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ABSTRACT 

One important type of category follows a family-resemblance structure. Family-

resemblance category members share an overall similarity, but no criterial attributes define all 

members of the category. Many of the world’s natural categories follow a family-resemblance 

category structure (e.g., Rosch & Mervis, 1975). We can learn a single family-resemblance 

category merely by being perceptually exposed to members of the category even when there is 

no discussion of their category membership (e.g., Homa & Cultice 1984; Palmeri & Flanery 

1999; Zabberoni et al., 2021). Research has shown that pre-exposure to category members 

benefits learning two family-resemblance categories simultaneously (Jackson et al., 2023), 

suggesting a role for perceptual learning in family-resemblance category learning. However, it is 

still unclear exactly what underlying mechanism generates this perceptual learning. Therefore, in 

these studies, I tested the MKM (McLaren, Kate, & Mackintosh) latent inhibition mode, 

attentional spotlighting, attentional weighting, and representational theories of perceptual 

learning as explanations of learning family-resemblance categories from exposure in four 

experiments. I hypothesized that exposure to relevant category members provides benefit to 

family-resemblance category learning because exposure allows participants to build cortical 

representations of the prototypes. This is consistent with representational models of perceptual 

learning.  
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1 THEORETICAL FRAMEWORK 

The ability to organize knowledge, events, and objects is important because it allows us 

to more efficiently and safely navigate the world around us. Categorization has been explored by 

cognitive scientists and neuroscientists for several decades. This research has sparked a great 

deal of debate, and theories about how we learn perceptual categories continue to develop (e.g., 

Ashby & Maddox, 2005; Smith & Church, 2018; Smith & Minda, 1998; Smith et al., 2016; 

Squire & Knowlton, 1995; Vogels et al., 2002; Zaki et al., 2003). One of the debates in the 

categorization literature is whether we have a single system for category learning (Bruner et al., 

1956; Hull, 1920; Levine, 1975; Restle, 1962) or multiple systems that are better suited to 

learning different types of categories (e.g., Ashby et al., 2011; Minda & Smith, 2001; Nosofsky 

et al., 1994; Smith & Church, 2018; Smith et al., 2016). Many multiple-systems theorists have 

also tried to understand how different brain systems might facilitate these different types of 

category learning (Ashby & Spierling, 2004; Nosofsky & Zaki, 1998). 

One important type of category follows a family-resemblance category structure. Family-

resemblance category members share an overall similarity, but no criterial attributes define all 

members of the category. Many of the world’s natural categories follow a family-resemblance 

category structure (e.g., birds, fruit, trees; Rosch & Mervis, 1975). Unlike some other types of 

categories, humans (even those with memory impairment) can learn a single family-resemblance 

category merely by being perceptually exposed to members of the category even when there is 

no discussion of their category membership (e.g., Homa & Cultice, 1984; Palmeri & Flanery, 

1999; Reed et al.,1999, Zabberoni et al., 2021). Recently, Jackson et al. (2023) showed that pre-

exposure to category members benefits learning two family-resemblance categories 

simultaneously, suggesting a role for perceptual learning in family-resemblance category 
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learning. However, it is still unclear exactly what the underlying mechanism is of this perceptual 

learning. Therefore, in these current studies, I will test different theories of perceptual learning as 

explanations of learning family-resemblance categories from exposure. The theories I will be 

testing are MKM’s (McLaren, Kate, & Mackintosh) latent inhibition model, attentional 

spotlighting, attentional weighting, and representational theories. These specific theories have 

been chosen as they are the theories predominantly used to explain an array of phenomena in the 

perceptual learning literature.  

These studies could make important contributions to both the categorization and 

perceptual learning literature because they could help resolve how these two processes (category 

learning and perceptual learning) interact. I hypothesize that exposure to relevant category 

members provides benefit to family-resemblance category learning because exposure allows 

participants to build cortical representations of the prototypes. This is consistent with 

representational models of perceptual learning. In the sections that follow, I will begin by 

detailing the theories of category learning and present evidence of mixed models. Next, I will 

discuss the theories of perceptual learning, and compare and contrast evidence for each. I will 

then describe a recent study that shows exposure to relevant category members from multiple 

family-resemblance categories provides benefit in a later categorization test. Finally, I will 

describe a series of experiments designed to rule out MKM’s latent inhibition model, attentional 

spotlighting, and attentional weighting theories of perceptual learning as the underlying 

mechanisms allowing individuals to learn multiple family-resemblance categories from 

exposure. 
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1.1 Theories of Category Learning 

Although category learning has been studied for several decades, theorists do not all 

agree about how we categorize objects and events. The major hypothesized categorization 

processes are learning defining criteria, prototype comparison, exemplar comparison, and 

associative learning (e.g., Bruner et al., 1956; Medin & Schaffer, 1978; Pavlov, 1927; 

Rosch, 1973).  

Initially, researchers believed that the only way to learn categories was by 

discovering defining criteria (category rules; Bruner et al., 1956; Hull, 1920; Levine, 

1975; Restle, 1962). Defining criterial attributes theory suggests that humans define 

perceptual categories by focusing their attention on particular stimulus features and 

explicitly finding the features that could correctly define the stimulus into a category. For 

example, the features of four sides of equal length with equal angles sufficiently describe 

the “square” category because every entity with these attributes is a square (Ashby & 

Maddox, 1998). It was assumed that participants relied on working memory (Fuster, 

1989) and executive functions (Posner & Peterson, 1990) as they evaluated these featural 

hypotheses when presented with a stimulus. Although many researchers have concluded 

that rule learning plays an important role in human categorization (e.g., Ashby & 

Maddox, 2005; Bruner et al., 1956; Nosofsky et al., 1994), it quickly became apparent 

that many natural categories have no clear defining criteria (e.g., an ostrich in the bird 

category, a banana in the berry category), and there must be other ways to learn 

categories (e.g., Rosch, 1973, 1975).  

As it became evident that not all category learning could be described by the discovery of 

defining criteria, the prototype comparison theory of categorization was developed (e.g., Rosch 
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1973, 1975). Prototype comparison theory suggests that we average our experiences with 

multiple category members into a single schema or prototype that we then compare with new 

examples to determine whether they belong to the category or not. This theory gained a lot of 

traction as it could easily explain many categorization phenomena (e.g., Homa et al., 1981; 

Minda & Smith, 2001; Posner & Keele, 1968; 1970; Reed, 1972; Rosch, 1973, 1975; Smith & 

Minda, 1998). However, this theory had difficulty explaining people’s ability to learn odd 

category members that do not share common features with the other members (e.g., a peanut in 

the legume category). 

In response to prototype comparison theories' shortcomings, exemplar-comparison theory 

emerged with a new explanation of categorization (e.g., Medin & Schaffer, 1978). Exemplar-

comparison theory assumes that people categorize objects by comparing their similarity to the 

memory representations of all previous exemplars from each relevant category (e.g., Hintzman, 

1986; Medin & Schaffer, 1978; Nosofsky, 1987). Therefore, no single member is more 

representative of the category than other members. Instead of having just one prototype 

representation of a dog, people have different representations of all of the dogs they have seen, 

and they can compare new experiences with dogs (or non-dogs) to all these representations to 

determine overall similarity. The overall similarity to many exemplars determines how quickly 

or accurately a category decision can be made (the typicality effect; e.g., Rosch, 1973, 1975), 

while still allowing atypical members to be learned over time because of the similarity to prior 

exemplars (e.g., Nosofsky, 1987). However, exemplar-comparison theory has been criticized for 

its unrealistic view of memory storage and retrieval (e.g., Smith & Minda, 1998, 2001; for 

review, see Smith, 2014).  
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More recently, some researchers have suggested we have multiple systems for 

category learning (e.g., Ashby et al., 2011; Minda & Smith, 2001; Nosofsky et al., 1994; 

Smith & Church, 2018; Smith et al., 2016). These multiple-systems theorists have tried to 

fully understand how different brain systems might facilitate different types of category 

learning. This has sparked a great deal of debate. Some single theorists have tried to 

disprove the idea of mixed models in categorization altogether (e.g., Le Pelley, 2014; Le 

Pelley et al., 2019). Even those who support mixed models do not agree on exactly which 

categorization processes to include. For example, some mixed model researchers theorize 

that we can switch between comparing possible category members to a prototype or a 

limited number of exemplars in memory (e.g., Minda & Smith, 2001). There is evidence 

showing that participants do in fact default to comparing to a prototype when categories 

have large numbers of exemplars, but they may simply memorize individuals when a 

small number of exemplars repeat often (e.g., Minda & Smith, 2001). This suggests that 

we can use either approach depending on the situation, thus supporting this mixed model 

view of categorization.  

On the other hand, Nosofsky et al. (1994) created a multiple-systems model 

known as the rule-plus-exception model (RULEX). According to the RULEX model, 

categories are learned by creating and testing simple logical rules and then memorizing 

the occasional exception to the rules (Nosofsky et al., 1994). The few rules are then 

stored along with their exceptions as an exemplar. These rules are learned slowly, on a 

trial-by-trial basis (Nosofsky et al., 1994). In a categorization task, the participant would 

search for a consistent single-dimensional rule, and once found, they move on to looking 

for a second, less consistent single-dimensional rule, and so on. This model easily 
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accounts for the individual differences found in the categorization literature, because of 

differences in the ability to remember the exceptions and strategies for finding rules. 

Another multiple systems model is COVIS (Competition between Verbal and Implicit 

Systems). This model has been supported by cognitive and neuroscience findings (for review, 

see Ashby et al., 2011). According to this model, learning can take place using the explicit-

declarative system, or the implicit-procedural system. The explicit-declarative system supports 

category learning through rule learning. Rule learning focuses on features of stimuli that are 

predictive of their category. Rules are conscious and verbalizable. The implicit-procedural 

system supports associative learning processes. These occur by associating responses to whole 

stimuli and generalizing based on similarity. The associations made are not conscious to the 

participant and typically are not verbalizable. Evidence of two systems comes from the cognitive 

behavioral literature showing dissociations between them (for review, see Ashby & Valentin, 

2005, 2017). For example, delayed (Maddox et al., 2003; Maddox & Ing, 2005) and deferred 

feedback (Smith et al., 2014) negatively affect information-integration category learning, which 

is supported by implicit-procedural learning, but they do not affect rule-based category learning, 

which is supported by the explicit-declarative system. On the other hand, concurrent working 

memory load has more of a negative impact on rule-based category learning than information-

information category learning (Waldron & Ashby, 2001; Zeithamova & Maddox, 2006). 

1.2 Categorization in Patients with Brain Damage: Support for Mixed Models 

To better understand the role of exemplar memory in categorization, a number of 

researchers have studied patients with anterograde amnesia to see what abilities are still intact 

when explicit memory for exemplars is absent. For example, Knowlton et al. (1992) investigated 

whether the ability to classify based on a complex rules system can be learned without explicit 
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memory for the specific instances to teach the rules. The researchers tested patients with amnesia 

as well as control participants using an artificial grammar task. For the artificial grammar task, 

the participants were first presented with letter strings. Later, they were told the strings they saw 

were governed by a complex set of rules and then were presented with new strings that had to be 

classified as conforming to the rules or not conforming to the rules. For the next phase of the 

task, the participants reviewed the strings five minutes later and were tested on their recognition 

memory. Both populations were able to classify the letter strings that had been generated 

according to the artificial grammar (Knowlton et al., 1992). The patients with amnesia were only 

impaired in their ability to explicitly recognize the exemplars that had been used to teach the 

rules. Knowlton et al. concluded that implicit classification does not require intact explicit 

memory.  

To follow up, Squire and Knowlton (1995) presented E.P., a patient with amnesia, with 

40 dot distortion patterns and later asked him to categorize the patterns as belonging to the 

category or not and tested his ability to recognize the viewed patterns in a recognition memory 

task. E.P. successfully classified novel dot patterns according to whether they belonged to the 

same category as the training patterns or not. This intact ability to acquire category-level 

information occurred despite his failure to recognize the previously presented dot patterns. The 

researchers suggested that these results were due to E.P.’s ability to abstract and retain a single 

prototype after training, even though he could not remember the particular exemplars. These 

studies were interpreted as disconfirmation of a unitary exemplar comparison theory because the 

ability to acquire rules and category-level information was still intact despite the failure of 

exemplar memory. However, it is not clear whether the participants in Knowlton et al.’s (1992) 

artificial grammar study actually learned the rules or if they simply learned to classify on the 
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basis of similarity to a prototype string (Servan-Schreiber & Anderson, 1990). If the latter is true, 

it would suggest that only prototype learning may survive deficits in explicit memory. 

Kolodny (1994) provided further evidence for intact prototype formation in patients with 

amnesia. He tested category learning and recognition memory in amnesic patients and controls 

using dot patterns. The participants were told that the patterns could be divided into three distinct 

categories. They were trained by being shown dot patterns along with their category label (A, B, 

C). Later the participants were informed that they would see old and new patterns, but the same 

categories still applied, and they were to circle A, B, or C on a sheet of paper to categorize the 

patterns. This study was then repeated using artwork from three artists with varying styles. In the 

study using dot patterns, the patients with amnesia were able to learn at the same rate as the 

controls and showed equivalent transfer. However, in the study using artwork, the patients with 

amnesia were not able to categorize based on style, unlike the controls who could successfully do 

so. During a recognition test, the control participants were significantly more accurate at 

recognizing old items with both dot patterns and paintings than the patients with amnesia. The 

patients were able to learn categories and their labels for the dot patterns even when explicit 

memory was absent. Kolodny suggested that the patients with amnesia were successful with the 

dot patterns and not the artwork because there was no systematic perceptual relationship between 

the category and the paintings, therefore, the classification of the paintings could not depend on 

simple perceptual features like the dot patterns (Kolodny, 1994). Also, the paintings may have 

engrained richer encoding because they contained meaningful objects such as scenery and 

people. 

Reed et al. (1999) investigated whether patients with amnesia could learn category 

information independently of declarative memory using stimuli that have discrete features as 
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well as easy-to-describe features. To do so, they tested patients’ category knowledge about 

stimuli that had easily verbalizable discrete features using a mere exposure phase and then a 

categorization test phase. If exposed items were more distinct and easier to label, the participants 

could acquire category knowledge declaratively, that is, explicitly as propositional knowledge 

about the regularities among the training items (Reed et al., 1999). The patients with amnesia 

successfully categorized based on discrete features as accurately as the controls, suggesting that 

even verbalizable rule-like category knowledge can be obtained without explicit memory. Other 

researchers have replicated these results testing typical and atypical populations (i.e., Sinha, 

1999; Zaki et al., 2003).  

To provide additional evidence that learning of new perceptual categories can occur 

without the contribution of explicit memory, Zabberoni et al. (2021) created a new paradigm for 

testing prototype learning in patients with memory deficits. These researchers attempted to 

demonstrate spared prototype extraction in a memory-impaired population by testing patients 

with Alzheimer's disease and healthy controls in prototype distortion tasks using morphed faces 

(prototype A, prototype B, and a neutral prototype). Patients with Alzheimer’s disease performed 

similarly to the controls in the face prototype learning task, suggesting that participants with 

severe memory deficits can learn new visual prototypes.  

There is also evidence from patient research that classification can depend on 

implicit-procedural processes. For example, Knowlton et al. (1994) examined 

probabilistic classification learning in patients with amnesia and controls using the 

weather prediction task. The weather prediction task is a probabilistic classification task 

that requires participants to predict the weather based on different combinations of tarot-

like cards. Participants were instructed that they would see one, two, or three cues with 
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geometric symbols on each trial and that they should decide whether the cards predicted sunshine 

or rain. In the first experiment, the amnesic patients learned gradually to associate the cues with 

the appropriate outcome at the same rate as control subjects. Because the cue-outcome 

associations were probabilistic, declarative memory for the outcomes of specific trials was not as 

useful for performance as the information gradually accrued across trials. It was also 

demonstrated that performance on the probabilistic classification task was not the result of 

holding knowledge of cue outcome associations in short-term memory, because both control 

subjects and amnesic patients demonstrated significant savings when testing was interrupted by a 

5-rain delay. This result suggested that classification is dependent on a more long-term, 

nondeclarative process.  

Furthermore, a variety of patient groups are known to have deficits in both rule-based 

learning and tasks thought to require associative learning, yet they show normal prototype 

distortion learning when asked to decide whether items belong to the category or not (Ashby & 

Maddox, 2005). This includes patients with Parkinson’s disease (Reber & Squire, 1999), 

schizophrenia (Kéri et al., 2001), and Alzheimer’s disease (Sinha, 1999).  

Overall, these studies show that it is possible to acquire category information about 

complex stimuli without having conscious memory for exemplars or rules, even with deficits in 

associative learning (e.g., Knowlton et al.,1992; Lewicki et al.,1988; Reber & Allen 1978). 

Together this supports the idea that multiple-category learning systems support different types of 

learning. From a neuroscience perspective, we know a lot about the brain systems involved in 

learning exemplars (Palmeri, 2014), associative learning (Yin et al., 2005), and rule learning 

(Ashby & Ell, 2001). However, we know less about the neural underpinnings of prototype 
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formation, though there is an assumption that it is part of basic perceptual processing (Goldstone, 

1998) and may under some circumstances come about because of perceptual learning. 

1.3 Perceptual Learning Theories 

To better understand how perceptual learning may be involved in family-

resemblance category learning, it is important to understand the theories behind 

perceptual learning. Although perceptual learning has been studied for over a century, 

research into the cognitive and neural mechanisms underlying perceptual learning 

remains ongoing and inconclusive.  

How the world appears to us depends on more than just the objects we experience or their 

features, it also depends on prior learning or experience with those objects or features. There are 

several different definitions of perceptual learning in the literature, but the most widely used 

definition comes from Gibson (1963, p. 29) who defined perceptual learning as “a relatively 

permanent and consistent change in the perception of a stimulus array, following practice or 

experience with this array.” The literatures on perceptual learning and categorization have 

developed separately. However, they both describe ways of perceptually structuring our 

environment and therefore, it is important to understand their interaction (Carvalho & Goldstone, 

2016). An example of this comes from color wheels which are made up of various shades of 

color. If we perceived it directly, we would simply see a continuous set of shades. However, 

what we actually experience is a variety of colors that can be labeled and defined. This example 

demonstrates how our perception can be influenced by our knowledge of categories. 

Categorization not only provides organization to a complex world but also works to adapt the 

perceptual features used to perceive this world. Thus, categorization is the result of perceptual 

experience and is simultaneously a pervasive influence on that same perceptual experience (e.g., 
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Goldstone, 2000; Goldstone et al., 2000; Schyns et al., 1998; Schyns & Murphy, 1994). In this 

dissertation, I hope to provide a bridge between the perceptual and category learning literatures. 

In the next few sections, I will review theories of perceptual learning, which historically have 

fallen into four main categories. Then I will discuss the evidence supporting the theories in the 

following section. 

1.3.1 Representational Theories 

Goldstone (1998) first defined representational theories of perceptual learning when he 

introduced the ideas of unitization and differentiation as the foundations of perceptual learning. 

Both of these mechanisms involve the creation of new perceptual units (representations) through 

learning.  

Differentiation involves an enhanced ability to discriminate between dimensions or 

stimuli that were psychologically fused together (Carvalho & Goldstone, 2016). This process 

allows us to discriminate between percepts that were at one point indistinguishable from one 

another. Differentiation can happen with whole stimuli as well as parts within stimuli. This can 

happen even through simple pre-exposure to stimuli, meaning no feedback is required. For 

example, Gibson and Gibson (1955) showed that even when no feedback is provided to 

participants, practice identifying visual scribbles increased their discriminability of the scribbles. 

Research has shown that it is very difficult, if not impossible, to separate saturation and 

brightness in perception because the overall experience of color causes them to be fused together 

(Garner, 1976). However, after training, participants can improve their differentiation abilities, 

and learn to ignore one dimension and selectively perceive the other (Burns & Shepp, 1988; 

Goldstone, 1994; Goldstone & Steyvers, 2001). 
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Unitization works in a manner opposite to differentiation. Here, learning causes the 

person to perceive the stimulus as a single object as opposed to perceiving it as multiple objects 

with distinct properties. Goldstone and Byrge (2015) liken this to the chunking phenomenon in 

memory. Czerwinski et al. (1992) described a process by which conjunctions of stimulus features 

are “chunked” together so that they become perceived as a single unit, which allows us to 

overcome some capacity limitations of short-term memory. Likewise, there is clear evidence that 

we can learn to perceptually group features into a single unit, as when we learn to perceive 

patterns. For example, fluent readers perceive familiar words as a single item, rather than distinct 

individual letters. Shiffrin and Lightfoot (1997) demonstrated that even novel separated line 

segments could become unitized following prolonged practice with the materials. Unitization is 

also thought to account for why perceptual pattern recognition training can help doctors and 

residents improve their diagnostic skills (Guerlain et al., 2004; Krasne et al., 2013). For example, 

Krasne et al. (2013) demonstrated improved accuracy in diagnosing disease patterns among 

medical residents who completed a computer-based perceptual training module. This computer-

based training module works by presenting the learner with images of disease processes that are 

clearly present and representative of the disease category, and over time presents exemplars that 

are less representative of the disease category. Instead of analyzing each piece of information 

separately, these experienced medical professionals learn to perceive the disease categories more 

holistically.  

Representational views of perceptual learning assume that pre-exposure and training 

actually change the way that stimuli are perceptually represented, and those representations are 

thought to be more unitized and/or more differentiated from other representations than 

representations that have not been pre-exposed (Church et al., 2013). Therefore, one relevant role 
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for perceptual learning processes in category learning could be the unitization of a prototype 

representation. I hypothesize that exposure to relevant category members provides benefit to 

family-resemblance category learning because exposure allows participants to build cortical 

representations of the prototypes.  

1.3.2 Elemental-Associative Theories 

Another dominant explanation of perceptual learning comes from associative theories 

(e.g., McLaren et al., 1989; Pashler, 2013). These theories posit that perceptual learning occurs 

through the modification of elemental associative neural connections in the brain. The classic 

gradient interaction theory suggests that positive excitatory gradients of generalization develop 

around reinforced stimuli, while negative inhibitory gradients surround nonreinforced stimuli; 

therefore, our ability to discriminate is determined by the summation of these gradients (Spence, 

1937). If reinforced and non-reinforced stimulus gradients overlap and are difficult to 

discriminate, they will negate each other, leading to slower learning. On the other hand, this 

theory suggests that if the gradients are overlapping but more distinct, their summation will 

create a more noticeable difference between reinforced and non-reinforced stimuli, which can 

generalize to new stimuli (see McLaren et al., 1989; McLaren & Mackintosh, 2000). 

The most relevant elemental associative theory to the current topic is the MKM model, 

named after its authors McLaren, Kate, and Mackintosh. This theory proposes that perceptual 

learning requires associations between perceptual inputs and responses (McLaren et al., 1989). 

The MKM model proposes that stimuli are made up of a combination of elements or 

microfeatures, some of which are similar or more common to other stimuli, and some of which 

are relatively unique. The authors of this model assume that when stimuli share elements there 

will be a reduction in the salience of those elements because they will be presented more often. 
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This reduction in salience due to repeated exposure to the features is known as latent inhibition. 

For instance, two stimuli, AX and BX, will have unique elements (A and B elements) but will 

share some features in common (X). These X elements are the basis for any generalization 

between them. Therefore, if BX is pre-exposed before AX is paired with an unconditioned 

stimulus, less conditioning will generalize to BX, as compared with a control group that received 

no pre-exposure because the X elements will be latently inhibited (therefore having reduced 

salience) by pre-exposure. The X elements will then be overshadowed by the A elements that 

have not been inhibited, as the A elements will acquire more associative strength to the 

unconditioned stimulus, leaving less strength to accrue to the X elements and hence generalize to 

BX (McLaren & Mackintosh, 2000). Put into an example, in the two flavor compounds, saline-

lemon (AX) and sucrose-lemon (BX), the unique elements are saline (A) and sucrose (B), and 

the shared element is lemon (X). If the sucrose-lemon solution is pre-exposed, before the saline-

lemon solution is paired with a solution that will make the rat sick (e.g., lithium chloride), less 

conditioning will generalize to sucrose-lemon in comparison to a control group that did not 

receive pre-exposure because the lemon flavor will be latently inhibited by pre-exposure. The 

lemon elements will be overshadowed by the saline flavor that has not been inhibited, as the 

saline flavor will acquire more associative strength to the lithium chloride, leaving less strength 

to accrue to the lemon flavor and therefore generalize to sucrose-lemon.  

One of the principal effects of pre-exposure according to this model is a faster reduction 

in salience to the elements that are shared more often than to elements that are shared less often 

(Milton et al., 2019). The unique elements that discriminate stimuli will then tend to be higher in 

salience than the common elements that both stimuli share, because the common elements will 

have been presented more frequently, and they are adequate predictors of one another. According 
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to MKM theory this preferential processing of the unique elements, that discriminate between 

items, compared with the common elements, that do not discriminate, is what leads to the 

increased differentiation of stimuli after pre-exposure (e.g., McLaren et al., 1989; Milton et al., 

2019).  

1.3.3 Attentional Theories 

Attentional theories have predominantly been used to explain perceptual learning 

phenomena, especially in the visual domain. There are two primary kinds of attentional theories 

of perceptual learning: attentional spotlighting and attentional weighting theories. Importantly, 

although they are both attention-based theories, their assumptions are very different. 

Attentional spotlighting assumes participants actively search to find the unique aspects of 

the percept so they can pay more attention to those particular aspects and not others (Pashler & 

Mozer, 2013). Participants direct their attention to the various stimulus dimensions until the most 

relevant is identified. This search is intentional and happens suddenly through insightful explicit 

discovery. Once the most relevant dimension has been identified, it is perceived more minutely, 

altering the perception of the dimension permanently. 

On the other hand, attentional weighting requires processes that are more associative and 

unconscious in nature. Attentional weighting suggests perception adapts to tasks and 

environments by elevating attention towards crucial perceptual aspects and reducing attention 

towards irrelevant dimensions and features. This adjustment allows individuals to emphasize 

what is important and discard what is not necessary for the given task or context. Improvements 

in perceptual discriminations are caused by the development of more efficient connections 

between higher-level sensory signals or responses and feature representations lower in the 

perceptual pathway. Attentional weighting models use simulated visual cortical neurons with 
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predefined response characteristics as inputs for artificial networks based on associative learning. 

These models are built on the idea that the weights in these networks symbolize the focus of 

attention (e.g., Lu et al., 2011). Participants can perform successfully in tasks as their attentional 

weights gradually learn which of the visual features are shared across different events or objects 

and which features are unique to each event/object (e.g., Petrov et al., 2005). Over time, the 

unique elements or features become more strongly associated with the output. When a novel 

event activates these elements to a greater degree than a trained stimulus, the individual will 

respond more to the novel event (e.g., Lu et al., 2011). The input of sensory representations 

relevant to a decision should be strengthened, while the irrelevant inputs are down-weighted in 

the decision (e.g., Dosher & Lu, 2009). 

1.3.4 Evidence for Perceptual Learning Theories 

Next, I will compare and contrast the evidence supporting the perceptual learning 

theories just discussed. Much of the evidence in support of attentional weighting and spotlighting 

comes from the visual domain using simple stimuli with basic visual features (for discussion see 

Song et al., 2005). Because the stimuli are quite easy to discriminate, it sometimes becomes 

difficult to know how much true learning is happening in these experiments. Within this context, 

numerous studies have demonstrated examples of perceptual learning that are highly specific to 

the original training situation (e.g., Ball & Sekuler, 1982; Fiorentini & Berardi, 1980; Karni & 

Sagi, 1991; Poggio et al., 1992). For instance, studies have shown that participants’ enhanced 

discriminability produced by exposure was restricted to the stimulus orientation and retinal 

position used in training and did not transfer to conditions during which these were changed 

(Dwyer & Mundy, 2016). This high degree of specificity is observed with simple stimuli because 

it is differentiated early in the visual system where the neurons with the requisite location and 
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orientation specificity are found (Dwyer & Mundy, 2016). This supports the attentional theories 

of perceptual learning and has led to the assumption that perceptual learning cannot involve 

actual representational change but only attentional change because these early visual areas are 

thought to be fixed and relatively unchanging after early development.  

However, there is evidence that if more complex stimuli are used, perceptual learning is 

not as basic as previously believed. For example, Song et al. (2005) tested participants in two 

experiments using event-related potentials to see if using stimuli that varied in complexity 

involved different levels of visual cortical processing. In the studies, the participants completed 

three consecutive training sessions in which they discriminated between simple stimuli made of 

line segments or complex stimuli made of compound shapes. Song et al. found learning effects 

were focused over the occipital cortex for simpler stimuli and were focused over the 

central/parietal cortices for more complex stimuli. This suggests that perceptual learning can 

operate at different levels of visual cortical processing depending on the complexity of the 

stimulus. Furthermore, Dolan et al. (1997) tested participants using PET scans and showed that 

complex visual stimuli enhanced the activity of inferior temporal regions. Once again, this shows 

that perceptual learning does not occur only early in the visual system as once suggested by some 

attentional-weighting theorists.  

Theories of perceptual learning have been tested by studies investigating easy-to-hard 

effects. In this phenomenon, perceptual learning is more efficient and effective when training 

begins with stimuli that are easier to discriminate, and then gradually progresses toward more 

difficult discriminations. Research has shown that the easy-to-hard effect is a robust 

phenomenon across a variety of perceptual learning tasks (Church et al., 2013; Liu et al., 2008; 

Orduña et al., 2012; Suret & McLaren, 2003). Attentional spotlighting theorists suggested that 
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the easy-to-hard phenomenon occurs because the initial easy trials direct learners’ attention to 

task-relevant dimensions, and then the learner can disregard the irrelevant dimensions. One study 

found that simply telling participants which feature to attend to in a visual categorization task 

produced equal performance to giving initial easy trials, seeming to support this attentional 

spotlighting (Pashler & Mozer, 2013). However, other studies suggest that the easy-to-hard 

effect may not simply be due to identifying the relevant feature as suggested by attentional 

spotlighting theories. For example, a study using complex auditory information found easy-to-

hard effects even after instructing participants about the relevant feature (Church et al., 2013; Liu 

et al., 2008).  

Other studies have also provided evidence that attentional spotlighting cannot fully 

explain the easy-to-hard phenomenon. For example, Wisniewski et al. (2017) conducted two 

experiments in which participants were trained to discriminate periodic, frequency-modulated 

(FM) tones in two separate frequency ranges (300–600 Hz or 3000–6000 Hz). In one frequency 

range, training was easy-to-hard discriminations. In the other, stimulus similarity was constant 

throughout training. Attentional spotlighting views propose that the benefits of easy-to-hard arise 

from simplifying the explicit search process used to identify the relevant dimensions. Therefore, 

any advantage of progressive similarity should extend to the same critical dimension in a new 

frequency space in an auditory task (Pashler & Mozer, 2013). However, after training, 

participants showed better performance in their progressively trained (easy-to-hard) frequency 

range, even though the discrimination-relevant dimension across ranges was the same. Theories 

of perceptual learning that propose changes in stimulus representations or associative changes at 

early levels of perception depending on experience (like attentional reweighting) predict this 

specificity of easy-to-hard effects (Wisniewski et al., 2017).  
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Attentional spotlighting predicts that when participants' attention is explicitly drawn to 

the relevant dimension early in the training phase (e.g., by the presentation of an easy contrast in 

that dimension, called anchoring), then they should not show benefits of further progressive 

training as they have already learned the relevant dimension to succeed in a later discrimination 

task (e.g., Pashler & Mozer, 2013). However, Wisniewski et al. (2017) showed that training with 

stimuli that progressively became more difficult increased learning more than simply presenting 

easy “anchor” contrasts at the beginning of training. 

Representational modification and reweighting/associative learning mechanisms (e.g., 

Saksida, 1999) can both account for the specificity of easy-to-hard effects and the advantage of 

progressive training over anchoring alone. Wisniewski et al. (2019) further pitted the predictions 

of attentional spotlighting theories against representational and reweighting/associative learning 

theories by testing how easy the initial trials should be to see easy-to-hard effects. Attentional 

spotlighting predicts that as long as the relevant dimension is made obvious to the participant, 

easy trials should always facilitate their performance. Whereas representational and reweighting 

theories predict that if the easy trials are too easy, it is less likely that representations/weights 

will be modified enough to aid discrimination on a harder version of the task. The results showed 

that when initial training blocks were too easy or too difficult there was less benefit than when 

the blocks had an intermediate difficulty. This result was observed for two different acoustic 

dimensions and was predicted by representational and reweighting accounts of learning, but not 

the attentional spotlighting model. 

Church et al. (2013) tested the predictions made by representational theories against 

associative models like MKM or reweighting. They examined sequencing in an auditory 

discrimination task with incidental (no feedback) versus intentional (with feedback) training. The 
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results showed that pre-exposure to a progressive sequencing of auditory stimuli, in comparison 

to equally variable training in either a random or an anti-progressive order, led to higher 

performance with the difficult contrasts and greater generalization to new contrasts. This 

remained true even when the progressively sequenced stimuli were only pre-exposed in an 

incidental learning task that did not involve any direct training or feedback. These results 

suggested that the advantages shown by progressive training cannot be fully explained by direct 

associations between stimulus features and the corresponding responses. The progressive 

training advantage cannot be explained by elemental-associative or incremental attentional 

reweighting theories that assume that the advantage is caused by learning task-relevant features. 

Overall, associative and attentional theories are not able to fully explain all of the phenomena 

seen in the literature. This may be because perceptual learning often reflects actual 

representational change producing differentiation or unitization of perceptual representations.  
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2 FAMILY-RESEMBLANCE CATEGORIES 

Many natural categories follow a family-resemblance category structure (e.g., Rosch & 

Mervis, 1975). In family-resemblance category structures, category members share an overall 

similarity, meaning that they share several features with other members of the category. 

However, there is not a single feature common to all category members that defines the category. 

In tasks involving family-resemblance categories, the optimal strategy is to make decisions based 

on the overall similarity and not on a single feature. 

In the categorization literature, participants are typically provided feedback to learn the 

categories (e.g., Reed et al.,1999). However, research in perceptual learning has investigated 

whether we can learn family-resemblance categories through mere exposure. Mere exposure 

means that participants are not given any information about the categories, they are simply 

presented with category members in an unrelated task. These studies often use an A, not A 

paradigm. In an A, not A task, there is a single Category A and participants are presented with 

members belonging to Category A and with random stimuli that do not belong to the category. 

Participants need to decide if the stimulus presented belongs to Category A or not.  

Few studies have investigated exposure learning of multiple family-resemblance 

categories to see if exposure is still beneficial. One study examined the effect of exposure on 

learning multiple family-resemblance categories in a free classification task (Milton et al., 2019). 

These researchers looked at how we naturally form categories without feedback. Participants 

were assigned to one of two groups: same-stimuli exposure or unrelated-stimuli exposure. In the 

same-stimuli condition, participants were exposed to the exact stimuli that they would later 

categorize. In the unrelated-stimuli condition, participants were exposed to different stimuli than 

those used for classification. Participants were exposed to all stimuli and then later they were 
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told to classify the stimuli however they saw fit. No feedback was provided. Results indicated 

that participants who were pre-exposed to the same stimuli showed greater levels of overall 

similarity sorting than those in the unrelated-stimuli conditions. Further testing showed that this 

was modulated by the perceptual difficulty of the stimuli. Pre-exposure increased the overall 

similarity sorting for perceptually easy stimuli but not the difficult stimuli (Milton et al., 2019). 

This study indicates that participants experience ease of family-resemblance comparison after 

exposure to the exact exemplars they later categorized. However, Milton et al. (2019) did not test 

whether this advantage generalizes to novel category members. 

Jackson et al. (2023) investigated whether participants can transfer knowledge to novel 

category members in an A-B task (two family-resemblance categories) after exposure learning. 

Participants completed two tasks. In one task, they were exposed to members from the same 

categories (relevant information) that they would later be tested with. In the other task, they were 

exposed to members from different categories (irrelevant information) than they would be later 

tested with. After the exposure phase, participants completed a categorization task during which 

they were presented with new Category A and B members as well as random shapes. They 

pressed A, B, or N on their keyboard to call a shape a member of Category A, Category B, or a 

nonmember. The results showed that participants' category performance was significantly better 

after receiving relevant exposure to category members than irrelevant exposure. This shows that 

exposure is beneficial when learning multiple family-resemblance categories simultaneously. 

This is the first study to investigate learning multiple family-resemblance categories 

simultaneously through exposure and then testing never-before-seen members.  

This study is important as a predominant theory of categorization does not predict that 

learning multiple family-resemblance categories simultaneously through exposure is possible. 
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COVIS predicts that exposure can only be beneficial for learning a single-family-resemblance 

category at a time because exposure learning can produce perceptual fluency (Ashby & Maddox, 

2005). Fluency happens when a previous experience induces a graded pattern of activation in the 

visual cortex causing that group of cells to fire more rapidly to the presentation of similar 

patterns in the future (Ashby & Maddox, 2005). In other words, during exposure to category 

members, cells common to category members repeatedly fire causing an enhanced visual 

response, then, during the transfer phase, participants can use the feeling of fluency/familiarity to 

decide which stimuli belong to the category. This presents problems if you are trying to learn 

more than one category simultaneously without feedback, as stimuli from both categories will 

feel fluent and cannot be differentially categorized. The results from Jackson et al. (2023) show 

that exposure is beneficial when learning multiple family-resemblance categories 

simultaneously, which shows that fluency is not the only mechanism for learning from exposure.  

Theories of perceptual learning would allow learning of multiple family-resemblance 

categories simultaneously through exposure. However, it is still unclear exactly what the 

underlying mechanism is that allows this learning. Therefore, in the current studies, I tested the 

predominant theories of perceptual learning to better understand how we learn family-

resemblance categories from exposure. 

2.1 MKM Latent Inhibition Theory 

In my first experiment, I tested the MKM elemental-associative theory of latent inhibition 

in exposure learning. The MKM theory assumes that when stimuli share elements/features, there 

is a reduction in the salience of these elements (latent inhibition; McLaren et al., 1989). One of 

the principal effects of pre-exposure is that elements that frequently occur simultaneously are 

reduced in salience more than elements that rarely occur together. This means that the unique 
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elements that discriminate one stimulus from another will tend to be higher in salience than the 

common elements that both stimuli share because the common elements will have been 

presented more often (e.g., McLaren et al., 1989; Milton et al., 2014). This effect is likely to be 

greater for items that are perceptually similar to each other because they share many common 

elements and therefore latent inhibition will be more pronounced than for items that are very 

different (i.e., that have few common elements). If perceptual learning is more marked for 

perceptually similar items than perceptually different items as the MKM model proposes, then 

one prediction that follows is that pre-exposure will lead to better family-resemblance sorting for 

perceptually similar stimuli compared to perceptually different stimuli. 

Milton and colleagues (2014) tested this prediction in a free classification task. They 

created four stimulus sets using five binary-valued dimensions. The stimuli were organized 

around two prototypes, each representative of one category. The rest of the stimuli were mild 

distortions of the two prototypes in that they had four features characteristic of their category and 

one atypical feature more characteristic of the other category. In total, there were 12 stimuli in 

each set. The two pairs of stimulus sets were identical except that in one of the sets the binary 

values for each dimension were perceptually easier to distinguish and for the other set the 

differences were perceptually more difficult to distinguish. Participants were either given 

relevant exposure or irrelevant exposure and then a free classification task. For the free 

classification phase, a match-to-standards procedure was used. The two category prototypes were 

presented at the top of the screen and below the prototypes was one of the twelve stimuli in the 

set. Participants sorted the stimulus into Category A or Category B with no feedback. Each of the 

stimuli in the set appeared once in each block in random order. In total, there were six blocks of 

twelve stimuli. The results showed that relevant exposure increased family-resemblance sorting 
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for the perceptually easy (easier to distinguish) stimuli but not for the perceptually difficult 

(difficult to distinguish) stimuli. Contrary to the latent inhibition mechanism of MKM theory 

(but consistent with unitization; Goldstone, 1999), there was no benefit of exposure to 

perceptually relevant stimuli in comparison to irrelevant stimuli for the perceptually difficult 

stimuli, and the participants did not learn to sort these stimuli based on family resemblance 

(Milton et al., 2014). 

Milton et al. (2014) noted several limitations of this study. First, while the match-to-

standards procedure of displaying the prototype as a reference on every trial is often used in free 

classification/sorting tasks, it is more restrictive than other procedures which do not present the 

prototypes and do not specify the number of categories that can be created (e.g., Pothos & Close, 

2008). Therefore, it would be informative to determine if the results would be replicated using 

other procedures. Second, the stimulus sets used in the study were very small, containing only 

twelve unique stimuli. It would be beneficial to examine whether having a greater number of 

unique stimuli influences the results and would allow tests for generalization. The results were 

not predicted by the MKM latent inhibition model. However, the results could be explained by 

unitization. The authors concluded that they were not fully able to rule out the MKM theory 

because of the study's limitations. For my first experiment, I plan to retest the role of latent 

inhibition in exposure learning of family-resemblance categories by addressing the limitations of 

Milton et al. (2014). 

Rather than presenting the prototypes on the screen during every trial, the prototypes 

were presented as examples of each category on the instruction screen once. Afterward, there 

were no examples of category members presented to the participants. I also created larger 

stimulus sets and ensured that the same stimuli from exposure did not repeat in the free 
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classification task, that way the participant never saw the same stimulus twice, allowing me to 

test generalization. The MKM theory of latent inhibition predicts that relevant pre-exposure will 

lead to a greater family-resemblance sorting for perceptually difficult categories. 

Representational theories predict that exposure will not be beneficial if the category prototypes 

are too similar. During the exposure phase, separate category representations may not form, or 

the representations may be too similar making it difficult (if not impossible) to subsequently 

differentiate between the perceptually similar categories. 

2.2 Attentional Spotlighting 

In Experiment 2, I investigated the attentional spotlighting theory of perceptual learning. 

Attentional spotlighting theory suggests that the effects of perceptual learning occur because of 

increased dimensional salience. Researchers who advocate for attentional spotlighting argue that 

progressive training (easy-to-hard progression) causes an attention-related “stretching” of 

dimensions by finding the most relevant dimension (Carvalho & Goldstone, 2016). Alternately, 

representation-based learning theories explain the easy-to-hard effect with mechanisms that 

involve gradual, experience-dependent changes to stimulus representations themselves. 

Wisniewski et al. (2017) tested the attentional spotlighting and representational theories in 

the auditory domain. In Experiment 1, participants were simultaneously trained in progressive 

and constantly difficult training conditions to categorize frequency-modulated sweep trains with 

different rates of frequency modulation as ‘Fast’ or ‘Slow.’ Participants were assigned randomly 

to either receive progressive training in the ‘low’ or the ‘high’ frequency range, with constant 

training assigned to the opposite range. The sweep trains consisted of five upwardly directed 

frequency-modulated sweeps spanning frequencies from 300–600 Hz (‘low’ frequency range) or 

3000–6000 Hz (‘high’ frequency range). For the progressive training, the Fast/Slow contrasts 
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started with a large differences (very Fast and very Slow) but progressively become more 

difficult (somewhat Fast and somewhat Slow). In the constant difficulty training, contrasts 

started difficult to differentiate and remain difficult throughout training. For example, if 

participants received the low frequency range in progressive training, and the high frequency 

range in constant training, the first block of training would consist of easy-to-discriminate trains 

in the ‘low’ frequency range, but hard-to-discriminate trains in the ‘high’ frequency range. Over 

the course of trial blocks, the ‘low' frequency range included progressively more difficult 

contrasts until reaching the same frequency modulation rate contrast as the ‘high’ frequency 

range. Meanwhile, the ‘high’ frequency range remained at a fixed level of difficulty throughout 

the training phase. 

For training, participants were told the sounds would differ in speed. On each trial, 

participants had to decide if the stimulus presented was “Slow” or “Fast.” Half of the trials 

presented a “Slow” sweep train (< = 8.4 octaves per second) and the other half presented “Fast” 

sweep trains (> = 9.4 octaves per second). After training, participants completed a test phase 

containing high- and low-frequency range sweep trains at the hardest contrast (8.4 vs. 9.4 

octaves per second). On each trial they had to categorize the stimulus as Fast or Slow. No 

feedback was given during the test phase. 

The results showed that participants performed more accurately after progressive training 

than constant difficulty training. This suggests that learning goes beyond dimensional 

spotlighting because it predicts that the effects of spotlighting the relevant dimension (speed) 

should transfer across frequency ranges. Representational theories, on the other hand, predict that 

benefits are restricted to the trained sounds, explaining the specificity of the results. 
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In a second experiment, Wisniewski et al. (2017) tested generalizability of their findings. 

They investigated whether there was a progressive advantage when participants were tested in a 

task that was not previously trained. Participants completed training similar to Experiment 1 and 

then were tested on their ability to discriminate between rates in the progressive and constantly 

difficult trained frequency ranges. The stimulus contrasts were also made to be more difficult in 

the testing phase than the training phase by shortening the sweep trains in testing. The results 

replicated those of Experiment 1, showing a progressive training advantage.  

Wisniewski et al. (2017) used auditory stimuli in both experiments, whereas most 

researchers that argue for attentional spotlighting models use visual stimuli. Because processing 

in the visual and auditory systems is distinct, it is important to see if this effect generalizes to the 

visual modality. Wisniewski et al. (2017) also used direct training with feedback. Therefore, for 

my second experiment, I will investigate easy-to-hard effects using visual stimuli and instead of 

receiving direct training, participants will receive mere exposure. These are important 

modifications that will allow me to directly test two theories in a different modality to see how 

mere exposure (rather than direct training) affects family-resemblance categories. 

In my second experiment, participants were divided into one of two exposure conditions: 

progressive (starting with easy contrasts that become more difficult over time), and anchoring (a 

small number of easy contrasts to spotlight relevant features followed by mostly difficult 

contrasts). Participants were exposed to two categories. The categories were related to one 

another, making some of the exemplars difficult to differentiate. To create separate but related 

categories, prototype A was created, and then prototype B was a high-level distortion of a low-

level Category A member. Representational theories of perceptual learning predict that easy-to-

hard exposure will benefit differentiation of these related categories. Whereas if the exposure 
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phase contains mostly difficult contrasts, participants will not learn to differentiate difficult 

contrasts in a later task. Attentional spotlighting predicts that both types of training will be 

equally beneficial because the relevant category features are equally spotlighted in the anchoring 

condition (Pashler & Mozer, 2013). 

2.3 Representational Theory 

For my third experiment, I explored unitization and differentiation mechanisms in 

exposure learning. While representational theories suggest unitization and differentiation both 

occur and are important mechanisms, little is known about their role during exposure learning 

and whether one mechanism is predominant, or if they work together. Differentiation enhances 

our ability to discriminate between dimensions or stimuli that were originally psychologically 

fused together, allowing us to discriminate between percepts that were previously 

indistinguishable from one another. Unitization allows us to perceive a stimulus as a single 

property as opposed to perceiving its distinct properties, similar to the chunking phenomenon in 

memory. It is possible that these processes change participants’ perceived similarity of category 

members. 

Previous work has shown that after a categorization test, participants rate category 

members as being more similar to each other (Ashby et al., 2020; Goldstone et al., 2001; 

Livingston et al., 1998; Pérez-Gay Juárez et al., 2019), and they rate stimuli as being more 

dissimilar to members from other categories (Goldstone et al., 2001; Gureckis & Goldstone, 

2008; Pérez-Gay Juárez et al., 2019). This research typically uses feedback to teach the 

participants which stimuli belong to each category and uses small stimulus sets, showing 

participants the same category members multiple times and asking participants to rate the 

members they were exposed to.  
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In my third experiment, I assessed how participants’ perceived similarity of Category A 

and B members changed after mere exposure. Unlike previous studies, participants did not see 

the same stimulus more than once, they were only asked to rate new members, not ones they 

were previously trained on. Participants were asked to rate stimuli similarity, some from the 

same category and some from another category, after trial blocks of exposure. It is important to 

test this with mere exposure as opposed to direct training because we often learn family-

resemblance categories without any feedback in the real world. The experiment allows me to 

explore if participants perceive within-category members more similarly after exposure and if 

they perceive between-category members as more dissimilar than each other, as seen in 

experiments that use training with feedback before similarity ratings (Goldstone et al., 2001). 

These changes in perception may be due to changes in prototype representations created during 

exposure. 

2.4 Attentional Weighting 

In Experiment 4, I investigated attentional weighting theory of perceptual learning. 

Attentional weighting theories suggest that perception adapts to tasks by increasing attention 

toward crucial perceptual aspects and reducing attention toward irrelevant dimensions or 

features. Improvements in perceptual discriminations are caused by the development of more 

efficient connections between higher-level sensory signals or responses and feature 

representations lower in the perceptual pathway.  

 Support for attentional weighting theory comes from research using simple stimuli with 

basic visual features (see Song et al., 2005) and suggests that perceptual learning occurs early in 

the visual cortex. Research on attentional weighting has shown that some examples of perceptual 

learning are specific to their original training situation (e.g., Ball & Sekuler, 1982; Fiorentini & 
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Berardi, 1980; Karni & Sagi, 1991; Poggio et al., 1992). For example, studies have shown that 

the enhanced discriminability participants display was restricted to the stimulus orientation and 

retinal position used in training and did not transfer to conditions during which these were 

changed (Dwyer & Mundy, 2016). This high degree of specificity is observed with simple 

stimuli because it is differentiated early in the visual system where the neurons with the requisite 

location and orientation specificity are found (Dwyer & Mundy, 2016). This has been taken as 

support for the attentional weighting theories of perceptual learning because these early visual 

areas are thought to be fixed and relatively unchanging after early development. Therefore, there 

is an assumption that perceptual learning cannot involve actual representational change, but only 

attentional change.  

Studies using more complex stimuli have shown that perceptual learning is not as basic a 

process as previously believed (Dolan et al., 1997; Song et al., 2005). In addition, Coutinho et al. 

(2010) examined whether prototype formation occurred in the early visual cortex or if it was 

more complex. Studies show that in the early areas of the visual cortex, the neurons represent 

topographically and respond differently to different-sized stimuli. Shape selectivity does not 

endure through changes in size; stimuli with similar features but varying in size elicit distinct 

patterns of activity (Engel et al., 1997; Vuilleumier et al., 2002). Research has differentiated 

between retinotopic and non-retinotopic regions of the visual cortex by employing a stimulus 

that produced traveling wave responses (Engle et al., 1997). They measured these responses 

using functional magnetic resonance imaging (fMRI) and established that the primary, 

secondary, and tertiary visual cortices (V1, V2, and V3) exhibited a retinotopic organization. 

Vuilleumier et al. (2002) examined repetitive exposure to stimuli of different sizes and found 

that repeated exposure was accompanied by decreases in visual-cortical activity. However, size 
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variability disrupted these activity decreases in early visual areas. If category learning is 

occurring in early visual areas, size variability should weaken it and undermine the process of 

prototype formation. To examine whether prototype formation occurred in the early visual 

cortex, they tested participants in an A, not A categorization task and manipulated the sizes of 

stimuli to see if categorization performance is robust to stimuli of different sizes. Participants 

were randomly assigned to the size-variable or size-constant condition. During training, 

participants were presented with high-level distortions of the category prototype all in the 

medium size and told that all members belonged to the same category. For testing, participants 

were presented with high- and low-level distortions of the category prototype, and random 

shapes not belonging to a category. For participants in the size-constant condition, all test shapes 

were medium in size. For participants in the size-variable condition, the test stimuli were of five 

sizes ranging from much smaller to much larger than those used in the size-constant condition. 

Participants received feedback after every trial. The results showed no difference in participants' 

categorization accuracy between the conditions. The results also showed that in both conditions, 

participants showed steep typicality gradients (a large change in category endorsement level 

from prototypes to low-level distortions to high-level distortions). These steep typicality 

gradients suggested that there is an underlying prototype representation; as the exemplar 

becomes more dissimilar to the prototype, category endorsement should also go down. 

In a second experiment, half of the participants received the same training instructions as 

Experiment 1, explicitly stating that the shapes presented belong to the same category. The other 

half of participants received training instructions that simply told them they would see polygon 

shapes and needed to move their cursor to touch the shape. Therefore, they were not aware that 

the shapes were related. The results showed that for both instruction conditions, there was no 
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difference between participants’ categorization performance in the size-constant and size-

variable conditions. Participants still showed steep typicality gradients regardless of size 

condition or feedback condition. If prototype formation occurs in the early visual cortex, 

stimulus-size variability should lessen prototype effects, however, they were the same in both 

conditions (size-constant vs size-variable), even when they had no prior knowledge that the 

shapes belonged to the same category. Low-level visual areas, featuring retinotopic perceptual 

representations, would not support category learning. These results provide support for 

representational theories of perceptual learning, but not attentional weighting theories. 

In the current experiment, I investigated whether early visual cortex areas mediate 

learning of multiple family-resemblance categories after mere exposure. To do so, participants 

were randomly assigned to the Constant Size or Variable Size condition. For training, 

participants were not told any information about the two categories, and all category members 

were medium sized. For the categorization test, participants in the Constant Size condition were 

presented with shapes in the medium size. In the Variable Size condition, the stimuli varied in 

size (tiny, small, medium, large, huge). Attentional weighting theories suggest that participants’ 

performance in the task will be better in the Constant Size condition, as learning is occurring in 

the early visual cortex. Representational views suggest participants will learn in both conditions. 
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3 METHODS 

3.1 Experiment 1 

Experiment 1 tested the MKM elemental-associative theory of latent inhibition in exposure 

learning. Milton et al. (2014) showed that relevant exposure increased family-resemblance 

classification for the perceptually easy stimuli but not the perceptually difficult stimuli. This 

result is not predicted by the latent inhibition mechanism of MKM theory, as this theory predicts 

that the perceptually difficult-to-distinguish stimuli should benefit more from relevant exposure 

than perceptually easier-to-distinguish stimuli. However, this result is predicted by the 

representational theories of perceptual learning because it predicts exposure will not be 

beneficial if the category prototypes are too similar. This is because, during the exposure phase, 

separate category representations may not form, or the representations may be too similar 

making it difficult to differentiate between perceptually-similar categories. 

Milton et al. (2014) listed several limitations to their study and therefore the authors were 

not fully able to rule out the MKM theory as an explanation. The current study addressed these 

limitations by using different procedures, as well as testing generalization. Experiment 1 retested 

the role of latent inhibition in exposure learning of family-resemblance categories. Instead of 

using a small stimulus set (12 stimuli), the current experiment never repeated stimuli to test 

whether participants could categorize never-before-seen stimuli, and it presented the prototypes 

only once, instead of on every trial. 
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Table 3.1 Research Question and Prediction for Experiment 1 

Question Predictions 

Does pre-exposure to relevant category members 

provide benefit in a later categorization task for 

both Perceptually Easy and Perceptually Difficult 

categories? 

Representational theory: Pre-exposure to relevant 

category members will only benefit 

categorization of the Perceptually Easy condition, 

not the Difficult condition. 

 

MKM Latent Inhibition theory: Pre-exposure to 

relevant category members will only benefit 

categorization of the Perceptually Difficult 

condition, not the Easy condition. 

 

 

3.1.1 Power analysis and participants 

An a priori power analysis was conducted using G*Power version 3.1.9.7 (Faul et al., 

2007) to determine the required sample size for a mixed-factor general linear model test with an 

alpha level of 0.05. The power analysis indicated that a minimum of 36 participants was required 

to achieve 80% statistical power to detect a medium effect size, as measured by np
2 = .06.  

A total of 63 undergraduates (with an approximate gender distribution of 76% female, 

20% male, and 3% preferred not to answer) at Georgia State University participated for partial 

fulfillment of a course requirement. Participants’ ages ranged from 18 to 58 years (M = 20.92). 

Participants who did not complete all trials (N = 1) or showed significant bias (selecting one of 

the choices more than 50% of the time; N = 12) were not included in the analyses. Therefore, 50 

participants were included in the analyses. 

3.1.2 Stimuli 

Stimuli were created using Turbo Pascal 7.0 programming. Prototype shapes were 

created by randomly selecting nine points in a 50 X 50 grid and connecting successively selected 

points by lines. Once prototypes were established, the distortions were produced by applying a 

series of probabilities that determined whether each dot kept the same position it had in the 

prototype and, if not, how far it was displaced. The dot distortions were built by probabilistically 
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moving each dot into one of five areas that covered the 20 X 20 grid of pixels that surrounded it. 

Different levels of distortion were created by adjusting the probabilities that dots would make 

small or large movements away from their original position (for specific algorithms, see Smith et 

al., 2008). Higher levels of distortion were generated by moving the dots farther away from their 

original position.  

Each pixel position in the distortion algorithm was mapped to a 3 x 3-pixel square on the 

screen, and the dot was placed in the center of the appropriate 9-pixel cell on the screen. Doing 

this magnified the stimulus pattern threefold from being drawn in a virtual 50 x 50 coordinate 

space to being shown in an actual 150 x 150-pixel space on the screen. Level 2 (lowest), level 3 

(low), level 4 (low-medium), level 5 (medium), and level 7 (high) distortions of the prototype 

were used. The Draw Poly procedure in Turbo Pascal 7.0 connected successive dots with lines 

and filled the resulting polygon shape in purple. This follows the common practice of presenting 

dot distortions as random polygon shapes (e.g., Homa et al., 1973, 1981).  

Two base stimulus sets were created. For each stimulus set a Category A prototype was 

created as well as a perceptually “difficult” to discriminate Category B prototype, and a 

perceptually “easier” to discriminate Category B prototype. To create a Prototype B that was 

perceptually more similar to Prototype A (difficult to distinguish), a level-3 distortion of 

Prototype A was created, and then a level-3 distortion of that shape was used as Prototype B. To 

create a Prototype B that was perceptually more different from Prototype A (easier to 

distinguish), a level-3 distortion was created of Prototype A, and then a level-7 distortion of that 

shape was used as Prototype B. For exposure trials, 10 level 3, 10 level 5, and 10 level 7 

distortions were created for each prototype. For the free sorting task, 5 prototypes, 5 level 2, 10 

level 3, 10 level 4, 10 level 5, and 10 level 7 shapes were created from each prototype, providing 
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50 total members for each category. An additional set of exposure stimuli was created from new 

prototypes to create irrelevant exposure categories. Figure 3.1 presents the prototypes for each 

category as well as some of the stimuli from each distortion level.  

 

Figure 3.1 Prototypes and Sample Distortion Levels for each Stimulus Set 

3.1.3 Design and Materials 

This experiment used a 2 x 2 mixed factorial design with categorization accuracy as the 

dependent measure. The between-participants variable was perceptual difficulty (Perceptually 

Difficult or Perceptually Easy), and the within-participant variable was exposure type (Relevant 

and Irrelevant). 

Each participant completed two tasks, one with Relevant exposure and one with 

Irrelevant exposure. Participants were randomly assigned to either the Perceptually Difficult or 

Perceptually Easy conditions. Each task had an initial exposure phase, followed by a 

categorization test phase. The order of the tasks was counterbalanced across participants. Half of 

the participants completed the Irrelevant task first, and half the Relevant task first. Half of the 

participants were randomly assigned to the Perceptually Difficult task (prototypes A and B more 

similar), and half to the Perceptually Easy task (prototypes A and B more different). The 

stimulus sets were counterbalanced so half of the participants received Set 1 first and the other 

half received Set 2 first.  



 39 

Tasks used Psychopy programming and were posted online through Pavlovia. PsychoPy 

is a free cross-platform package used for creating experiments (Pierce et al., 2019). Pavlovia is 

an experiment server for running and uploading studies. PsychoPy and Pavlovia are created and 

supported by Open Science Tools Ltd (https://opensciencetools.org/). Participants first 

completed consent and demographics information through Qualtrics, and after consenting they 

were transferred to Pavlovia. 

3.1.4 Procedures 

In the Irrelevant task, participants were exposed to a stimulus set derived from different 

prototypes than those used in the categorization task. In the Relevant task, participants were 

exposed to members of the same categories they would classify in the categorization task 

(derived from the same prototypes). In the exposure phase, participants were instructed to decide 

if they would remember the shape if they saw it again the next day, that there was no right or 

wrong answer, that they would not be asked again tomorrow, and that the investigators just 

wanted to know what they think. On each trial, a shape appeared on the screen, and the words 

“Yes” and “No” appeared below the shape. The participant responded Yes by pressing Y on their 

keyboard, or No by pressing N on their keyboard. Exposure shapes consisted of 10 level-3, 10 

level-5, and 10 level-7 distortions of each category (30 per category).  

After responding to all 60 exposure shapes, participants then moved directly to the 

categorization task instructions. The participants were informed that the complex shape on each 

trial belonged to one of two categories. To put a shape into Category 1, they pressed the 1 key, 

for Category 2, they pressed the 2 key. On the instruction page, there was an example of a 

Category 1 shape and a Category 2 shape. Unbeknownst to the participant the examples were the 

category prototypes. They were also informed that they would be presented with an equal 

https://opensciencetools.org/
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number of Category 1 and 2 members. On each trial, a shape appeared in the middle of the 

screen, with a 1 and 2 below. No feedback was provided. Once the participant made a decision, 

they moved directly to the next trial. For the categorization task, there were 5 prototypes, 5 level-

2, 10 level-3, 10 level-4, 10 level-5, and 10 level-7 exemplars presented from each prototype in 

random order. After completing the categorization task, participants moved on to the next 

exposure and then categorization tasks (i.e., Set 2 stimuli). After participants completed the 

study, they returned to Qualtrics to read the debriefing form. 

3.1.5 Experiment 1 Results 

Analyses examined how exposure affects accuracy for the Perceptually Difficult and 

Perceptually Easy conditions. All statistical comparisons were two-tailed and used an α of .05. 

Bonferroni corrections were applied to all pairwise comparisons. A 2 x (2) general linear model 

(GLM) with perceptual difficulty (Difficult or Easy) as the between-subjects variable, exposure 

type (Relevant or Irrelevant) as the within-subject variable, and categorization accuracy as the 

dependent measure was conducted.  

There was a significant main effect of exposure, F(1, 48) = 8.315, p = .006, np
2 = .148, 

showing that participants were significantly more accurate after Relevant exposure (M = .63, SD 

= .147) than after Irrelevant exposure (M = .57, SD = .167). There was a significant main effect 

of perceptual difficulty, F(1) = 17.421, p < .001, np
2 = .266, showing that participants were 

significantly more accurate with the Perceptually Easy (M = .67, SD = .182) categories than the 

Perceptually Difficult (M = .53, SD = .092) categories.  

There was also a significant interaction between exposure type and perceptual difficulty, 

F(1, 48) = 5.805, p = .020, np
2 = .108. Pairwise comparisons show that for the Perceptually Easy 

condition, participants were significantly more accurate after Relevant exposure (M = .724, SD = 



 41 

.141) than Irrelevant exposure (M = .612, SD = .203; p < .001), but for the Perceptually Difficult 

condition, there was no significant difference in accuracy between Relevant (M = .533, SD = 

.076) or Irrelevant exposure (M = .523, SD = .107; p = .739). This shows that when the 

categories were less difficult to tell apart (Perceptually Easy), relevant exposure was beneficial to 

later learning to categorize accurately. However, relevant exposure was not beneficial when the 

categories were perceptually more difficult to tell apart. The categorization accuracy for each 

condition is presented in Figure 3.2.  

 

Figure 3.2 Proportion of Endorsements in Each Condition 

Note. Error bars represent 95% confidence intervals. 

 

The MKM theory of latent inhibition predicts that relevant exposure should increase 

performance in both Perceptually Difficult and Perceptually Easy conditions, and performance 

should be better in the Perceptually Difficult condition. On the other hand, representational 

theories predict that relevant exposure will not be beneficial if the category prototypes are too 

similar (Perceptually Difficult condition) as separate category representations are unlikely to 

form. The results suggest that Relevant exposure is beneficial for the Perceptually Easy condition 
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and not the Perceptually Difficult condition. This is in line with the predictions of the 

representational theory, not the MKM model.  

3.2 Experiment 2 

Experiment 2 investigated the attentional spotlighting theory of perceptual learning. 

Wisniewski et al. (2017) showed that participants' performance was better in their progressively 

trained frequency range than in their constantly difficult trained range, even though the relevant 

dimension across ranges was the same suggesting that if it was spotlighted in one it should be 

spotlighted in both. This result suggested that learning goes beyond dimensional spotlighting 

because it predicts that the effects of spotlighting the relevant dimension should transfer across 

frequency ranges. On the other hand, representational theories predict that benefits should be 

restricted to the trained sounds, explaining the specificity of the results. 

Most researchers that support attentional spotlighting models use visual stimuli; however, 

Wisniewski et al. (2017) used auditory stimuli. Given the distinct characteristics of visual and 

auditory processing, it is important to investigate whether attentional spotlighting also fails to 

predict progressive effects in the visual domain. Therefore, for my second experiment, I 

investigated easy-to-hard effects with visual stimuli. Wisniewski et al. (2017) also provided 

participants feedback during training to learn the contrasts, however, for the current experiment, 

I was interested in whether participants could learn the categories through mere exposure. These 

are important changes that will allow me to test attentional spotlighting and representational 

theories in the visual domain without direct feedback using family-resemblance categories. 

Representational theories of perceptual learning predict that easy-to-hard exposure will 

benefit the differentiation of related categories compared to training using mostly difficult 

contrasts with only a few easy anchoring examples. Attentional spotlighting predicts that 
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anchoring should be equally beneficial as the relevant category features are equally spotlighted 

in the anchoring condition (Pashler & Mozer, 2013). 

Table 3.2 Research Question and Prediction for Experiment 2 

 
Question Predictions 

Do participants benefit in a differentiation task after 

the Easy-to-Hard order and Anchoring (mostly 

difficult with a few easy contrasts) conditions? 

 

Representation theory: Participants will benefit 

from Easy-to-Hard exposure but not Anchoring 

exposure. 

 

Attentional spotlighting theory: Participants will 

benefit from both Easy-to-Hard and Anchoring 

exposure. 

 

3.2.1 Power analysis and participants 

An a priori power analysis was conducted using G*Power version 3.1.9.7 (Faul et al., 

2007) to determine the required sample size for a t-test with an alpha level of 0.05. The power 

analysis indicated that a minimum of 128 participants were required to achieve 80% statistical 

power to detect a medium effect size, as measured by d = 0.5.  

One hundred and fifty-one undergraduates (with an approximate gender distribution of 

76% female, 21% male, and 2% preferred not to answer) at Georgia State University participated 

for either partial fulfillment of course requirements (N = 130) or for extra credit in a course (N = 

21). Participants’ ages ranged from 18 to 59 (M = 19.92). Participants who did not complete all 

trials (N = 5), showed significant bias (selecting one of the choices more than 50% of the time; N 

= 14), or failed the attention checks (N = 2) were not included in the analyses. Therefore, 130 

participants were included in the analyses. 

3.2.2 Stimuli 

Stimuli were created using the same method as Experiment 1, described in section 3.1.2. 

For this study, prototype A was created, and to create a related perceptually different prototype 

B, a level-7 distortion was created from a level-3 distortion of prototype A. Because prototype B 
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was derived from prototype A, and exemplars could distort towards the opposite prototype, the 

stimuli were pre-rated by twenty participants and then classified as easy, medium, and difficult. 

For each category, 15 easy, 25 medium, and 70 difficult stimuli from each category were chosen. 

Figure 3.3 presents the prototypes for each category as well as some of the stimuli from 

each distortion level. As described in Experiment 1, stimuli were compiled into tasks using 

Psychopy programming and posted online through Pavlovia.  

 

Figure 3.3 Prototypes and Sample Distortion Levels for each Stimulus Set 

 

3.2.3 Design and Materials 

The between-subjects variable was exposure condition (Easy-to-hard or Anchoring), and 

the dependent variable was categorization accuracy. Participants were randomly assigned to 

either the Easy-to-Hard condition or the Anchoring exposure condition. Participants completed 

two phases: an exposure phase, and a categorization test phase. 

After completing consent and demographic forms online through Qualtrics, participants 

were directed to the online testing platform Pavlovia to complete the study. Mobile phone and 

tablet testing was disabled. Therefore, testing had to be completed on a desktop or laptop 

computer. 
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3.2.4 Procedures 

For the Easy-to-Hard condition, participants were presented with 15 easy contrasts, 

followed by 15 medium contrasts, and then 15 hard contrasts of each category. For the 

Anchoring condition, participants were presented with 5 easy and then 40 difficult contrasts from 

each category. Category A and B members were intermixed in both conditions. For both 

exposure conditions, participants were told that they needed to decide if they would remember 

the shape if they saw it again the next day, there was no right or wrong answer, they would not 

be asked again tomorrow, and the experimenter just wanted to know what they think. On each 

trial, a shape appeared on the screen, and the words “Yes” and “No” appeared below the shape. 

The participants responded Yes by pressing Y on their keyboard or No by pressing N on their 

keyboard. After completing the exposure phase, participants moved to the categorization test 

instructions. 

For the categorization test, participants were informed that they would see a complex 

shape on each trial that belonged to one of two categories. To put a shape into Category A, they 

needed to press the A key, and for Category B, they needed to press the B key. They were 

informed that they would be presented with an equal number of Category A and B members. On 

each trial, a shape appeared in the middle of the screen, with an A and B below. After each 

response participants were presented with “Correct” in green for a correct response, or 

“Incorrect” in red for an incorrect response. The categorization test consisted of 30 hard and 10 

medium shape trials from each category. The entire experiment took approximately 40 minutes 

to complete. After participants completed the study, they returned to Qualtrics to read the 

debriefing form. 
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3.2.5 Experiment 2 Results and Conclusions 

To investigate whether there was a difference in participants' overall accuracy in the test 

phase between the Easy-to-Hard and Anchoring conditions, an independent t-test was conducted 

with the exposure condition as the between-subjects variable and the proportion of correct 

responses as the dependent measure. Participants’ categorization accuracy for each condition can 

be seen in Figure 3.4. 

Participants in the Easy-to-Hard condition (M = .60, SD = .091) were significantly more 

accurate in their categorization responses than participants in the Anchoring condition (M = .55, 

SD = .074), t(128) = 2.995, p = .003, d = .525.  

 

Figure 3.4 Proportion of Endorsement in Each Condition 

Note. Error bars represent 95% confidence intervals. 

 

Participants performed significantly better in the Easy-to-Hard condition than in the 

Anchoring condition. This suggests that participants were better able to differentiate the two 

categories when exposure began with easy contrasts, then progressed to medium contrasts, and 

then hard contrasts rather than when exposure only presented a few easy contrasts and mostly 
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hard contrasts. The results support representational theories of perceptual learning, but not the 

attentional spotlighting theory. Representational theories predict that easy-to-hard exposure will 

benefit the differentiation of these related categories, whereas if the exposure phase contains 

mostly difficult contrasts, participants will not learn to differentiate difficult contrasts in a later 

task. Attentional spotlighting predicts that both types of training will be equally beneficial 

because the relevant category features are equally spotlighted in the anchoring condition (Pashler 

& Mozer, 2013). 

3.3 Experiment 3 

Experiment 3 was a first attempt to see how participants actually perceived and rated 

members of two categories after exposure. Previous work looking at how training with feedback 

affects participants' similarity ratings of category members has shown that participants rate 

category members as being more similar to each other (Ashby et al., 2020; Goldstone et al., 

2001; Livingston et al., 1998; Pérez-Gay Juárez et al., 2019), and participants rate stimuli as 

being more dissimilar to members from other categories (Goldstone et al., 2001; Gureckis & 

Goldstone, 2008; Pérez-Gay Juárez et al., 2019) after training. The current study will look at how 

participants' similarity ratings change after mere exposure to stimuli from two categories and will 

also look at how this may change over time (multiple blocks of exposure) rather than just before 

and after training. In one condition, participants received exposure to the category members 

before every rating block, in order to see how initial exposure affected ratings. In a second 

condition, there was no exposure before the first rating block. 

 

 

 



 48 

Table 3.3 Research Question and Prediction for Experiment 3 

 
Question Predictions 

Does exposure to two categories change 

participants' perceived similarity of with- and 

between-category members? 

Participants will rate within-category members as 

more similar and between-category members as 

more different with more exposure.  

 

3.3.1 Power analysis and participants 

An a priori power analysis for a mixed effect 2 x (2 x 5) ANOVA was conducted using 

G*Power version 3.1.9.7 (Faul et al., 2007) to determine the minimum sample size necessary for 

this experiment. Results indicated the minimum sample size needed to achieve 80% power for 

detecting a medium effect at a significance criterion of α = .05 is N = 20.  

A total of 76 participants were recruited (with an approximate gender distribution of 67% 

female, 29% male, and 3% preferred not to answer). Participants’ ages ranged from 18-35 (M = 

21.4). Fifty-five participants were Georgia State University undergraduates who completed the 

study for partial fulfillment of course credit, and 21 participants were recruited from Prolific and 

received $6 as compensation for completing the experiment. Prolific participants were required 

to be from the United States and no older than 35 years old. Participants who did not complete 

all trials (N = 15) or failed the attention checks (N = 1) were not included in the analyses. 

Therefore, 60 participants were included in the analyses. 

3.3.2 Stimuli 

Stimuli were created using the methods described in section 3.1.2. Two prototypes were 

created. From each prototype, 75 level-3, level-5, and level-7 distortions were created to make 

the exposure block shapes. Then 35 level-2, level-3, level-5, and level-7 distortions from each 

prototype were created for the similarity rating blocks from each prototype. 
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The exposure stimuli were divided into 5 sets so that each set had 15 level-3, level-5, and 

level-7 distortions of each prototype. The similarity rating task stimuli were divided into 5 

stimulus sets, each containing both category prototypes, and 7 each of level-2, level-3, level-5, 

and level-7 distortions from each prototype.  

3.3.3 Design and Materials 

This experiment used a 2 x (2 x 5) mixed factors design with similarity ratings as the 

dependent measure. The between-participants variable was exposure before the first rating block 

or not, and the within-participant variable was comparison type (within- and between-category) 

and block (1-5). 

After completing consent and demographic forms through Qualtrics, participants were 

directed to Pavlovia to complete the study. Mobile phone and tablet testing was disabled. 

Therefore, testing had to be completed on a desktop or laptop computer. 

3.3.4 Procedures 

Half of the participants alternated 5 exposure blocks and 5 rating blocks starting with an 

exposure block. Half of the participants alternated 4 exposure blocks and 5 rating blocks starting 

with a rating block. One stimulus set was used for each block. The stimulus set order was 

randomized for each participant. The exposure and rating blocks alternated back and forth.  

Exposure blocks consisted of 15 Category A and 15 Category B members (5 level-3, 5 

level-5, and 5 level-7 distortions from each prototype) in a randomized order. Each exposure 

block used different category members, so participants were never presented with the same 

stimulus more than once. On each trial, a shape appeared on the screen, and the words “Yes” and 

“No” appeared below the shape. Participants were told that they needed to decide if they would 

remember the shape if they saw it again tomorrow, that there was no right or wrong answer, they 
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would not be asked again tomorrow, and the investigators just wanted to know what they 

thought. The participants responded Yes by pressing the Y on their keyboard, or No by pressing 

the N on their keyboard.  

Similarity rating blocks consisted of 64 trials each. Thirty-two of the trials presented two 

shapes from the same category (within-category). On half of these trials, both shapes were 

Category A members, and on half of the trials, both shapes were Category B members. Thirty-

two of the trials presented a shape from each category (between-category) for comparison. Each 

block presented all pairwise combinations (16) for Category A and Category B. In each block, all 

pairwise combinations were presented for the between-category comparisons (17). On each trial, 

participants were presented with two stimuli presented side by side. The shapes were randomly 

selected to appear on the left or right side. Below the stimuli was the question “How similar are 

these two shapes?” Then below this question was a scale of 0 to 6, with the label “No 

Difference” below 0 and “Big Difference” below 6. Participants used their mouse to select a 

rating. Once a rating was selected the trial ended; no feedback was given. Trials were self-paced 

and the entire study took approximately 30 minutes to complete. After participants completed the 

study, they returned to Qualtrics to read the debriefing form. An example of a similarity rating 

trial can be seen in Figure 3.5. 
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Figure 3.5 A Sample of a Similarity Rating Trial 

3.3.5 Experiment 3 Results and Conclusions 

Analyses were conducted to look at how participants' similarity ratings of Category A 

and B exemplars changed over time. All statistical comparisons were two-tailed and used an α of 

.05. Bonferroni corrections were applied to all pairwise comparisons. Participant ratings can be 

seen in Figure 3.6.  

 

Figure 3.6 Rating for Between- and Within-Categories in each Block 

Note. Error bars represent 95% confidence intervals. 
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A 2 x (2 x 5) GLM was conducted with similarity rating (0-6) as the dependent variable, 

Block 1 exposure condition (exposure vs no exposure) as the between-subjects variable, and 

comparison type (within-category vs between-category) and block (1-5) as the within-subject 

variables. There was a significant main effect of block, F(4, 55) = 4.778, p = .002, np
2 = .258, 

suggesting that participants ratings changed over time. Pairwise comparisons show that Block 1 

ratings were significantly lower than Block 2 (p = .042), Block 3 (p = .003), Block 4 (p = .025), 

and Block 5 (p = .004). There was a significant main effect of comparison type, F(1, 58) = 

306.898, p < .001, np
2 = .841, showing that participants rated within-category members lower 

(more similarly) than between-category members. There was no significant main effect of 

exposure condition, F(1) = .034, p = .855, np
2 = .001, showing that overall participants did not 

rate items differently if they received exposure before Block 1 or not.  

There was no significant interaction between block and condition, F(4, 55) = 1.582, p = 

.192, np
2 = .103, suggesting that changes in ratings across blocks did not depend on receiving 

exposure before the first block or not. There was no significant interaction between comparison 

type and exposure condition, F(4, 55) = 3.067, p = .085, np
2 = .050, suggesting that within-

category members were rated lower than between-category members regardless of exposure 

before the first block. There was no significant interaction between comparison type and block, 

F(4, 55) = 1.911, p = .121, np
2 = .122, showing that within-category members were consistently 

rated lower than between-category members across blocks. There was no 3-way interaction 

between block, comparison type, and exposure condition, F(4, 55) = .893, p = .474, np
2 = .061, 

suggesting that within-category members were rated as more similar than between-category 

members for both exposure conditions across blocks.  
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To better understand exposure's effect on the participants' initial perceived similarity of the 

categories, I compared Block 1 ratings for the participants who received exposure before Block 1 

and those who did not receive exposure before Block 1. Means and standard deviations can be 

found in Table 3.4.  

A 2 x (2) GLM was conducted with similarity rating (0-6) as the dependent variable, 

condition (with exposure vs no exposure) as the between-subjects variable, and comparison type 

(within-category vs between-category) as the within-subjects variable. There was a significant 

main effect of comparison type, F(1, 58) = 273.672, p < .001, np
2 = .825, showing that 

participants consistently rated within-category members lower (more similar) than between-

category members. There was no significant main effect of condition, F(1) = 2.025, p = .160, np
2 

= .034, showing that exposure before Block 1 did not affect participants ratings. There was no 

significant interaction between comparison type and condition, F(1, 58) = 1.942, p = .169, np
2 = 

.032, suggesting that within-category and between-category member ratings were similar with or 

without exposure before Block 1.  

Table 3.4 Means and standard deviations for Experiment 3 

 
Comparison 

Type Block 

All 

Exposure 

No Exposure 

Block 1 

  M(SD) M(SD) 

Within    

 Block 1 2.79(.786) 2.96(.641) 
 Block 2 3.18(.641) 2.92(.662) 
 Block 3 3.04(.803) 3.01(.704) 
 Block 4 3.42(.992) 3.19(.783) 
 Block 5 3.33(.728) 3.19(.783) 

Between    

 Block 1 4.16(1.13) 4.58(.826) 
 Block 2 4.60(.854) 4.72(.950) 
 Block 3 4.54(.1.16) 4.73(.902) 
 Block 4 4.71(.875) 4.79(.936) 
 Block 5 4.63(.818) 4.76(.9360 
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Taken together, these results suggest that there was no significant change in participants' 

perceived similarity ratings either within- or between-categories after mere exposure. This result 

may seem surprising given previous findings showing that participants’ ratings change for 

within-category members as being more similar after training (Ashby et al., 2020; Goldstone et 

al., 2001; Livingston et al., 1998; Pérez-Gay Juárez et al., 2019) and between-category members 

as being less similar (Goldstone et al., 2001; Gureckis & Goldstone, 2008; Pérez-Gay Juárez et 

al., 2019) after training. However, those experiments used direct categorization training with 

feedback and this study used mere exposure. This may suggest that training effects on 

perceptions of within and between-category similarity may require the involvement of feedback-

dependent striatal-mediated learning. 

3.4 Experiment 4 

In Experiment 4, I investigated attentional weighting and representational theories of 

perceptual learning. Attentional weighting theories suggest that perception adapts to tasks by 

incrementally increasing attention toward crucial features and by slowly reducing attention 

toward irrelevant features. Improvements in perceptual discriminations are caused by the 

development of more efficient connections between higher-level sensory signals or responses 

and feature representations lower in the perceptual pathway. Evidence for attentional weighting 

theory comes from research using simple stimuli with basic visual features suggesting that 

perceptual learning occurs early in the visual cortex (see Song et al., 2005). Research supporting 

attentional weighting has shown that some examples of perceptual learning are specific to their 

original training situation (e.g., Ball & Sekuler, 1982; Fiorentini & Berardi, 1980; Karni & Sagi, 

1991; Poggio et al., 1992).  
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To investigate whether early visual cortex mediates learning multiple family-resemblance 

categories after mere exposure, I had participants complete an exposure phase and a 

categorization test phase, during which some participants were presented with stimuli varying in 

size from the exposure phase. Participants were randomly assigned to the Constant Size or 

Variable Size condition. For training, participants were not told any information about the two 

categories, and all category members were medium-sized. For the categorization test, 

participants in the Constant Size condition were presented with shapes in the medium size. In the 

Variable Size condition, the stimuli varied in size. Attentional weighting theories predict that 

participants’ performance in the task will be better in the Constant Size condition, as learning is 

occurring in the early visual cortex. Representational views predict that participants can learn in 

both conditions because representational change affecting categorization is likely taking place at 

higher levels of visual cortex with object-level representations. 

Table 3.5 Research Question and Prediction for Experiment 4 

 

Question Prediction 

Can high-level areas in the visual cortex 

contribute to prototype formation under 

conditions that would make it difficult for low-

level areas to do so? 

Representational theory: There will be no 

differences between the Variable Size and 

Constant Size conditions. 

 

Attentional weighting theory: Participants 

will have better categorization accuracy in 

the Constant Size condition than the Variable 

Size condition. 

 

3.4.1 Power analysis and participants 

An a priori power analysis was conducted using G*Power version 3.1.9.7 (Faul et al., 

2007) to determine the required sample size for a mixed-factor general linear model test with an 

alpha level of 0.05. The power analysis indicated that a minimum of 24 participants were 
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required to achieve 80% statistical power to detect a medium effect size, as measured by np
2 = 

.06.  

A total of 33 participants were recruited (approximate gender distribution of 55% female, 

42% male, and 3% preferred not to answer). Participants’ ages ranged from 18-34 (M = 24.3). 

Thirteen participants were Georgia State University undergraduates who completed the study for 

partial fulfillment of course credit. Twenty participants were recruited from Prolific and received 

$6 as compensation for completing the experiment. They were required to be from the United 

States and no older than 35 years old. Participants who did not complete all trials (N = 2), or 

showed significant bias (selecting one of the choices more than 75% of the time; N = 1) were not 

included in the analyses. Therefore, 30 participants were included in the analyses. 

3.4.2 Stimuli 

Stimuli were created using the methods described in Section 3.1.2. For this study, 

prototype A and prototype B were first created. For each category, 15 level-3, -5, and -7 

distortions were created from each prototype as exposure stimuli. For the test stimuli, 30 level-2, 

-3, -5, and -7 distortions were created from each prototype. The stimuli were arranged into 12 

blocks. Half of the blocks contained 18 stimuli, 9 from each category, with 1 prototype A and 1 

prototype B, then 2 of each level-2, -3, -5, and -7 distortions from each category. The other half 

of the blocks did not include the prototypes but consisted of 2 of each level-2, -3, -5, and -7 

distortions from each category.  

The blocks were presented in a randomized order. All stimuli were created in the same 

Medium size. For the Variable Size condition, the program was set up so that each level would 

appear in each size approximately 4 to 5 times to ensure all crosswise comparisons were 

presented. The Large size was a 10% width and height increase to the Medium size, and the 
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Huge was a 10% increase of the Large size. The Small size was a 10% decrease in size from the 

Medium size, and Tiny was a 10% decrease from the Small size. Figure 3.7 presents the category 

prototypes in varying sizes. As described in Experiment 1, stimuli were compiled into tasks 

using Psychopy programming and posted online through Pavlovia.  

 

Figure 3.7 Category Prototypes in each Size 

Note. The top row shows the Category A prototype, the bottom row shows the Category B 

prototype. From left to right the sizes are Tiny, Small, Medium, Large, and Huge. 

 

3.4.3 Design and Materials 

This experiment used a 2 x (5) mixed factorial design with categorization accuracy as the 

dependent measure. The between-participants variable was size condition (Constant Size, 

Variable Size), and the within-participant variable was item type (prototype, level-2, -3, -5, and -

7 distortion). 

Participants were randomly assigned to either the Constant Size or Variable Size 

conditions. Each task had an initial exposure phase, followed by a categorization task phase. 

Tasks used Psychopy programming and were posted online through Pavlovia. Participants first 

completed consent and demographics information through Qualtrics, after consenting, they were 

transferred to Pavlovia. 
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3.4.4 Procedures 

In the Constant Size condition, participants were exposed and tested on only Medium-

sized stimuli. In the Variable Size condition, participants were exposed to Medium size stimuli, 

and tested on stimuli that varied in size: Tiny, Small, Medium, Large, and Huge.  

All participants started with the exposure phase. In the exposure phase, participants were 

instructed to decide if they would remember the shape if they saw it again the next day. They 

were told there was no wrong or right answer, and they would not be asked again tomorrow, and 

the investigators just wanted to know what they thought. On each trial, a Medium-sized shape 

appeared on the screen, and the words “Yes” and “No” appeared below the shape. The 

participant responded Yes by pressing Y on their keyboard, or No by pressing N on their 

keyboard. Exposure shapes consisted of 15 level-3, 15 level-5, and 15 level-7 distortions of each 

category.  

After responding to the 90 exposure shapes, participants then moved to the categorization 

task instructions. The participants were informed that the complex shape on each trial belonged 

to one of two categories. To put a shape into Category A, they pressed the A key, for Category 

B, they pressed the B key. They were also informed that they would be presented with an equal 

number of Category A and B members. On each trial, a shape appeared in the middle of the 

screen, with an A and B below. After each response participants were presented with “Correct” 

in green for a correct response, or “Incorrect” in red for an incorrect response. The categorization 

task was a total of 204 trials. The experiment took approximately 30 minutes to complete. After 

participants completed the study, they returned to Qualtrics to read the debriefing form.  
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3.4.5 Experiment 4 Results and Conclusions 

All statistical comparisons were two-tailed and used an α of .05. Bonferroni corrections 

were applied to all pairwise comparisons. Means and standard deviations are in Table 3.6. A 2 x 

(5) GLM was conducted with condition (Variable Size vs. Constant Size) as the between-subject 

variable, item type as the within-subjects variable (prototype, level-2, -3, -5, and -7 distortion), 

and categorization performance was the dependent variable.  

Table 3.6 Means and standard deviations for Experiment 4 

 

Item Type Size Variable Same Size 

 M SD M SD 

Prototype 0.92 0.099 0.9 0.114 

Level-2 0.88 0.114 0.87 0.145 

Level-3 0.88 0.125 0.88 0.132 

Level-5 0.85 0.125 0.85 0.134 

Level-7 0.76 0.135 0.73 1.28 

 

There was a significant main effect of item type, F(4, 28) = 22.903, p < .001, np
2 = .450. 

Pairwise comparisons showed that categorization accuracy with the prototypes was significantly 

better than with the level-5 (p = .010) and level-7 (p < .001) distortions. But there was no 

significant difference between the prototype and level-2 (p = .307) or level-3 (p = 1.000) 

distortions. Categorization accuracy was significantly higher with the level-2 distortions than the 

level-7 distortions, but not the level-3 (p = 1.000) or level-5 (p = .244). Category accuracy was 

significantly higher for level-3 distortions than level-5 (p = .026) and level-7 (p < .001) 

distortions. Categorization accuracy was significantly higher with the level-5 distortions than the 

level-7 (p < .001) distortions. There was no significant main effect of condition, F(1) = .090, p = 

.767, np
2 = .003, showing that participants’ categorization accuracy was not significantly better 

with either constant or variable stimuli size. There was no signification interaction of item type 

and condition, F(1, 28) = .025, p = .875, np
2 = .001. Participants' categorization accuracy for the 
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Variable Size condition can be found in Figure 3.8A and the Constant Size condition in Figure 

3.8B. 

 

Figure 3.8 Proportion of Endorsements of each Condition 

The categorization accuracy of the first 50 trials was also examined for each condition to 

see if learning occurred over time through trial-and-error, or if participants could successfully 

categorize the stimuli at different sizes early in the test phase after exposure. The independent t-
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test showed that there was no significant difference in early performance between Constant Size 

and Variable Size conditions, t(28) = .183, p = .856, d = .067. 

A (5 x 5) GLM was conducted to see if participants in the Variable Size condition 

performed similarly with all size stimuli, or if they had higher accuracy for the Medium size, to 

which they had been exposed. The within-subject variables were size (Tiny, Small, Medium, 

Large, Huge), and item type (prototype, level-2, -3, -5, and -7 distortions). The dependent 

variable was categorization accuracy.  

There was a significant main effect of item type, F(1, 12) = 10.597, p < .001, np
2 = .469. 

Pairwise comparisons showed that accuracy with the level-7 distortions was significantly lower 

than the prototype (p = .014), and level-2 distortions (p = .003). There were no other significant 

differences between item types. This result suggested that participants found it more difficult to 

correctly categorize the high distortions (level 7) of the prototype in comparison to the 

prototypes and low-level distortions (level 2). There was no significant main effect of size, F(4, 

48) = .780, p = .538, np
2 = .062, and no significant interaction between size and item type, F(16, 

192) = .912, p = .556, np
2 = .071. This result showed that participants' accuracy was not better for 

the Medium size that they were exposed to; their performance was consistent across stimulus 

sizes. Category endorsements for each size can be found in Figure 3.9.  
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Figure 3.9 Proportion of Endorsements Correct for each Stimulus Size 

Attentional weighting theory suggests that perceptual learning occurs early in the visual 

cortex (Song et al., 2005). If perceptual learning’s enhancement of family-resemblance category 

learning occurs in the early visual cortex, stimulus-size variability should lessen exposure 

learning. However, category learning was similar in both conditions (Constant Size vs Variable 

Size). Participants in the Variable Size condition accurately categorized all size stimuli. Taken 

together, these results imply that perceptual learning’s enhancement of categorization is not 

occurring early in the visual cortex as attentional weighting theorists suggest. These results 

provide support for representational theories of perceptual learning, but not attentional weighting 

theories. 
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4 GENERAL DISCUSSION 

For decades multiple system theorists have tried to understand how different brain 

systems may facilitate different types of category learning. Many natural categories follow a 

family-resemblance category structure (e.g., Rosch & Mervis, 1975). Unlike other types of 

categories, humans (even those with memory impairments) can learn a single family-

resemblance category merely by being perceptually exposed to members of the category even 

when there is no discussion of their category membership (e.g., Homa & Cultice 1984; Palmeri 

& Flanery 1999; Reed et al.,1999, Zabberoni et al., 2021). Jackson et al. (2023) recently showed 

that pre-exposure to category members also benefits learning two family-resemblance categories 

simultaneously, suggesting a role for perceptual learning in family-resemblance category 

learning. However, Jackson et al. (2023) did not pinpoint exactly what the underlying 

mechanism is of this perceptual learning is. Therefore, in the current studies, I tested different 

theories of perceptual learning as explanations of family-resemblance category learning from 

exposure. The theories I tested were MKM’s latent inhibition model, attentional spotlighting, 

attentional weighting, and representational theory. These specific theories were chosen because 

they are the predominant theories trying to explain how perceptual learning occurs. I 

hypothesized that exposure to relevant category members provides benefit to family-resemblance 

category learning because exposure allows participants to build cortical representations of the 

prototypes. This is consistent with representational models of perceptual learning. Below I will 

outline the findings and any potential limitations to each experiment, and then discuss the 

theoretical interpretations. 
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4.1 Experiment 1 Findings 

Experiment 1 investigated the MKM model and representational theories' predictions of 

perceptual learning in a categorization task without feedback to see how participants labeled 

category A and B members after being shown examples from the categories (the prototypes). 

Participants were assigned to either the Perceptually Difficult or the Perceptually Easy condition 

and then completed a relevant and irrelevant exposure task before completing a categorization 

task. In the Perceptually Difficult condition, the category prototypes were highly related to one 

another, making it difficult to tell them apart. In the Perceptually Easy condition, the category 

prototypes were less related, and easier to tell apart. 

The MKM model predicted that relevant exposure to category members would increase 

performance in both Perceptually Difficult and Perceptually Easy conditions, and performance 

would be better in the Perceptually Difficult condition. This is because the MKM model suggests 

that when stimuli share elements, there will be a reduction in salience of those elements, and any 

unique elements to the stimuli will be higher in salience. This effect is likely to be greater for 

items that are perceptually similar to each other because they share many common elements and 

hence latent inhibition will be more pronounced than for items that are very different (i.e., that 

have few common elements; Milton et al., 2014). If perceptual learning is more marked for 

perceptually similar items than perceptually different items as the MKM model proposes, then 

one prediction that follows is that pre-exposure will lead to better family-resemblance sorting for 

perceptually similar stimuli (Perceptually Difficult condition) compared to perceptually different 

stimuli (Perceptually Easy condition). On the other hand, representational theories predict that 

relevant exposure will not be beneficial if the category prototypes are too similar (Perceptually 

Difficult condition) as separate category representations are unlikely to form. The results from 
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this study suggest that relevant exposure is only beneficial for the Perceptually Easy condition. 

Representational theory is able to explain the results of Experiment 1, however, the MKM model 

cannot.  

4.2 Experiment 2 Findings 

In Experiment 2, I investigated the attentional spotlighting and representational theories 

of perceptual learning. Participants were randomly assigned to the Easy-to-Hard or Anchoring 

condition. In the Easy-to-Hard condition, exposure started with easy contrasts of the categories 

(exemplars rated similar to their prototype), and then moved to medium contrasts, and lastly hard 

contrasts (exemplars rated less similar to the prototypes). For the Anchoring condition, 

participants viewed just a few examples of easy contrasts during exposure, and the rest were 

difficult contrasts.  

Attentional spotlighting suggests that easy-to-hard presentation of stimuli is beneficial 

because the initial easy trials direct participants' attention to category-relevant features, and once 

these features are identified, it is perceived more minutely, altering the perception of the 

dimension permanently. If this line of reasoning is correct, participants should perform similarly 

in the Easy-to-Hard and Anchoring conditions, as they both started with easy contrasts 

containing category relevant dimensions. However, representational theories predict that easy-to-

hard exposure incrementally aids in differentiation of these related categories (A-B), whereas if 

the exposure phase contains mostly difficult contrasts, this representational differentiation cannot 

occur.  

The results showed that participants performed significantly better in the Easy-to-Hard 

condition than in the Anchoring condition. The results suggest that participants are better at 

differentiating the two categories when exposure begins with easy contrasts, then medium 
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contrasts, and then hard contrasts rather than when exposure only shows a few easy contrasts and 

then mostly hard contrasts. Once again, these results are predicted by representational theories, 

but not attentional spotlighting theories. 

4.3 Experiment 3 Findings 

Experiment 3 aimed to explore how participants perceive and rate members of two 

categories after mere exposure and how those ratings change over time. Previous work has 

investigated how training with feedback affects participants' similarity ratings of category 

members and has shown that participants rate category members as being more similar to each 

other (Ashby et al., 2020; Goldstone et al., 2001; Livingston et al., 1998; Pérez-Gay Juárez et al., 

2019), and more dissimilar to members from other categories (Goldstone et al., 2001; Gureckis 

& Goldstone, 2008; Pérez-Gay Juárez et al., 2019) after training.  

In one condition participants received exposure to the category members before every 

similarity rating block. In order to see how initial exposure affected ratings, there was a second 

condition in which there was no exposure before the first rating block. The results showed that 

there was not any change over time with further exposure and there was no initial change in 

participants’ perceived similarity of the categories after the first exposure block. This may 

suggest that training effects on perceptions of within and between-category similarity may 

require the involvement of feedback-dependent striatal-mediated learning. 

4.3.1 Experiment 3 Limitations 

The results of Experiment 3 seem to contradict previous research that has looked at 

similarity ratings of categories after direct training. However, this study differs from others in 

that participants were not given any information or training about the categories, but instead they 

received mere exposure. To better understand why the exposure in this experiment did not alter 
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participants’ perception of category A and B members, it would be beneficial to conduct the 

same study with a training condition in which participants complete a categorization task with 

feedback instead of a mere exposure task. This would be more similar to how other studies have 

looked at similarity ratings. If ratings do not change in a task that uses direct training, it would 

suggest there are bigger methodological issues as direct training has been shown to change 

participants' similarity ratings in previous work (Goldstone et al., 2001). However, if there are 

effects after training that do not occur after exposure, this may suggest that the underlying 

mechanisms driving these changes in similarity may require the involvement of reinforcement-

dependent learning systems like the basal ganglia. 

4.4 Experiment 4 Findings 

Experiment 4 investigated attentional weighting theory and representational theories of 

perceptual learning. Attentional weighting theory has suggested that perceptual learning is a low-

level process that occurs early in the visual cortex (for discussion see Song et al., 2005). 

However, the research supporting this theory has used simple stimuli with basic features and has 

suggested that perceptual learning is specific to the original training situation (e.g., Ball & 

Sekuler, 1982; Fiorentini & Berardi, 1980; Karni & Sagi, 1991; Poggio et al., 1992). This has led 

attentional weighting theorists to assume that perceptual learning cannot involve actual 

representational change, but only attentional change because these early visual areas are thought 

to be fixed and relatively unchanging after early development.  

To test these two theories, I investigated whether early visual cortex mediated learning 

multiple family-resemblance categories after mere exposure. To do so, participants were 

randomly assigned to the Constant Size or Variable Size condition. For training, participants 

were not told any information about the two categories, and all category members were medium 
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sized. For the categorization test, participants in the Constant Size condition were presented with 

shapes in the medium size. In the Variable Size condition, the stimuli varied in size. Attentional 

weighting theories suggest that participants’ performance in the task will be better in the 

Constant Size condition, as learning is occurring in the early visual cortex where there is no size 

constancy. Representational views suggest participants will learn in both conditions because 

representational change should be taking place at higher areas of visual cortex where size is 

constant. The results showed no differences in categorization performance between the two 

conditions, and participants in the Variable Size condition were able to learn all sizes equally 

well. These results suggest that early visual cortex may not mediate exposure learning in 

multiple family-resemblance categories as predicted by attentional weighting theory. The data 

again support representational views.  

4.5 Theoretical Interpretations 

Since perceptual and category learning constitute two different levels of processing 

information (e.g., their specificity and level of abstraction), they have had separately developing 

literatures (Carvalho & Goldstone, 2016). The current studies make important contributions to 

both the perceptual and categorization learning literatures, as they shed light on how these two 

processes can interact in learning multiple family-resemblance categories through mere 

exposure.  

Collectively, these experiments contribute insights to the perceptual learning literature by 

challenging the predominant theories of perceptual learning. Experiment 1 showed that contrary 

to the MKM model's predictions, relevant exposure only enhanced performance in the 

Perceptually Easy condition, aligning more closely with representational theories and not the 

MKM model’s predictions. This discrepancy emphasizes the complexity of the relationship 
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between exposure and category learning and shows that there are limitations to learning through 

mere exposure if categories are too similar. Experiment 2 not only provides further support for 

representational theories but also has meaningful implications for practical applications, 

particularly for training regimens and educational practices. The results highlight the importance 

of using easy-to-hard sequencing in optimizing perceptual learning through exposure. While 

previous studies indicated that training with feedback influenced participants’ similarity ratings, 

Experiment 3, using mere exposure, revealed no significant changes in perceived similarity over 

time (blocks). The results prompt further investigation to better understand how exposure 

changes our perception of family-resemblance categories. Experiment 4 focused on attentional 

weighting theory and representational theories by investigating whether the early visual cortex 

mediated learning in multiple family-resemblance categories after mere exposure. The results 

indicated no significant differences between Constant Size and Variable Size conditions. This 

challenges attentional weighting theory and supports the idea that representational changes are 

occurring at higher levels of the visual cortex. 

These studies also add to the multiple-systems view of category learning. A predominant 

theory of categorization, COVIS, predicts that we are able to learn through exposure due to 

fluency (Ashby & Maddox, 2005). Fluency happens when previous experience induces a graded 

pattern of activation in the visual cortex causing that group of cells to fire more rapidly to the 

presentation of similar patterns in the future (Ashby & Maddox, 2005). In other words, during 

exposure to category members, cells common to category members repeatedly fire causing an 

enhanced visual response, then, during the transfer phase, participants can use the feeling of 

fluency/familiarity to decide which stimuli belong to the category. Fluency would only be 

beneficial in learning a single-family-resemblance category through exposure and not multiple 
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family-resemblance categories. This is because if we were exposed to two family-resemblance 

categories, the stimuli from both categories (A-B) would feel fluent and could not be 

differentially categorized. The results from Jackson et al. (2023) showed that exposure is 

beneficial when learning multiple family-resemblance categories simultaneously, which shows 

that fluency is not the only mechanism for learning from exposure. The current studies helped to 

pinpoint the mechanism for learning multiple family-resemblance categories through exposure, 

which Jackson et al. (2023) were not able to do.  

These studies suggest that the ability to learn multiple family-resemblance categories 

through mere exposure is not reliant on the reduced salience of shared features between category 

stimuli as proposed by MKM model, is not reliant on an explicit search process for relevant 

dimensions as proposed by attentional spotlighting theories, and is not processed early in the 

visual cortex as suggested by attentional weighting theory. The current studies provide support 

for representational theories of perceptual learning, which suggest that exposure and training 

actually change the way that stimuli are perceptually represented. During exposure, the visual 

perceptual system can build cortical representations of prototypes through perceptual learning 

that can later aid category learning allowing sorting or quick mapping onto multiple categories. 

Having multiple systems available for category learning is beneficial. When one system 

fails us, we have a backup system. We have an implicit-associative system that requires no 

conscious awareness and produces stable performance and behavior. However, this system fails 

without immediate reinforcement and repetition. The explicit-declarative system complements 

the implicit-associative system working almost as an opposite. This system works through rule 

learning which is fast, conscious, can be abstracted, and does not require immediate 

reinforcement and repetition. The perceptual representation system feeds information to the 
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implicit-associative and explicit-declarative systems. These studies suggest that through 

perceptual learning, we are able to take in information and create cortical representations which 

can then be used by the implicit-associative and explicit-declarative systems to help inform 

categorization decisions. 
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