 -0.19 
— (0.5)  (0.53) (0.47)  (0.34) (0.55) (0.46) 

19 — -0.21  -0.21 -0.21  -0.06 -0.37 -0.2 
— (0.42)  (0.42) (0.42)  (0.33) (0.47) (0.37) 

20 — -0.29  -0.3 -0.27  0.07 -0.42 -0.5 
— (0.69)  (0.69) (0.69)  (0.35) (0.72) (0.77) 

21 — 0.18  0.17 0.19  0.38 -0.03 0.19 
— (0.45)  (0.44) (0.47)  (0.41) (0.49) (0.36) 

22 — -1.13  -1.14 -1.11  -0.86 -1.25 -1.25 
— (1.27)  (1.32) (1.22)  (0.86) (1.39) (1.42) 

23 — -0.93  -0.94 -0.92  -0.68 -1.04 -1.05 
— (1.07)  (1.06) (1.08)  (0.67) (1.2) (1.18) 

24 — -0.04  -0.05 -0.02  0.26 -0.19 -0.16 
— (0.52)  (0.53) (0.51)  (0.41) (0.54) (0.49) 

25 — -0.84  -0.84 -0.84  -0.7 -0.94 -0.88 
— (0.84)  (0.85) (0.83)  (0.67) (0.92) (0.89) 

26 — -0.45  -0.46 -0.44  -0.2 -0.56 -0.59 
— (0.61)  (0.64) (0.58)  (0.37) (0.64) (0.68) 

27 — 0.41  0.4 0.42  0.55 0.23 0.45 
— (0.48)  (0.46) (0.49)  (0.49) (0.43) (0.45) 

28 — -0.64  -0.65 -0.64  -0.43 -0.75 -0.73 
— (0.71)  (0.73) (0.68)  (0.5) (0.76) (0.78) 

29 — -0.35  -0.37 -0.34  -0.18 -0.49 -0.38 
— (0.48)  (0.49) (0.47)  (0.35) (0.55) (0.47) 

30 — 0.1  0.09 0.12  0.39 -0.06 0 
— (0.57)  (0.52) (0.61)  (0.46) (0.63) (0.48) 
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Table 26 

Relative Estimation Differences, A Parameter, by Condition, M(SD) 

Item Sample Size  DIF Percent 
50 250 500 1000  0 20% 33% 

1 -0.01 -0.06 -0.07 -0.07  -0.06 -0.05 -0.07 
(0.61) (0.32) (0.28) (0.26)  (0.38) (0.37) (0.36) 

2 0.6 0.56 0.55 0.55  0.54 0.55 0.6 
(1.12) (0.65) (0.61) (0.59)  (0.76) (0.71) (0.75) 

3 1.08 0.97 0.96 0.96  0.98 1.01 0.96 
(1.79) (0.97) (0.93) (0.91)  (1.16) (1.17) (1.11) 

4 0.17 0.14 0.13 0.13  0.12 0.13 0.16 
(0.79) (0.42) (0.38) (0.36)  (0.48) (0.48) (0.5) 

5 1.81 1.65 1.63 1.62  1.68 1.71 1.6 
(2.46) (1.36) (1.29) (1.26)  (1.63) (1.66) (1.48) 

6 -0.17 -0.2 -0.21 -0.21  -0.2 -0.19 -0.21 
(0.72) (0.36) (0.32) (0.3)  (0.43) (0.44) (0.42) 

7 0.72 0.67 0.66 0.66  0.65 0.67 0.7 
(1.3) (0.7) (0.66) (0.64)  (0.85) (0.83) (0.8) 

8 0.12 0.1 0.09 0.09  0.1 0.11 0.08 
(0.76) (0.39) (0.35) (0.33)  (0.47) (0.46) (0.46) 

9 0.79 0.6 0.58 0.58  0.64 0.65 0.59 
(1.87) (0.66) (0.6) (0.57)  (1.08) (1) (0.88) 

10 1.16 1.09 1.07 1.07  1.08 1.05 1.14 
(1.59) (0.94) (0.9) (0.88)  (1.12) (1) (1.09) 

11 0.49 0.45 0.44 0.45  0.46 0.48 0.43 
(1.07) (0.58) (0.55) (0.53)  (0.68) (0.71) (0.65) 

12 0.46 0.39 0.38 0.39  0.41 0.42 0.38 
(1.12) (0.54) (0.5) (0.48)  (0.67) (0.68) (0.64) 

13 1.62 1.47 1.44 1.44  1.47 1.49 1.49 
(2.23) (1.18) (1.12) (1.1)  (1.5) (1.43) (1.3) 

14 0.84 0.74 0.73 0.73  0.76 0.79 0.72 
(1.46) (0.73) (0.69) (0.67)  (0.89) (0.94) (0.84) 

15 1.44 1.33 1.32 1.32  1.36 1.37 1.3 
(2.01) (1.12) (1.09) (1.07)  (1.41) (1.3) (1.23) 
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Table 27 

Relative Estimation Differences, A Parameter, by Condition, M(SD) (continued) 

Item Sample Size  DIF Percent 
50 250 500 1000  0 20% 33% 

16 0.66 0.6 0.58 0.58  0.6 0.61 0.58 
(1.2) (0.63) (0.6) (0.59)  (0.79) (0.74) (0.72) 

17 1.51 1.35 1.33 1.33  1.36 1.32 1.43 
(1.89) (1.08) (1.04) (1.03)  (1.33) (1.16) (1.26) 

18 0.3 0.27 0.27 0.27  0.27 0.29 0.26 
(0.85) (0.48) (0.46) (0.45)  (0.56) (0.56) (0.54) 

19 1.51 1.34 1.32 1.32  1.33 1.35 1.4 
(2.03) (1.07) (1.05) (1.03)  (1.38) (1.26) (1.22) 

20 0.11 0.08 0.07 0.07  0.07 0.09 0.07 
(0.74) (0.38) (0.35) (0.33)  (0.44) (0.46) (0.45) 

21 0.43 0.39 0.38 0.38  0.4 0.4 0.38 
(1.04) (0.56) (0.53) (0.52)  (0.7) (0.64) (0.64) 

22 0.22 0.14 0.12 0.13  0.13 0.14 0.16 
(1.08) (0.41) (0.36) (0.34)  (0.53) (0.64) (0.54) 

23 0.4 0.3 0.28 0.28  0.31 0.32 0.3 
(1.26) (0.48) (0.44) (0.42)  (0.7) (0.71) (0.62) 

24 0.23 0.19 0.19 0.19  0.19 0.21 0.19 
(0.81) (0.45) (0.42) (0.41)  (0.51) (0.53) (0.52) 

25 1.14 0.96 0.92 0.93  0.96 0.95 1.01 
(1.77) (0.84) (0.78) (0.76)  (1.2) (0.93) (0.99) 

26 0.62 0.55 0.54 0.54  0.55 0.57 0.54 
(1.11) (0.62) (0.58) (0.57)  (0.72) (0.72) (0.71) 

27 0.93 0.83 0.83 0.82  0.84 0.86 0.83 
(1.68) (0.9) (0.87) (0.86)  (1.13) (1.06) (1.02) 

28 0.77 0.66 0.64 0.64  0.64 0.66 0.71 
(1.33) (0.67) (0.63) (0.61)  (0.83) (0.8) (0.81) 

29 1.23 1.09 1.07 1.06  1.1 1.13 1.08 
(1.89) (0.92) (0.88) (0.86)  (1.16) (1.17) (1.08) 

30 0.18 0.16 0.16 0.16  0.16 0.17 0.16 
(0.8) (0.44) (0.41) (0.4)  (0.51) (0.51) (0.51) 
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Table 28 

Relative Estimation Differences, A Parameter, by Condition, M(SD) (continued) 

Item Test Length  Magnitude  Generating Model 
15 30  -.05 -1  2PL 2PL+C 3PL 

1 -0.06 -0.06  -0.06 -0.05  0.06 -0.12 -0.1 
(0.38) (0.36)  (0.37) (0.37)  (0.39) (0.35) (0.35) 

2 0.56 0.57  0.54 0.58  0.85 0.38 0.47 
(0.75) (0.73)  (0.73) (0.74)  (0.81) (0.64) (0.67) 

3 1 0.97  0.98 0.99  1.49 0.42 1.06 
(1.16) (1.13)  (1.13) (1.17)  (1.27) (0.71) (1.13) 

4 0.14 0.14  0.13 0.15  0.29 0.06 0.08 
(0.5) (0.48)  (0.48) (0.49)  (0.51) (0.46) (0.46) 

5 1.66 1.67  1.67 1.66  2.36 1.17 1.51 
(1.56) (1.63)  (1.6) (1.58)  (1.77) (1.31) (1.43) 

6 -0.2 -0.2  -0.2 -0.2  0.08 -0.39 -0.28 
(0.44) (0.42)  (0.44) (0.43)  (0.48) (0.31) (0.33) 

7 0.67 0.67  0.65 0.69  0.94 0.48 0.61 
(0.82) (0.83)  (0.81) (0.84)  (0.88) (0.77) (0.76) 

8 0.1 0.1  0.09 0.1  0.24 0.01 0.04 
(0.48) (0.45)  (0.46) (0.47)  (0.49) (0.44) (0.43) 

9 0.6 0.65  0.62 0.63  0.69 0.58 0.61 
(0.91) (1.06)  (1.01) (0.97)  (0.82) (1.05) (1.07) 

10 1.08 1.1  1.08 1.1  1.45 0.81 1.04 
(1.08) (1.06)  (1.06) (1.08)  (1.18) (0.9) (1.01) 

11 0.46 0.45  0.45 0.46  0.67 0.23 0.48 
(0.69) (0.67)  (0.69) (0.67)  (0.72) (0.59) (0.65) 

12 0.4 0.41  0.4 0.41  0.54 0.31 0.37 
(0.67) (0.66)  (0.67) (0.66)  (0.65) (0.67) (0.65) 

13 1.47 1.49  1.47 1.5  1.93 1.08 1.46 
(1.39) (1.44)  (1.44) (1.39)  (1.57) (1.15) (1.37) 

14 0.75 0.76  0.75 0.76  0.95 0.6 0.73 
(0.89) (0.9)  (0.91) (0.87)  (0.9) (0.84) (0.9) 

15 1.35 1.34  1.34 1.35  1.9 0.94 1.23 
(1.32) (1.31)  (1.31) (1.32)  (1.49) (1.06) (1.19) 
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Table 29 

Relative Estimation Differences, A Parameter, by Condition, M(SD) (continued) 

Item Test Length  Magnitude  Generating Model 
15 30  -.05 -1  2PL 2PL+C 3PL 

16 —  0.6  0.6 0.6  0.79 0.48 0.54 
—  (0.75)  (0.74) (0.77)  (0.78) (0.74) (0.69) 

17 —  1.37  1.38 1.35  1.75 0.97 1.41 
—  (1.25)  (1.29) (1.21)  (1.33) (0.99) (1.29) 

18 —  0.27  0.28 0.27  0.53 0.13 0.17 
—  (0.56)  (0.56) (0.55)  (0.63) (0.47) (0.46) 

19 —  1.36  1.36 1.36  1.77 0.95 1.38 
—  (1.29)  (1.33) (1.25)  (1.38) (0.99) (1.34) 

20 —  0.08  0.08 0.07  0.25 0 -0.01 
—  (0.45)  (0.46) (0.45)  (0.49) (0.42) (0.4) 

21 —  0.39  0.4 0.39  0.67 0.14 0.38 
—  (0.66)  (0.68) (0.64)  (0.71) (0.49) (0.66) 

22 —  0.14  0.14 0.15  0.2 0.12 0.12 
—  (0.57)  (0.58) (0.56)  (0.55) (0.64) (0.51) 

23 —  0.31  0.31 0.31  0.38 0.28 0.27 
—  (0.68)  (0.67) (0.69)  (0.55) (0.79) (0.66) 

24 —  0.2  0.2 0.2  0.44 0.07 0.11 
—  (0.52)  (0.52) (0.52)  (0.59) (0.44) (0.44) 

25 —  0.97  0.96 0.99  1.07 0.9 0.96 
—  (1.05)  (1.06) (1.04)  (0.95) (1.04) (1.14) 

26 —  0.56  0.56 0.55  0.79 0.45 0.44 
—  (0.72)  (0.72) (0.71)  (0.78) (0.68) (0.64) 

27 —  0.84  0.84 0.84  1.43 0.28 0.85 
—  (1.07)  (1.06) (1.09)  (1.3) (0.55) (0.92) 

28 —  0.67  0.66 0.68  0.83 0.58 0.6 
—  (0.81)  (0.82) (0.8)  (0.84) (0.8) (0.78) 

29 —  1.1  1.12 1.08  1.42 0.85 1.05 
—  (1.14)  (1.14) (1.14)  (1.2) (1.06) (1.09) 

30 —  0.16  0.16 0.16  0.41 0.02 0.07 
—  (0.51)  (0.51) (0.51)  (0.57) (0.42) (0.43) 
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Appendix B: Full Model DIF Analyses Performance 

Figure 16 

DTF performance among all conditions 

 

Figure 17 

Mahalanobis distance performance among all conditions 
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Figure 18 

DTF performance within various conditions 

 

  



  131 

 

Figure 19 

Mahalanobis distance performance within various conditions 
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Appendix C: Code Walkthrough 

The study was conducted entirely within R, run via SLURM, on a supercomputer 

environment. The SLURM portion was straightforward and based on documentation from the 

local array, and the R code was factored to take advantage of this environment. Future 

researchers may benefit from changes to the code designed to minimize the proportion of data 

kept in memory during the course of the simulation; the code could be reasonably modified to do 

that by using segments rather than all conditions at once. The heavy lifting of the simulation is 

performed by the parallel R library; lists are passed to the parLapply function to execute code on 

threads with a minimum amount of memory overhead. Following in this appendix are block 

quotes of code with explanations of why it was used, how it performs, and where future 

researchers might want to further develop the approach used. 

The code begins with some initialization and errors checking. It was designed to execute 

on local and supercomputer environments by tailoring initial variables not unlike environmental 

variables, and future researchers would be well-rewarded by refactoring this code to inherit 

environmental variables from SLURM or whatever workload manager is in use: 

VERSION <- "A" 
SEGMENT <- 1 
NUM_NODES <- 7 
 
conditionGenerate <- function( 
  testLength = stop("testLength must be defined."), 
  sampleSize = stop("sampleSize must be defined."), 
  difPercent = stop("difPercent must be defined."), 
  impactAmount = stop("impactAmount must be defined."), 
  modelType = stop("modelType must be defined."), 
  linkingAccuracy = stop("linkingAccuracy must be defined."), 
  groupingAccuracy = stop("groupingAccuracy must be defined."), 
  replications = stop("replications must be defined.") 
) { 
  if (!testLength %in% c(15, 30)) stop(paste("Bad testLength parameter:",testLength)) 
  if (!impactAmount %in% c(0, -.5, -1)) stop(paste("Bad impactAmount parameter:",impactAmount)) 
  if (!difPercent %in% c(0, .2, .3)) stop(paste("Bad difPercent parameter:",difPercent)) 
  if (!modelType %in% c(2, 2.5, 3)) stop(paste("Bad modelType parameter:",modelType)) 
 
  if (!sampleSize %in% c(50, 250, 500, 1000)) stop(paste("Bad sampleSize parameter:",sampleSize)) 
  if (!linkingAccuracy %in% c(0, 1)) stop(paste("Bad linkingAccuracy parameter:",linkingAccuracy)) 
  if (!groupingAccuracy %in% c(0, 1)) stop(paste("Bad groupingAccuracy parameter:",groupingAccuracy)) 
  if (!replications %in% c(5, 80, 100, 300, 325, 625)) stop(paste("Bad replications 
parameter:",replications)) 
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  irtParameters <- matrix( 
  c(-0.07,0.21,0.54,-0.03,0.01,1.96,0.04,-0.09,-1.16,0.02,0.2,-0.43,-0.06,-0.34,0.05,-
0.25,0.06,0.31,0.04,0.13,0.52,-0.96,-0.79,0.37,-0.71,-0.19,0.74,-0.44,-0.17,0.53, 
    
0.49,0.92,1.26,0.61,1.74,0.5,0.96,0.59,0.82,1.26,0.82,0.75,1.49,0.97,1.49,0.89,1.45,0.75,1.43,0.6,0.83,
0.56,0.67,0.7,1.03,0.89,1.23,0.9,1.23,0.69, 
    
0.19,0.15,0.05,0.18,0.12,0.12,0.13,0.18,0.17,0.11,0.07,0.15,0.09,0.12,0.12,0.15,0.07,0.18,0.08,0.22,0.0
9,0.19,0.2,0.18,0.14,0.21,0.06,0.18,0.12,0.17), 
  nrow = 30, 
  dimnames = list(paste("item", 1:30),c("b","a","c")) 
  ) 
  #Birnbaum 1969 Paramaterization: 
  #c + ((1-c) /(1+exp(-1.7*a*(theta-b)))) 
  if (modelType == 2) { 
    irtModel <- function(b, a, c, theta) return(0 + ((1-0) /(1+exp(-1.7*a*(theta-b))))) 
  } else if (modelType == 2.5) { 
    irtModel <- function(b, a, c, theta) return(0.2 + ((1-0.2) /(1+exp(-1.7*a*(theta-b))))) 
  } else if (modelType == 3) { 
    irtModel <- function(b, a, c, theta) return(c + ((1-c) /(1+exp(-1.7*a*(theta-b))))) 
  } else { 
    stop(paste("Bad modelType",modelType)) 
  } 
 
 
  if (testLength == 15) { 
    referenceParameters <- irtParameters[1:15,] 
    focalParameters <- irtParameters[1:15,] 
     
  } else if (testLength == 30) { 
    referenceParameters <- irtParameters[1:30,] 
    focalParameters <- irtParameters[1:30,] 
  } else {  
    stop(paste("Bad testLength:",testLength))  
  } 
   
  if (difPercent == .3) { 
    if (testLength == 30) { 
      focalParameters[c("item 2", "item 10", "item 17", "item 25"), "b"] <- focalParameters[c("item 2", 
"item 10", "item 17", "item 25"), "b"] + impactAmount   
      focalParameters[c("item 4", "item 7", "item 13", "item 19", "item 22", "item 28"), "b"] <- 
focalParameters[c("item 4", "item 7", "item 13", "item 19", "item 22", "item 28"), "b"] + impactAmount 
    } else { 
      focalParameters[c("item 2", "item 10"), "b"] <- focalParameters[c("item 2", "item 10"), "b"] + 
impactAmount   
      focalParameters[c("item 4", "item 7", "item 13"), "b"] <- focalParameters[c("item 4", "item 7", 
"item 13"), "b"] + impactAmount 
    } 
  } else if (difPercent == .2) { 
    if (testLength == 30) { 
      focalParameters[c("item 2", "item 10", "item 17", "item 25"), "b"] <- focalParameters[c("item 2", 
"item 10", "item 17", "item 25"), "b"] + impactAmount   
    } else { 
      focalParameters[c("item 2", "item 10"), "b"] <- focalParameters[c("item 2", "item 10"), "b"] + 
impactAmount   
    } 
  } else if (difPercent == 0) { 
    focalParameters <- referenceParameters 
  } else { 
    stop(paste("Bad difPercent:",difPercent)) 
  } 
   
  persons <- matrix(c(rnorm(sampleSize), rep(0, times = sampleSize)), nrow = sampleSize, dimnames = 
list(paste("person",1:sampleSize), c("theta","focalGroup"))) 
  persons[sample(1:sampleSize, sampleSize * 0.25), "focalGroup"] <- 1 
 
  instruments <- lapply(as.list(1:replications), function(i) {t(apply(persons, 1, function(me) { 
    if (me["focalGroup"] == 1) { 
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      myTest <- focalParameters 
    } else { 
      myTest <- referenceParameters 
    } 
    myPs <- apply(myTest, 1, function(myItem) { 
      irtModel(myItem["b"], myItem["a"], myItem["c"], me["theta"]) 
    }) 
    as.numeric(sapply(myPs, function(myP) runif(1) < myP)) 
  }))}) 
 
  results <- list( 
    instruments = instruments, 
    persons = persons, 
    referenceParameters = referenceParameters, 
    focalParameters = focalParameters, 
    condition = list( 
      difPercent = difPercent, 
      groupingAccuracy = groupingAccuracy, 
      impactAmount = impactAmount, 
      linkingAccuracy = linkingAccuracy, 
      modelType = modelType, 
      replications = replications, 
      sampleSize = sampleSize, 
      testLength = testLength 
    )  
  ) 
   
  return(results) 
} 

 

The above function is designed to prepare a list object representing a condition 

containing multiple repetitions of simulated data based on parameters passed to the function; this 

approach was used to take advantage of the nature of the parLapply function and to minimize the 

proliferation of variables in the workspace. Thus, the simulation itself can be prepared: 

conditions <- expand.grid(testLength = c(15, 30),  
                          impactAmount = c(-.5, -1), 
                          difPercent = c(0, .2, .3), 
                          modelType = c(2, 2.5, 3), 
                          sampleSize = c(50, 250, 500, 1000), 
                          linkingAccuracy = 1, 
                          groupingAccuracy = 1, 
                          replications = 625 
                          ) 

 

The expand.grid function will prepare all permutations of these variables which then are 

easy to pass as arguments to parLapply. The following code has one significant flaw, however: 

the index, rather than the list itself, is the argument to the function. This necessitated the export 

of the condition and conditionGenerate objects to each cluster. Future researchers would benefit 

from refactoring this code to directly pass the condition object as the argument to parLapply and 

avoid linearly-scaling memory costs for running this part in parallel: 
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library(parallel) 
cl <- makeCluster(NUM_NODES) 
clusterExport(cl, c("conditions", "conditionGenerate")) 
simulatedData <- parLapply(cl, 1:nrow(conditions), function(i) conditionGenerate( 
                           testLength = conditions[i, "testLength"],  
                           impactAmount = conditions[i, "impactAmount"], 
                           difPercent = conditions[i, "difPercent"], 
                           modelType = conditions[i, "modelType"], 
                           sampleSize = conditions[i, "sampleSize"], 
                           linkingAccuracy = conditions[i, "linkingAccuracy"], 
                           groupingAccuracy = conditions[i, "groupingAccuracy"], 
                           replications = conditions[i, "replications"])) 
 
stopCluster(cl) 
rm(cl) 
save("simulatedData", file = paste0("simulatedData-",VERSION,"-",SEGMENT,"-",Sys.Date(),".RData")) 
print(paste("Data simulated",Sys.time())) 
gc() 

In the study, these simulated data were saved as part of the development process and to 

allow for debugging in environments where there may not be enough memory to load the entire 

workspace the simulation will create. More confident researchers might be able to avoid this 

step, but it is not recommended unless disk space is at a restrictive premium or unavailable at 

practical speeds. Previous studies, such as Fikis and Oshima (2017), have found that slow disk 

space operations present significant bottlenecks in IRTPRO, but the issue should not be present 

with low file counts such as in this study’s approach.  

After this, all that remains is to prepare the fitted models and extract some diagnostic 

statistics from them. That, however, is a monumental task. Although the list-based structure of 

objects in the workspace will play well into parLapply, the resulting scenario is a list per 

condition with a list of repetitions embedded inside: nested loops will be used. Future studies 

with widely varied conditions might experience load balancing issues, but they were not 

noticeable in this study. Additionally, this study’s error checking is somewhat excessive and 

some calculations are redundant. There are many opportunities for wresting more efficiency 

from R. Again, the technique was to iterate through lists and prepare objects. The tryCatch 

function does a great deal of work here preventing errors from aborting the simulation: 

cl <- makeCluster(NUM_NODES) 
analyzedData <- parLapply(cl, simulatedData, function(conditionData) { 
  library(ltm) 
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  library(e1071) 
  library(DFIT) 
  models <- lapply(conditionData[["instruments"]], function(instrument) { 
    focalMembers <- as.logical(conditionData[["persons"]][, "focalGroup"]) 
     
    if (conditionData[["condition"]][["groupingAccuracy"]] == 1) { 
      reference <- instrument[!focalMembers, ] 
      focal <- instrument[focalMembers, ] 
    } else { 
      kludge <- sample(1:length(focalMembers), length(focalMembers)*.05) 
      focalMembers[kludge] <- !focalMembers[kludge] 
       
      reference <- instrument[!focalMembers, ] 
      focal <- instrument[focalMembers, ] 
    } 
    timer <- Sys.time() 
    fullModel <- tryCatch(ltm(instrument ~ z1, IRT.param = TRUE), error = function(i) return(NA)) 
    fullModelTime <- Sys.time() - timer 
    timer <- Sys.time() 
    referenceModel <- tryCatch( ltm(reference ~ z1, IRT.param = TRUE) , error = function(i) return(NA)) 
    referenceModelTime <- Sys.time() - timer 
     
    if (!any(is.na(referenceModel))) { 
      goodAnchors <- c(1,3,5,6,8,9,11,12,14,15,16,18,20,21,23,24,26,27,29,30) 
      badAnchors <- c(2,10,17,25) 
       
      goodAnchors <- goodAnchors[goodAnchors <= conditionData[["condition"]]["testLength"]] 
      badAnchors <- badAnchors[badAnchors  <= conditionData[["condition"]]["testLength"]] 
       
      if (conditionData[["condition"]]["linkingAccuracy"] == 1) { 
        myAnchors <- sample(goodAnchors, 3) 
      } else { 
        myAnchors <- c(sample(goodAnchors, 2), sample(badAnchors, 1)) 
      } 
       
      myConstraints <- rbind(cbind(item = myAnchors, param = 1, value = 
referenceModel[["coefficients"]][myAnchors, 1]), 
                             cbind(item = myAnchors, param = 2, value = 
referenceModel[["coefficients"]][myAnchors, 2]) 
      ) 
      timer = Sys.time() 
      focalModel <- tryCatch( ltm(focal ~ z1, IRT.param = TRUE, constr = myConstraints) , error = 
function(i) return(NA)) 
      focalModelTime <- Sys.time() - timer 
     
    } else {  
      focalModel <- NA  
      focalModelTime <- NA 
    } 
 
    if (!any(is.na(focalModel))) { 
      dtfParams = tryCatch( list( 
                              reference = cbind( 
                                
summary(referenceModel)[["coefficients"]][(conditionData[["condition"]][["testLength"]])+(1:conditionDa
ta[["condition"]][["testLength"]])], 
                                
summary(referenceModel)[["coefficients"]][1:conditionData[["condition"]][["testLength"]]] 
                              ), 
                              focal = cbind( 
                                
summary(focalModel)[["coefficients"]][(conditionData[["condition"]][["testLength"]])+(1:conditionData[[
"condition"]][["testLength"]])], 
                                
summary(focalModel)[["coefficients"]][1:conditionData[["condition"]][["testLength"]]] 
                              ) 
                            ), 
                            error = function(i) return(-666)) 
      if (!any(is.na(dtfParams))) { 
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        timer <- Sys.time() 
        myDTF <- tryCatch(Dtf(itemParameters = dtfParams, irtModel = "2pl"), error = function(i) 
return(-777)) 
        myDTFTime <- Sys.time() - timer 
      } else { 
        myDTF <- -888 
        myDTFTime <- NA 
      } 
    } else { 
      myDTF <- -999 
      myDTFTime <- NA 
    } 
     
    if (!any(is.na(fullModel))) { 
      fullErrs <- tryCatch( matrix(summary(fullModel)[["coefficients"]][, "std.err"], nrow = 
conditionData[["condition"]][["testLength"]]) , error = function(i) return(NA)) 
       
      if (!any(is.na(fullErrs))) { 
        timer <- Sys.time() 
        mahalas <- tryCatch( mahalanobis(fullErrs, center = colMeans(fullErrs), cov = cov(fullErrs)) , 
error = function(i) return(NA)) 
        mahalasTime <- Sys.time() - timer 
      } else { 
        mahalas <- NA 
        mahalasTime <- NA 
      } 
       
      if (!any(is.na(mahalas))) { 
        newStat <- tryCatch( skewness(mahalas), error = function(i) return(NA)) 
        newStatMean <- tryCatch( mean(mahalas), error = function(i) return(NA)) 
        newStatMedian <- tryCatch( median(mahalas), error = function(i) return(NA)) 
        newStatSd <- tryCatch( sd(mahalas), error = function(i) return(NA)) 
        newStatChiSq <- tryCatch( sum(mahalas), error = function(i) return(NA)) 
        newStatChiSqCrit <- tryCatch( qchisq(p = .05, df = (length(mahalas) - 1), lower.tail= FALSE), 
error = function(i) return(NA)) 
        newStatChiSqTest <- tryCatch( as.numeric(newStatChiSq >= newStatChiSqCrit), error = function(i) 
return(NA)) 
      } else { 
        newStat <- NA 
        newStatMean <- NA 
        newStatMedian <- NA 
        newStatSd <- NA 
        newStatChiSq <- NA 
        newStatChiSqCrit <- NA 
        newStatChiSqTest <- NA 
      } 
    } else { 
      fullErrs <- NA 
      mahalas <- NA 
      newStat <- NA 
      newStatMean <- NA 
      newStatMedian <- NA 
      newStatSd <- NA 
      newStatChiSq <- NA 
      newStatChiSqCrit <- NA 
      newStatChiSqTest <- NA 
    } 
     
    analysis <- list( 
      fullModel = fullModel, 
      referenceModel = referenceModel, 
      myAnchors = myAnchors, 
      focalModel = focalModel, 
      myDTF = myDTF, 
      fullErrs = fullErrs, 
      mahalas = mahalas, 
      newStat = newStat, 
      newStatMean = newStatMean, 
      newStatMedian = newStatMedian, 
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      newStatSd = newStatSd, 
      newStatChiSq = newStatChiSq, 
      newStatChiSqCrit = newStatChiSqCrit, 
      newStatChiSqTest = newStatChiSqTest, 
      fullModelTime = fullModelTime, 
      referenceModelTime = referenceModelTime, 
      focalModelTime = focalModelTime, 
      myDTFTime = myDTFTime, 
      mahalasTime = mahalasTime 
    ) 
     
    return(analysis) 
  }) 
   
  conditions <- matrix(rep(unlist(conditionData[["condition"]]), times = length(models)), nrow = 
length(models), byrow = TRUE) 
  conditions <- cbind(conditions, 1:length(conditions)) 
   
   
  newStats <- unlist(lapply(models, function(i) i[["newStat"]])) 
  newStatMeans <- unlist(lapply(models, function(i) i[["newStatMean"]])) 
  newStatMedians <- unlist(lapply(models, function(i) i[["newStatMedian"]])) 
  newStatSds <- unlist(lapply(models, function(i) i[["newStatSd"]])) 
  DTFs <- unlist(lapply(models, function(i) i[["myDTF"]])) 
  newStatChiSqs <- unlist(lapply(models, function(i) i[["newStatChiSq"]])) 
  newStatChiSqCrits <- unlist(lapply(models, function(i) i[["newStatChiSqCrit"]])) 
  newStatChiSqTests <- unlist(lapply(models, function(i) i[["newStatChiSqTest"]])) 
   
  fullModelTimes <- unlist(lapply(models, function(i) i[["fullModelTime"]])) 
  referenceModelTimes <- unlist(lapply(models, function(i) i[["referenceModelTime"]])) 
  focalModelTimes <- unlist(lapply(models, function(i) i[["focalModelTime"]])) 
  myDTFTimes <- unlist(lapply(models, function(i) i[["myDTFTime"]])) 
  mahalasTimes <- unlist(lapply(models, function(i) i[["mahalasTime"]])) 
   
  conditions <- cbind(conditions, newStats, DTFs, newStatMeans, newStatMedians, newStatSds, 
newStatChiSqs, newStatChiSqCrits, newStatChiSqTests, 
                      fullModelTimes, referenceModelTimes, focalModelTimes, myDTFTimes, mahalasTimes) 
  colnames(conditions) <- c(names(unlist(conditionData[["condition"]])),"rep","newStat","DTF", 
"newStatMeans", "newStatMedians", "newStatSds", "newStatChiSq", "newStatChiSqCrit", "newStatChiSqTest", 
                            "timeFull", "timeReference", "timeFocal", "timeDTF", "timeMahalanobis" ) 
   
  results <- list( 
    simulation = conditions, 
    models = models 
  ) 
  return(results) 
}) 
 
stopCluster(cl) 
rm(cl) 
 
save("analyzedData", file = paste0("analyzedData-",VERSION,"-",SEGMENT,"-",Sys.Date(),".RData")) 
print(paste("Data analyzed",Sys.time())) 
gc() 
cl <- makeCluster(NUM_NODES) 
# clusterExport(cl, c("analyzedData")) 
simulationOutput <- parLapply(cl, analyzedData, function(i) return(i[["simulation"]])) 
stopCluster(cl) 
rm(cl) 
simulationOutput <- do.call(rbind, simulationOutput) 
save("simulationOutput", file = paste0("simulationOutput-",VERSION,"-",SEGMENT,"-
",Sys.Date(),".RData")) 
print(paste("Model Extracted",Sys.time())) 
gc() 

Some of the functionality of this code, such as linking and grouping accuracy conditions, 

wound up unused in the study. Importantly, R packages such as ltm and DFIT needed to be 
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loaded within the parLapply function so that each thread loaded the library; this was a common 

mistake in very early iterations of the code. The psych package’s function for measuring 

skewness was found to give equivalent values to that in the e1071 package. Some statistics were 

not found suitable for analysis, and, technically, the original simulated data in the results list is 

redundant in convergent conditions; an ltm object contains the instrument it was fit with in its x 

object. The results maintained this object, though, for ease of extraction and retention in the case 

of failed models. The output data loops to ensure that the analyzedData object is a matrix with 

minimized filesize suitable for exploration on personal computers. Future developments for this 

code may include bringing in evaluation of NCDIF, which was prepared in a subsequent post-

hoc analysis: 

findings <- parLapply(cl, analyzedData, function(thisCondition) { 
  library(ltm) 
  paramExtract <- function(WHICH_MODEL = stop("Specify which model: fullModel, referenceModel, 
focalModel"), thisRep = stop("Need thisRep")) { 
    if (length(thisRep[[WHICH_MODEL]]) == 1) { 
      paramModelB <- rep(NA, times = 30) 
      paramModelA <- rep(NA, times = 30) 
      modelMahalas <- NA 
    } else { 
      modelParams <- tryCatch(  
        summary(thisRep[[WHICH_MODEL]])[["coefficients"]][ , "value"], 
        error = function(i) return(NA) 
      ) 
      modelErrors <- tryCatch( 
        summary(thisRep[[WHICH_MODEL]])[["coefficients"]][ , "std.err"], 
        error = function(i) return(NA) 
      ) 
      if (!any(is.na(modelErrors))) { 
        if (WHICH_MODEL == "fullModel") { 
          aErrors <- modelErrors[grepl("Dscrmn", names(modelErrors))] 
          bErrors <- modelErrors[grepl("Dffclt", names(modelErrors))] 
          modelErrors <- matrix(modelErrors, nrow = length(modelErrors)/2) 
          uErrors <- tryCatch(apply(modelErrors, 1, function(i) {dist(rbind(i, c(0,0)))}), error = 
function(i) return(NA)) 
          uzErrors <- tryCatch(apply(modelErrors, 1, function(i) {dist(rbind( 
            c( ((i[1]-mean(modelErrors[,1], na.rm=TRUE)) /sd(modelErrors[,1], na.rm=TRUE)),  
               ((i[2]-mean(modelErrors[,2], na.rm=TRUE)) /sd(modelErrors[,2], na.rm=TRUE)) 
            ), c(0,0)))}), error = function(i) return(NA)) 
        } else { 
          modelErrors <- matrix(modelErrors, nrow = length(modelErrors)/2) 
          aErrors <- NA 
          bErrors <- NA 
          uErrors <- NA 
          uzErrors <- NA 
        } 
        modelMahalas <- tryCatch( mahalanobis(modelErrors, center = colMeans(modelErrors), cov = 
cov(modelErrors)) , error = function(i) return(NA)) 
      } else { 
        modelMahalas <- NA 
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        aErrors <- NA 
        bErrors <- NA 
        uErrors <- NA 
        uzErrors <- NA 
      } 
      aErrors <- c(aErrors, rep(NA, times = (30-length(aErrors)))) 
      bErrors <- c(bErrors, rep(NA, times = (30-length(bErrors)))) 
      uErrors <- c(uErrors, rep(NA, times = (30-length(uErrors)))) 
      uzErrors <- c(uzErrors, rep(NA, times = (30-length(uzErrors)))) 
      names(aErrors) <- paste0(WHICH_MODEL, "ErrorA", formatC(1:30, width = 2, format = "d", flag = 
"0")) 
      names(bErrors) <- paste0(WHICH_MODEL, "ErrorB", formatC(1:30, width = 2, format = "d", flag = 
"0")) 
      names(uErrors) <- paste0(WHICH_MODEL, "ErrorU", formatC(1:30, width = 2, format = "d", flag = 
"0")) 
      names(uzErrors) <- paste0(WHICH_MODEL, "ErrorUZ", formatC(1:30, width = 2, format = "d", flag = 
"0")) 
      if (length(modelParams) == 30) { 
        paramModelB <- c(modelParams[1:15], rep(NA, times = 15)) 
        paramModelA <- c(modelParams[16:30], rep(NA, times = 15)) 
      } else { 
        if (length(modelParams) == 60) { 
          paramModelB <- modelParams[1:30] 
          paramModelA <- modelParams[31:60] 
        } else { 
          paramModelB <- rep(NA, times = 30) 
          paramModelA <- rep(NA, times = 30) 
        } 
      } 
    } 
    if (all(is.na(modelMahalas))) { 
      maxMahalas <- NA 
      minMahalas <- NA 
    } else { 
      maxMahalas <- max(modelMahalas, na.rm = TRUE) 
      minMahalas <- min(modelMahalas, na.rm = TRUE) 
    } 
    #modelMahalas <<- modelMahalas 
     
    if (length(modelMahalas) != 30) { 
      modelMahalas <- c(modelMahalas, rep(NA, times = (30 - length(modelMahalas)))) 
    } 
    names(modelMahalas) <- paste0(WHICH_MODEL, "M", formatC(1:30, width = 2, format = "d", flag = "0")) 
    names(paramModelB) <- paste0(WHICH_MODEL, "B", formatC(1:30, width = 2, format = "d", flag = "0")) 
    names(paramModelA) <- paste0(WHICH_MODEL, "A", formatC(1:30, width = 2, format = "d", flag = "0")) 
     
    paramModelB <- paramModelB 
    paramModelA <- paramModelA 
    names(maxMahalas) <- paste0(WHICH_MODEL, "MaxMahalanobis") 
    names(minMahalas) <- paste0(WHICH_MODEL, "MinMahalanobis") 
     
    if (WHICH_MODEL == "fullModel") { 
      return(c(maxMahalas, minMahalas, modelMahalas, paramModelB, paramModelA, aErrors, bErrors, 
uErrors, uzErrors)) 
    } else { 
      return(c(paramModelB, paramModelA)) 
    } 
   
 
  } 
  conditionParams <- thisCondition[["simulation"]] 
   
  conditionOutcomes <- lapply(thisCondition[["models"]], function(thisRep) { 
      focalModelParams <- 
tryCatch( matrix(summary(thisRep[["focalModel"]])[["coefficients"]][,"value"], nrow = 
length(summary(thisRep[["focalModel"]])[["coefficients"]][,"value"])/2)[, c(2,1)] , error = function(i) 
return(NA)) 
      referenceModelParams <- 
tryCatch( matrix(summary(thisRep[["referenceModel"]])[["coefficients"]][,"value"], nrow = 



  141 

 

length(summary(thisRep[["referenceModel"]])[["coefficients"]][,"value"])/2)[, c(2,1)] , error = 
function(i) return(NA)) 
       
 
    focalThetas <- tryCatch( factor.scores(thisRep[["focalModel"]])[[1]][, "z1"] , error = function(i) 
return(NA)) 
    trialNCDIFS <- tryCatch( Ncdif(list(focal = focalModelParams, reference = referenceModelParams), 
irtModel = "2pl", focalAbilities = focalThetas) , error = function(i) return(NA)) 
 
    if (length(trialNCDIFS) != 30) { 
      trialNCDIFS <- c(trialNCDIFS, rep(NA, times = (30-length(trialNCDIFS)))) 
    } 
    names(trialNCDIFS) <- paste0("ncdif", formatC(1:30, width = 2, format = "d", flag = "0")) 
 
    c(paramExtract("fullModel", thisRep), paramExtract("referenceModel", thisRep), 
paramExtract("focalModel", thisRep), trialNCDIFS)  
  }) 
  return(cbind(conditionParams, do.call(rbind, conditionOutcomes))) 
}) 
stopCluster(cl) 
rm(cl) 
 
findings <- do.call(rbind, findings) 
 
 
save("findings", file = paste0("findings-",VERSION,"-",SEGMENT,"-",Sys.Date(),".RData")) 

This post-hoc analysis was some of the most inefficient code, but did not need further 

optimization for the purposes of this study. Try tryCatch function again plays an important role 

in ensuring the code finishes execution even in the face of failed repetitions. During debugging, 

it was found very useful to temporary refactor the parLapply as a single-threaded lapply function 

with objects pushed to the parent environment with the <<- assignment operator. R has some 

peculiarities with how lists are iterated and available either with single or double square brackets; 

testing proved essential to ensure code performed as expected in light of tryCatch. Those 

replicating this study will also find it important to recode fail values from tryCatch as missing. 

Finally, charts and graphs were prepared with straightforward implementation of 

functions such as lm, anova, and charts via the ggplot2 package for ease of configuration. Some 

recoding was necessary to assign appropriate NA values, and care was required in specifying 

discrimination and difficulty parameters: the DFIT and ltm packages use different 

parameterization warranting a great deal of caution, but applying the summary function to an ltm 

model called fitted with the IRT.param argument provided well-labelled, appropriate values. 
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