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ABSTRACT 

 

AN EXAMINATION OF THE EFFECTS OF AIR POLLUTION AND PHYSICAL 

ACTIVITY ON MARKERS OF ACUTE AIRWAY OXIDATIVE STRESS AND 

INFLAMMATION IN ADOLESCENTS 

 

By 

 

EMILIA PASALIC 

 

May 13, 2016 

 

INTRODUCTION: Airway inflammatory response is widely believed to be a central 

mechanism in the development of adverse health effects related to air pollution exposure. 

Increased ventilation and inspiratory flow rates due to physical activity in the presence of 

air pollution will increase the inhaled dose of air pollutants. However, physical activity 

can also affect lung function and may moderate the relationship between air pollution and 

lung function. The mechanisms that underpin the complex interplay between air 

pollution, physical activity, and lung function may be more sensitive to the inhaled dose 

of air pollution than to ambient air pollution exposure alone. Despite this, the majority of 

literature on the topic measures only the ambient concentration of air pollution. 

AIM: This study aims to characterize the relationship between inhaled air pollution dose, 

physical activity, and respiratory response markers of lung function, oxidative stress and 

inflammation among healthy adolescents. Respiratory response measures include exhaled 

nitric oxide (eNO), percent oxidized exhaled breath condensate glutathione (%GSSG), 

percent oxidized exhaled breath condensate cysteine (%CYSS), the percentage of total 

oxidized compounds (%Oxidized), and changes in pulmonary function, namely, forced 

vital capacity (FVC), forced expiratory volume (FEV1), and forced expiratory flow 

(FEF25-75). Air pollution measures include cumulative inhaled doses of fine particulate 

matter (PM2.5), ozone (O3), black carbon (BC), and particle number total (PNT). 

METHODS: Using a non-probability sample of high school athletes, outcomes were 

measured prior to and after participation in extracurricular sports practice. The inhaled 

dose of air pollutants during the sports practice was estimated for each participant using a 

novel method developed by Dr. Roby Greenwald. This observational study estimates the 

association between air pollution dose and outcome measures using general linear mixed 

models with an unstructured covariance structure and a random intercept for subject to 

account for repeated measures within subjects. All data analysis was completed using 

SAS. 

RESULTS:  A one IQR (i.e. 345.64 µg) increase in O3 inhaled dose is associated with a 

29.16% average decrease from baseline in %Oxidized. A one IQR (i.e. 2.368E+10 

particle) increase in PNT inhaled dose is associated with an average decrease in FEF25-75 

of 0.168 L/second from baseline. The relationship between PNT inhaled dose and eNO is 
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moderated by activity level, with increasing activity levels attenuating the relationship. 

Similarly, the relationship between O3 inhaled dose and %CYSS is attenuated by activity 

level, with increasing activity levels corresponding to smaller changes from baseline for a 

constant O3 inhaled dose. 

DISCUSSION: Someone who inhales a high cumulative dose despite a low activity level 

is likely breathing in a higher concentration of air pollution in a shorter period of time 

than a person who receives the same dose with a high activity level.  The moderating 

effects of activity level suggest that peaks of high concentration doses of air pollution 

may overwhelm cells’ endogenous redox balance resulting in increased airway 

inflammation. Further research that examines the relationships between dose peaks over 

time and inflammation could help to determine whether a high concentration dose over a 

short period of time has a different effect than a lower concentration dose over a longer 

period of time. 
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Chapter 1. Introduction 

The benefits of physical activity are well documented and include reduced mortality and 

morbidity as well as increased mental and physical wellbeing [1]–[3]. Adolescents who 

engage in regular physical activity establish habits that will improve their health over the 

course of their lifetimes [4]. However, increased ventilation and inspiratory flow rates 

due to physical activity in the presence of air pollution will increase the inhaled dose of 

air pollutants [5]–[10]. Numerous studies have shown air pollution to be related to 

increased mortality and morbidity, including respiratory and cardiovascular ailments 

[11]–[15]. Adolescents are uniquely susceptible to adverse health effects related to air 

pollution exposure, respiratory inflammation, and decreased lung function [16]–[18].  

We aim to characterize the relationship between inhaled air pollution dose, physical 

activity, and respiratory response among adolescents. Respiratory response measures 

include exhaled nitric oxide (eNO), percent oxidized exhaled breath condensate 

glutathione (%GSSG), percent oxidized exhaled breath condensate cystine (%CYSS), the 

percentage of total oxidized compounds (%Oxidized), and changes in pulmonary 

function, namely, forced vital capacity (FVC), forced expiratory volume in one second 

(FEV1), and forced expiratory flow during the middle half of FVC maneuver (FEF25-75). 

Air pollution measures include the inhaled dose of fine particulate matter (PM2.5), ozone 

(O3), and black carbon (BC), as well as the total particle number count in the inhaled dose 

(PNT). 

  



 

2 
 

Chapter 2. Review of the Literature 

Airway inflammatory response is widely believed to be a central mechanism in the 

development of adverse health effects related to air pollution exposure [19]–[21].  

Reactive oxygen species and oxidative stress play an important role in airway 

inflammatory response during exposure to airborne particles [19]. Airborne particles are 

believed to trigger oxidative stress resulting in a systemic and pulmonary inflammatory 

response [22]–[24]. A long held theory suggests that airborne particles, which can consist 

of oxidants, trigger a cellular inflammatory response through the direct formation of 

reactive oxygen species outside of the cell wall, resulting in oxidative stress [19]. 

However, emerging evidence suggests that the production of cellular inflammatory 

response may be part of the cell’s endogenous redox process, such that airborne particles, 

whether or not they contain oxidants, can trigger reactive oxygen species generation and 

oxidative stress within the cell walls, further inducing toxicity [19].    

Exhaled nitric oxide (eNO), which is expressed through the respiratory epithelium during 

a process of inducible NO synthase, signals inflammatory mechanisms in the bronchial 

mucosa [25]. eNO is used widely as a marker of airway inflammation and oxidative 

stress [26]–[28]. Air pollution, particularly PM2.5 and O3, is associated with increases in 

eNO [25], [29]. Studies examining physical activity and eNO have produced varying 

results, however, physical activity is generally associated with an acute reduction in the 

concentration of exhaled nitric oxide in healthy subjects [26], [30]–[32]. Sachs-Olsen et 

al. found that vigorous physical activity was significantly associated with an increase in 

eNO among non-asthmatic adolescents, however, the study did not take into account the 

presence of air pollution, the effects of which may have been intensified by increased 

breathing rates [28]. 

Glutathione, an antioxidant which plays a protective role against oxidative stress in the 

airway, is part of the cell’s endogenous redox process [33]. Exhaled breath condensate 

glutathione can be measured in its reduced (GSH) and oxidized (glutathione disulfide, or 

GSSG) forms [34]. Changes in the redox balance, i.e. reductions in the ratio of GSH to 

GSSG (GSH/GSSG), may be a key factor in airway inflammation and oxidative stress 

[33], [35]. In healthy individuals, an acute increase in GSH in response to low PM2.5 

exposure serves as an adaptive defense against oxidative stress [22], [36], [37]. However, 

studies suggest that higher doses of pollutants can overwhelm the body’s endogenous 

protective antioxidant response leading to airway inflammation in response to oxidative 

stress marked by a dose-dependent decrease in GSH/GSSG [36], [38]. Another way to 

measure oxidative stress is to calculate %GSSG, the percentage of the oxidized form, 

GSSG, out of the total glutathione, GSSG + GSH [39]. As %GSSG increases, the ratio of 

GSH/GSSG decreases proportionally.      

Glutathione is a tripeptide made of glutamine, glycine, and cysteine. Similarly to 

GSH/GSSG, the redox balance of the antioxidant cysteine (CYS) to its oxidized form 

cystine (CYSS) serves as a marker of oxidative stress [39]. CYS is a precursor to the 

formation of GHS, however the ratio of CYS/CYSS is independent of the ratio of 

GSH/GSSG as these redox pairs are regulated in different sub-cellular compartments, 

each indicating the presence of diverse oxidative stress responses [39], [40].  Just as 
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GSH/GSSG and %GSSG share a curvilinear, inverse relationship, so do CYS/CYSS and 

%CYSS, the percentage of the oxidized form, CYSS, out of the total, CYSS+CYS. 

Researchers have shown that among mice, diesel exhaust exposure in combination with 

house dust mite exposure is associated with significant increases in %CYSS when 

compared to diesel exhaust or house dust mite exposure alone [39].  

FVC is the maximal volume of air exhaled as forcefully and completely as possible, after 

inhaling to the maximum capacity of the lungs, while FEV1 is the volume of air exhaled 

during the first second of the FVC maneuver, and FEF25-75 is the volume of exhaled air 

during the middle half of the FVC maneuver divided by the time it took to exhale it [41].  

These measures of spirometry are used widely to evaluate general respiratory health [41].  

Rice et al. studied short term exposure to air pollution within levels deemed acceptable 

by the U.S. Environmental Protection Agency (EPA) and found that exposure to higher 

levels of PM2.5, NO2, and O3 is associated with a reduction in FEV1 and FVC [42]. 

Physical activity is also associated with acute reductions in lung function among children 

with asthma [43], [44]. However, among people with healthy lung function, physical 

activity can be expected to cause bronchodilation and slight increases in spirometry 

measures of lung function [43].  

Because both physical activity and air pollution can independently affect lung function 

and markers of oxidative stress and airway inflammation, understanding the interplay 

between these two factors is necessary in order to interpret the effects of air pollution on 

lung function and oxidative stress in the presence of physical activity [45]. Relatively few 

studies investigate interactions between physical activity and air pollution, or adjust for 

the effects of physical activity when exploring the relationship between air pollution and 

lung function or oxidative stress in the airways. Among those that do, the results are 

conflicting. One study of adult hikers found that, adjusting for smoking status, asthma, 

hours hiked, and other covariates, for every 50 ppb increase in mean O3, there was a 2.6% 

decrease in FEV1, and a 2.2% decrease in FVC [46]. Rundell et al. showed that exposure 

to high levels of fine particulate matter during exercise was associated with a decrease in 

FEV1 and FEF25-75, and a non-significant decrease in eNO, while lung function did not 

change after exposure to low levels of fine particulate matter during exercise [47].  Yet 

another study showed while exposure to high concentrations of fine and ultrafine 

particulate matter while exercising were associated (non-significantly) with an immediate 

increase FEV1 and FVC,  6 hours after the exposure participants showed a non-significant 

decrease in these same measures [48]. Kubesch et al. employed a crossover design in 

order to disentangle the effects of physical activity and traffic related air pollution 

(TRAP) on respiratory and inflammatory response. This study examined each participant 

in four conditions: either moderate exercise or rest in either low TRAP or high TRAP 

environments. The researchers concluded that air pollution and physical activity have 

independent effects; exercise was associated with increases in  FEV1, FVC, FEF25-75, and 

surprisingly, eNO and systemic inflammation markers, independent of TRAP levels, 

while increases in course particulate matter were also associated with an increase eNO 

[45]. 

One plausible explanation for contradictory results among studies that examine physical 

activity, air pollution, and respiratory response is that many studies relied on measures of 

air pollution exposure. Yet, mechanisms between air pollution and pulmonary response 
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may be more sensitive to the inhaled dose of air pollution than to ambient air pollution 

exposure alone. The inhaled air pollution dose varies based on ambient air pollution 

levels, individual physical characteristics, and breathing rate at the time of exposure [5]–

[10]. The relationship between physical activity, air pollution, and respiratory response is 

further complicated in that physical activity increases the ventilation rate, increasing the 

inhaled dose of air pollutants as well as particle deposition in human lungs [49], [50]. 

Studying the inhaled dose of air pollution rather than simply the exposure allows the 

researcher to effectively isolate and investigate any possible interactions between 

physical activity and air pollution, and can provide better insight into the effects of each 

of these factors on respiratory response.  

Only a handful of studies have examined the in vivo human respiratory response to 

inhaled doses of air pollution. Buonanno et al. estimated the dose-response relationship 

between daily alveolar deposited surface area dose of airborne particles and measures of 

spirometry and eNO among asthmatic children, finding that a daily dose increase of 

100mm2 was associated with a 4.1 ppb increase in eNO and a 0.8% decrease in FEF25-75 

[51]. One limitation of this study was that the inhalation rate used in the dose calculation 

was estimated using U.S. EPA inhalation rate estimates for different daily activities, 

which were self-reported by the participants over several days.  In a randomized 

controlled cross-over trial, Behndig et al. exposed each group to either diluted diesel 

exhaust at a steady concentration of 100 µg/m3 or filtered air while exercising, in 

randomized order several weeks apart. The researchers found an increase in GSH as well 

as an increase in airway inflammation after diesel exposure in the bronchial airway and 

nasal lavage samples, but not in the alveolar lavage [36]. While this study did not 

specifically measure the inhaled dose of air pollutants, the researchers fixed the 

concentration of diesel exposure and the duration and intensity of exercise, and 

differences in individual ventilation rates and physical characteristics that would affect 

dose were likely controlled by the randomized crossover design.  In another crossover 

study, Adams et al. (2000) regulated the inhaled dose of O3 by exposing participants for 6 

hours to constant levels of zero or 0.12 ppb of O3, while varying the exercise minute 

ventilation (�̇�𝐸) to achieve equivalent ventilation rates (EVR = �̇�𝐸/body surface area in 

m2) between participants. Each participant, serving as their own control, was exposed to 

0.12 ppb 03 on three separate occasions, at three separate EVR levels, allowing Adams et 

al. to evaluate the effects of four separate O3 dose levels on pulmonary function (0, 1187, 

1384, and 1573 ppb, respectively). The researchers found that FEV1 did not change at an 

O3 dose level of zero, but decreased significantly after exposure at all three O3 dose levels 

above zero. Though a pattern of dose-response was numerically established, the 

differences in effect size between dose levels were not significant [52]. The small sample 

size, and relatively small variation between dose levels in this study may have been 

limiting factors.  While Rundell et al. and Kubesch et al. did not calculate an inhaled dose 

of air pollutants, both studies compared respiratory response after exercise during 

exposure to low and high TRAP environments, and demonstrated dose-response 

relationships between air pollution and respiratory response [45], [47].  

The present analysis examines the acute respiratory effects of physical activity and 

participant-specific inhaled doses of PM2.5, O3, and BC, and the total number of inhaled 

particles (PNT) in healthy, active adolescents. We hypothesized that interactions exist 
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between physical activity and air pollution, and that when controlling for physical 

activity, increased inhaled doses of air pollutants would be associated with a decrease in 

measures of lung function, an increase in eNO, and an increase in the %GSSG, %CYSS, 

and %Oxidized as GSH and CYS are oxidized during the course of exposure. 

  



 

6 
 

Chapter 3. Methods and Procedures 

3.1 Study Design  

Data for this analysis were provided by the Study of Air Pollution and Physical Activity 

(SAPPA). Data collection for this observational study was conducted at two high schools 

in Atlanta, GA. One high school was set in a wooded, suburban area, while the other was 

set in an urban area close to major roadways. Recruitment took place between October, 

2012 and July, 2014 and data were collected from December, 2012 to July, 2014. 

Approval for this study was provided by the Emory University Institutional Review 

Board and the Georgia State University Institutional Review Board. 

A convenience sample of 126 students was recruited from the two high schools. All 

participants were healthy and engaged in one or more extracurricular sports including 

marching band, track and field, football, soccer, basketball, and cheerleading. Participants 

over the age of 18 provided written consent. Participants under the age of 18 provided 

written assent as well as written parental consent.  

Prior to beginning sports practice and for the duration of the practice session, participants 

were fitted with a chest strap that records continuous measurements of heartrate (HR), 

breathing rate (FB) and motion. Spirometry was conducted prior to and after practice. 

Spirometry measures taken were FVC, FEV1, and FEF25-75. Baseline and post-exposure 

measurements of eNO, GSH, GSSG, CYS, CYSS, and mixed disulfides (MD) were also 

taken. Ambient levels of PM2.5, O3, BC and particle number concentration (PNC) were 

monitored on site throughout the practice session. The cumulative inhaled dose of each 

air pollutant was calculated by multiplying ambient levels of the air pollutant at each 

minute of participation by the participant’s minute ventilation (�̇�𝐸) normalized to FVC, 

and summing the estimated dose for each minute. The method used for air pollution dose 

estimation is described in more detail below. 

3.2 Data Collection  

3.2.1 Predictor Measurement Ambient air pollution levels, including PM2.5, O3, 

BC, and PNC, were measured on site. All air pollution measures were converted to 

concentration/L taken in one minute intervals. Ambient PNC was measured using the 

Hand-held Condensation Particle Counter Model 3007 (TSI Inc., Shoreview, MN).  

Model 3007 is an isopropyl alcohol based condensation particle counter that uses a 

continuous laminar flow method to condense alcohol onto particles in the sample stream 

and an optical detector to count particles. Model 3007 can detect particles larger than 10 

nM. PNC was converted to the number of particles/L. Ambient PM2.5 was measured 

using the Portable Laser Aerosolspectrometer and Dust Monitor, model 1.109 (Grimm 

Aerosol, Ainring, Germany). PM2.5 was measured in µg/m3, and converted to µg/L. 

Ambient O3 was measured using the Model 49i Ozone Analyzer (Thermo scientific, 

Waltham, MA). The Ozone Analyzer uses a dual cell photometer and employs 

temperature and pressure correction. The instrument can detect ozone concentration from 

0.05 ppb to 200 ppm. O3 was measured in parts per billion and converted to µg/L. In the 

event that on-site ambient pollution measurements failed, one minute ambient levels of 

PM2.5 and O3 were collected from the Ambient Air Monitoring Network site closest to 



 
  

7 
 

each school that engaged in continuous sampling of PM2.5 and O3.  These two monitoring 

stations, operated by the Georgia Environmental Protection Division, were located 

approximately 2 and 10 miles from the respective schools. Ambient BC was measured 

using the microAeth Model AE51 Aethalometer (AethLabs, San Francisco, CA). The 

aethalometer captures particles on a T60 Teflon-coated borosilicate glass fiber filter and 

uses a photo diode detector to track the rate of change of absorption of light from an 

880nm LED, relative to a reference portion of the filter. BC was measured in ng/m3 and 

converted to ng/L. 

Continuous measurements of HR (beats per minute), FB (breaths per minute), and activity 

level (“the vector addition of three dimensional acceleration expressed as a fraction of 

standard gravity” [6]) were taken in one second intervals using a chest strap with a 

physiological monitoring module, BioHarness™ 3 (Zephyr Technology Corporation, 

Annapolis, MD). These data were collected in real time using laptops on site. The chest 

strap houses two leads which measure the electrical activity of the heart, a chest 

expansion sensor that measures FB, an accelerometer, and a Bluetooth® transmitter. For 

use as a predictor, a cumulative activity level was estimated by averaging one-second 

intervals of activity level over the course of one minute, and summing the activity level 

for all minutes.  

3.2.2 Dose Estimation: Minute ventilation in liters (�̇�𝐸) was estimated using a 

novel method developed by Greenwald et al. [6]. Greenwald describes several models for 

estimating �̇�𝐸 normalized to FVC using easily collected data [6]. This study employs 

Greenwald’s two predictor model using HR and BR averaged over 30 second intervals to 

estimate a 30 second interval of �̇�𝐸 normalized to the participant’s highest overall 

measurement of FVC: 

�̇�𝐸

𝐹𝑉𝐶
= −4.2469 + (0.0595𝐻𝑅) + (0.2255𝐵𝑅) 

30 second intervals of �̇�𝐸 normalized to FVC are then are then multiplied by the 

participant’s highest overall measurement of FVC to produce a unique estimate of �̇�𝐸 for 

that 30 second interval. The 30 second intervals of �̇�𝐸 were averaged over one minute and 

multiplied by the ambient level of air pollution concentration per liter measured at that 

minute. An inhaled dose of air pollution was estimated for each minute a participant was 

engaged in sports practice. Minute pollution doses over the entire period were then 

totaled for each participant to produce a measure of the cumulative total air pollution 

dose (rather than the concentration) for each pollutant to test as predictors of respiratory 

response. In order to prevent an error caused by numerical overflow during statistical 

analysis, PNT was divided by 10,000,000, thus converted to tens of millions of particles. 

3.2.3 Outcome Measurements:  Participants provided non-invasive samples of 

breath condensate which were tested for MD, GSH, GSSG, CYS and CYSS using a high 

performance liquid chromatography (HPLC) method for exhaled breath condensate as 

described by Yeh et al., and originally developed for plasma samples by Jones et al. [34], 

[35]. Samples were collected by trained study staff using an R-tube which consists of a 

sterile polypropylene tube with a saliva trap and mouthpiece (Respiratory Research, 

Charlottesville, NC). The tubes were kept chilled at -70°C using an outer aluminum 
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sleeve during collection. Participants were required to engage in tidal breathing for 10 

minutes during sample collection and were instructed to swallow saliva to avoid salivary 

contamination in the collection tube. Breath condensate samples of 300 µL were 

immediately preserved with a solution of chloric acid (5% final), iodoacetic acid (13.4 

mM final) boric acid (0.1 M final), and an internal standard gamma-Glu-Glu (5nM final) 

and stored at -70°C. The percentage of oxidized glutathione was calculated as %GSSG = 

[GSSG / (GSSH + GSH)] x 100. Similarly, the percentage of cystine was calculated as 

%CYSS = [CYSS / (CYSS + CYS)] x 100.  The percentage of total oxidized compounds 

was calculated as %Oxidized = [(GSSG + CYSS + MD) / (GSSG + CYSS + MD +GSH 

+ CYS)] x 100. 

Prior to the performance of spirometry maneuvers, trained study staff measured eNO 

using a hand-held instrument, the NIOX MINO (Aerocrine, Morrisville, NC). The NIOX 

MINO measures nitric oxide using an electrochemical analysis method, adapting 

guidelines established by the American Thoracic Society to this method. The NIOX 

MINO does not analyze the first part of the exhalation in order to avoid sample 

contamination from the mouth. Study staff instructed participants to exhale fully before 

inhaling to total lung capacity through the NIOX MINO filter and exhaling slowly again 

through the filter. Using the NIOX MINO, only one valid measurement is necessary. For 

outdoor sessions, if weather conditions fell outside of the specified operating range for 

the instrument (16 to 30°C, and 20-60% relative humidity), eNO measurements were 

conducted indoors.  The NIOX MINO has been validated in numerous studies [53]–[56].  

Study staff were trained in spirometry test procedures according to guidelines from the 

American Thoracic Society. Staff guided participants as they performed 3 FVC 

maneuvers both before and after each sports practice session using the EasyOne Plus 

handheld spirometer (ndd Medical Technologies Inc., Andover, MA). For each 

maneuver, study staff recorded FVC, FEV1, and FEF25-75. For analysis, data from the 

maneuver with the highest value of FVC out of the three maneuvers were used. FVC and 

FEV1 are expressed in L, while FEF25-75 is expressed in L/sec.  

3.3 Statistical analysis  

SAS 9.4 (SAS Institute Inc., Cary, NC) was used for all data analysis. The α level was set 

a priori to 0.05. Normality of outcome variables was checked visually. In the event that 

outcome variables did not approximate a normal distribution, natural log transformations 

were taken to more closely approximate normality. Multicollinearity between predictors 

was tested and ruled out first by examining bivariate correlations using Pearson’s 

correlation coefficient and scatter plots, and second by regressing each predictor on all 

the others and examining tolerance and variance inflation factors as well as condition 

indices. Observations with missing data were assumed to be missing completely at 

random and excluded from the analysis. For the outcome eNO, all values below five were 

outside the detectable range of the instrument.  A sensitivity analysis was performed to 

assess the sensitivity of the multi-pollutant model to different imputed values: 0.00001, 

2.5, and 5, and “missing”. The three numerical values were selected to represent the 

range of possible values for these observations. For each model in the sensitivity analysis, 

a natural log transformation of eNO was taken after the single imputation at the specified 
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level.  For our final analysis, the nine values of eNO which were below the detectable 

limit were imputed with the value 2.5.   

Data were analyzed using a general linear mixed model with an unstructured covariance 

matrix. In order to select the covariance structure, multi-pollutant models for two 

outcomes (log of eNO and log of %GSSG) were run with unstructured, compound 

symmetry and variance component covariance matrices. Covariance structures were 

compared using the Akaike Information Criterion (AIC).  The final models include a 

random intercept for subject to account for repeated measurements taken on each 

individual.  Random slopes for the effect of time and time*occurrence to account for 

repeated measurements taken on each individual as well as the repeated participation of 

subjects during multiple practice sessions were tested and left out of the model due to 

estimability problems, which are described in more detail in the results section. Separate 

models were constructed for each outcome. All models included fixed effects for each air 

pollutant dose*time and activity*time to evaluate the change between pre and post 

measurements. All models controlled for BMI, sex, and age. The basic multi-pollutant 

model for each outcome contained terms for PM2.5, O3, and PNT, but not BC.  The basic 

multi-pollutant model was as follows: 

𝑌𝑖 = 𝛽0 + 𝛽1(𝑃𝑀2.5𝑑𝑜𝑠𝑒)𝑖 +  𝛽2(𝑃𝑁𝑇𝑑𝑜𝑠𝑒)𝑖 + 𝛽3(𝑂3𝑑𝑜𝑠𝑒)𝑖+ 𝛽4(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦)𝑖 +
𝛽5(𝑡𝑖𝑚𝑒)𝑖 + 𝛽6(𝑃𝑀2.5𝑑𝑜𝑠𝑒 ∗ 𝑡𝑖𝑚𝑒)𝑖 + 𝛽7(𝑃𝑁𝑇𝑑𝑜𝑠𝑒 ∗ 𝑡𝑖𝑚𝑒)𝑖 + 𝛽8(𝑂3𝑑𝑜𝑠𝑒 ∗

𝑡𝑖𝑚𝑒)𝑖 +  𝛽9(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑡𝑖𝑚𝑒)𝑖 +  𝛽10(𝑠𝑒𝑥)𝑖 + 𝛽11(𝑎𝑔𝑒)𝑖+ 𝛽12(𝐵𝑀𝐼)𝑖 + 𝛾𝑖 + 𝜀𝑖  

For each multi-pollutant model, interaction terms between activity level, time, and each 

type of air pollution were each tested individually in this multivariable model and 

retained in the model only if the interaction term was significant.  

In addition, single pollutant models were constructed for each outcome and compared to 

multi-pollutant models. Single pollutant models, as follows, were constructed separately 

for each pollutant, including black carbon: 

𝑌𝑖 = 𝛽0 + 𝛽1(𝑑𝑜𝑠𝑒)𝑖 + 𝛽2(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦)𝑖 + 𝛽3(𝑡𝑖𝑚𝑒)𝑖 + 𝛽4(𝑑𝑜𝑠𝑒 ∗

𝑡𝑖𝑚𝑒)𝑖 +  𝛽5(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑡𝑖𝑚𝑒)𝑖 +  𝛽6(𝑠𝑒𝑥)𝑖 + 𝛽7(𝑎𝑔𝑒)𝑖+ 𝛽8(𝐵𝑀𝐼)𝑖 + 𝛾𝑖 + 𝜀𝑖  

Because a single unit change in air pollution dose is relatively miniscule and the 

interpretation of a change this small holds little practical value, final results are presented 

as the change from baseline in outcome measurement per interquartile range increase in 

inhaled dose or activity level (∆).  For natural log transformed outcomes, estimates are 

presented as a percent change and were calculated as ∆= [(𝑒𝑥𝑝𝛽𝑡𝑖𝑚𝑒+ 𝛽𝑑𝑜𝑠𝑒∗𝑡𝑖𝑚𝑒×𝐼𝑄𝑅) −

1] × 100% where βtime is the coefficient estimate for time of outcome measurement 

(pre or post, coded as 0,1) in the mixed model, βdose*time is the coefficient estimate for 

the dose by time interaction, and the IQR is the interquartile range of the predictor in 

question. For non-transformed outcomes, estimates are presented as an absolute change 

and were calculated as ∆ = 𝛽𝑡𝑖𝑚𝑒 +  𝛽𝑑𝑜𝑠𝑒 ∗ 𝑡𝑖𝑚𝑒 × 𝐼𝑄𝑅.   

  



 
  

10 
 

Chapter 4. Results 

4.1 Descriptive Analysis 

Participant characteristics are 

presented in Table 1. A total of 

126 participants were recruited 

to and included in the study. The 

average age of all participants 

was 16 years and 4.5 months 

(16.38 ±1.34). For males, the 

average age was 16.49 (±1.37), 

and for females, 16.16 (±1.28). 

A total of 85 (67.46%) 

participants were male, and 41 

(32.54%) were female. 122 

(96.83%) participants were black 

while the remaining 4 (3.17%) 

were Hispanic. The median BMI 

among all participants was 23.53 (IQR 20.93-25.90). Among females, the median BMI 

was 22.33 (IQR: 20.27-24.56), by comparison, the 50th percentile BMI for 16 year old 

females in the U.S. is 20.5 [57]. Among males, the median BMI was 23.54 (IQR: 21.57-

26.21), by comparison, the 50th percentile BMI for 16 year old males in the U.S. is 

around 20.83 [58]. All participants were non-smokers. No participants had a current 

physician’s diagnosis of asthma. A summary of participant air pollution doses and 

activity levels is presented in Table 2.   A summary of outcome characteristics at baseline 

and follow-up is presented in Table 3.  

 

Predictor (unit) Median (IQR) Missing n(%)

PM2.5 Dose (µg) 34.33 (19.74-50.72) 29 (11.74%)

PNT Dose (1E+7 particles) 1788.04 (1015.74-3384.07) 42 (17%)

O3 Dose (µg) 249.8 (56.05-401.7) 44 (17.81%)

BC Dose (ng) 1340.8 (883.35-2562.9) 64 (25.91%)

Activity Total 28.474 (20.17-35.16) 29 (11.74%)

*Some participants participated on more than one observation day for a total of 247 observations.           

Abbreviations: BC, black carbon; IQR, interquartile range; n, number; O3, ozone; PM2.5 , particulate matter 2.5; 

PNT, particle number total; SD, standard deviation;

Table 2.

Air Pollution Dose and Activity Level Characteristics (n=247*)

n (%) Missing n (%)

Female 41 (32.54) 0

Male 85 (67.46) 0

Black 122 (96.83) 0

Hispanic 4 (3.17) 0

Rural 68 (53.97) 0

Urban 58 (46.03) 0

16.38 (1.34) 3 (0.023%)

23.53 (20.93,25.90) 1 (0.008%)BMI; Median (IQR) 

Table 1. 

Participant Characteristics (n=126)

Abbreviations: BMI, body mass index; IQR, interquartile range; n, 

number; SD, standard deviation;

Characteristics

Sex 

Race 

School

Age; Mean(SD); 
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4.2 Missing Data  

Missing data are reported in Tables 1, 2, and 3. For missing values of air pollution dose 

measurement, covariate values were not measurable as a result of instrument error. 

Missing values of %GSSG, %CYSS, and %Oxidized are a result either of the 

contamination of the sample or because of a failure to collect the minimum amount of 

exhaled breath condensate necessary for analysis. Missing values of spirometry measures 

are a result of measurement error. The numbers of observations analyzed in each model 

are presented in Tables 5 and 6.  

4.3 Multicollinearity Testing  

The highest bivariate correlation between any two predictors, PM2.5 and 03, was r=.67.  

The lowest tolerance level found was 0.35, with a variance inflation factor of 2.85. No 

condition indices were higher than 5 when adjusting out the intercept using the 

“collinoint” option in SAS.  

4.4 Covariance Structure and Random Effects Selection  

The sparseness of frequency counts in the number of repeated occurrences created an 

estimation problem for all models that included a random effect term for 

time*occurrence. While some participants participated on up to five separate occurrences, 

very few participants had more than three occurrences. In addition, large amount of 

missing data for some predictors and outcomes may have hindered estimability for 

models with random effect terms for time. In models for both eNO and %GSSG, 

unstructured and variance component structured matrices were tied for the lowest AIC.  

The unstructured covariance structure was ultimately selected because it is the most 

Outcome Baseline Missing n(%) Follow-up Missing n(%)

eNO ; Median (IQR) 18 (12-33) 1 (0.4%) 18 (11-32) 21 (8.5%)

Log of eNO; Mean (SD) 2.98 (0.83) 1 (0.4%) 2.94 (0.83) 21 (8.5%)

GSSG; Median (IQR) 0.41 (0.13-1.3) 115 (46.6%) 0.66 (0.17-2.28) 129 (52.2%)

%GSSG; Median (IQR) 1.94 (0.93-3.59) 117 (47.4%) 2.34 (1.1-5.16) 129 (52.2%)

Log of %GSSG; Mean (SD) 0.52 (1.11) 117 (47.4%) 0.70 (1.28) 129 (52.2%)

CYSS; Median (IQR) 0.97 (0.62-1.57) 115 (46.6%) 1.15 (0.71-1.79) 129 (52.2%)

%CYSS; Median (IQR) 74.26 (42.09-82.71) 115 (46.6%) 59.87 (27.09-82.97) 129 (52.2%)

Log of %CYSS; Median (IQR) 4.31 (3.74-4.42) 115 (46.6%) 4.09 (3.3-4.42) 129 (52.2%)

%Oxidized; Median (IQR) 9.08 (5.65-13.81) 115 (46.6%) 9.91 (6.01-13.1) 129 (52.2%)

Log of %Oxidized; Mean (SD) 2.2 (0.68) 115 (46.6%) 2.19 (0.62) 129 (52.2%)

FEF25-75; Mean (SD) 3.77 (1.13) 41 (17%) 3.58 (1.09) 50 (20.2%)

FEV1; Mean (SD) 3.27 (0.66) 44 (17.8% 3.21 (0.63) 55 (22.3%)

FVC; Mean (SD) 3.75 (0.75) 41 (17%) 3.72 (0.73) 49 (19.8%)

Table 3.

Outcome Characteristics (n=247*)

*Some participants participated on more than one observation day for a total of 247 observations. Abbreviations: 

%CYSS, percent oxidized cysteine; %GSSG, percent oxidized glutathione; %Oxidized, total percent oxidized of measured 

antioxidants; CYSS, cystine; eNO, exhaled nitric oxide; FEF25-75, forced expiratory flow; FEV1, forced expiratory volume 

in one second; FVC, forced vital capacity; GSSG, glutathione disulfide;  IQR, interquartile range; n, number; SD, 

standard deviation;
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flexible of the covariance structures.  By 

comparison, the variance component 

structure assumes independence of within-

subject measurements, an assumption that 

is not appropriate for our data [59]. Results 

for covariance structure selection are 

presented in Table 4.  

4.5 Multi-pollutant General Linear 

Mixed Models 

The results of all multi-pollutant models 

are presented in Table 5. Significant 

associations are seen between O3 and 

%Oxidized, and PNT and FEF25-75.  A one 

IQR (i.e. 345.64 µg) increase in O3 inhaled 

dose is associated with a 29.16% average 

decrease from baseline in the percentage of 

total oxidized compounds. A one IQR (i.e. 

23,683,300,000 particle) increase in PNT 

inhaled dose is significantly associated 

with an average decrease in FEF25-75 of 

0.168 L/second from baseline. A 

statistically significant association is also 

seen between PNT and eNO, however, this 

association is attenuated by activity level. 

At a total activity level of zero, a one IQR (i.e. 23,683,300,000 particle) increase in PNT 

inhaled dose is associated with an average increase in eNO of 14.77% above baseline, 

while at the 25th quartile activity level of 20.17, a one IQR increase in PNT was 

associated with a smaller, 2.59%, increase in eNO. As activity levels rise, the relationship 

between PNT and eNO becomes negative. At the median activity level of 28.474, a one 

IQR increase in PNT is associated with a 2.05% decrease in eNO, and at the 75th quartile 

of activity level, 35.15, PNT is associated with a decrease of 5.62% in eNO.  A graphical 

depiction of this relationship is found in Figure 1. Similarly, the relationship between O3 

and %CYSS is attenuated by activity level, with increasing activity levels corresponding 

to smaller changes from baseline for a constant level of 03. When activity level is zero, an 

IQR change of 345.64 µg O3 is associated with a 49.81% decrease in %CYSS. However, 

at the 25th quartile of activity level, the decrease weakens to 36.71%, and at the 75th 

percentile of activity level, a 24.81% decrease from baseline is seen for %CYSS. See 

Figure 2 for a depiction of this relationship.  

Random effects AIC

Compound Symmetry

Intercept* 606.6

Intercept, Time 699.7

Unstructured

Intercept 604.6

Intercept, Time* 605.8

Variance component

Intercept 604.6

Intercept, Time* 604.6

Compound Symmetry

Intercept* 706.5

Intercept, Time 707.2

Unstructured

Intercept 704.5

Intercept, Time* 706.2

Variance component

Intercept 704.5

Intercept, Time* 704.5

*Indicates a problem with model estimability. Abbreviations:  

%GSSG, percent oxidized glutathione; AIC, Akaike information 

criterion; eNO, exhaled nitric oxide;

Log of eNO 

Log of %GSSG

Table 4. 

Covariance structure comparison

Covariance matrix 

structure
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Figure 1. The relationship between PNT and eNO is moderated by activity level 

 

Figure 2. The relationship between 03 inhaled dose and %CYSS is moderated by activity level 
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4.6 Single Pollutant General Linear Mixed Models 

The results of all single pollutant models are presented in Table 6. In single pollutant 

models, significant relationships are observed between different types of air pollution 

doses and %CYSS, %Oxidized, FEF25-75, and FEV1. A one IQR increase in PM2.5 inhaled 

dose (i.e. 30.97 μg) is associated with a 6.9% decrease in %CYSS, and a 9.68% increase 

in %Oxidized, however, at inhaled dose levels of PM2.5 higher than 41μg, the relationship 

between PM2.5 and %Oxidized becomes negative. A one IQR increase in PNT (i.e. 

23,683,300,000 particle) is associated with a 0.179 L/second decrease in FEF25-75. A one 

IQR increase in ozone inhaled dose (i.e. 345.64 µg) is associated with a 31.42% decrease 

in %CYSS, and an 18.16% decrease in %Oxidized. A one IQR increase in black carbon 

(i.e. 1680 ng) is associated with a 23.35% decrease in %CYSS, a 12.67% decrease in 

%Oxidized, and a 0.028L decrease in FEV1.  
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4.7 Sensitivity Analysis 

Nine observations of eNO were flagged as below the detectable limit during data 

collection. In multi-pollutant models, significant coefficient estimates for PNT*Time 

Outcome  Predictor n* P-value

PM2.5 Dose x time 418 0.000147 0.00111 -0.0020 0.002324 10.37 0.894

PNT  Dose x time 392 0.000022 1.3E-05 -4.35E-06 0.00005 12.13 0.102

O3  Dose x time 395 0.000057 0.00014 -0.00021 0.000326 10.07 0.6751

BC x time 348 0.000015 1.4E-05 -0.00001 0.000042 8.36 0.2744

PM2.5 Dose x time 222 -0.00344 0.00672 -0.01673 0.009847 -7.96 0.6093

PNT  Dose x time 218 -0.00018 0.00009 -0.00036 1.29E-06 -49.21 0.0517

O3  Dose x time 205 -0.00104 0.00072 -0.00247 0.000392 -17.03 0.1529

BC x time 183 -0.00019 0.00017 -0.00053 0.000145 -26.52 0.2615

PM2.5 Dose x time 224 -0.00709 0.00257 -0.01218 -0.002 -6.90 0.0067

PNT  Dose x time 221 -0.00002 3.6E-05 -0.0001 0.000046 -14.73 0.4954

O3  Dose x time 206 -0.00087 0.00027 -0.0014 -0.00035 -31.42 0.0014

BC x time 184 -0.00014 0.00007 -0.00028 -5.98E-07 -23.35 0.049

PM2.5 Dose x time 224 -0.00808 0.00372 -0.01544 -0.00072 9.68 0.0316

PNT  Dose x time 221 -0.00009 5.2E-05 -0.0002 0.000011 -12.38 0.0801

O3  Dose x time 206 -0.00135 0.00043 -0.00221 -0.0005 -18.16 0.0022

BC x time 184 -0.00023 9.4E-05 -0.00041 -0.00004 -12.67 0.0167

PM2.5 Dose x time 362 -0.00116 0.00262 -0.00633 0.003997 -0.158 0.6573

PNT  Dose x time 339 -0.00006 2.7E-05 -0.00011 -7.86E-06 -0.179 0.0245

O3  Dose x time 340 -0.00033 0.00035 -0.00101 0.000353 -0.227 0.3452

BC x time 311 -0.00005 3.1E-05 -0.00011 0.000011 -0.263 0.1061

PM2.5 Dose x time 355 -0.00023 0.00105 -0.0023 0.001839 0.019 0.8256

PNT  Dose x time 332 -5.68E-06 1.1E-05 -0.00003 0.000016 -0.004 0.5991

O3  Dose x time 333 -0.00005 0.00014 -0.00032 0.000229 0.012 0.7456

BC x time 304 -0.00002 1.2E-05 -0.00005 -8.63E-07 -0.028 0.0421

PM2.5 Dose x time 363 -0.00006 0.00102 -0.00207 0.001945 -0.0026 0.9498

PNT  Dose x time 340 0.00001 1.1E-05 -0.00001 0.000031 -0.0146 0.3392

O3  Dose x time 341 0.000028 0.00014 -0.00024 0.000296 -0.0035 0.8361

BC x time 311 -0.00002 1.2E-05 -0.00004 7.32E-06 -0.0590 0.1805

Observations with missing data were excluded from the analysis. For each outcome, four separate models were run. The models include 

the single pollutant predictor term listed as well as activity level, sex, age and BMI. 

*n represents the number of measurements included in the analysis out of 494 total measurements. 

Abbreviations: %CYSS, percent oxidized cysteine; %GSSG, percent oxidized glutathione; %Oxidized, total percent oxidized of measured 

antioxidants;  BC, black carbon; BMI, body mass index; CI, confidence interval; CYSS, cystine; eNO, exhaled nitric oxide; FEF 25-75, forced 

expiratory flow; FEV1, forced expiratory volume in one second; FVC, forced vital capacity; GSSG, glutathione disulfide; IQR, interquartile 

range; O3, ozone; n, number;  PM2.5 , particulate matter 2.5; PNT, particle number total; SE, standard error;

Standard 

error

Estimated β 

Coefficient

Log of %GSSG 

Log of %CYSS 

Log of %Oxidized

FEF25-75

FEV1 

FVC

Table 6. 

Single Pollutant Models: Associations between Air Pollution and Respiratory Response

95% CI 

Δ for IQR 

increase in dose

Log of eNO
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using imputed values of 2.5 and 5, were not significant for imputed values of 0.00001 and 

missing.  Significant coefficient estimates for PNT*Activity*Time using an imputed 

value of 2.5 were not significant for imputed values of 0.00001, 5 and missing. 

Remarkable differences in effect size and standard error were noted for models using an 

imputed value of .00001. Results of the sensitivity analysis are presented in Table 7.   

   

Model term

Imputed 

value P-value

time

0.00001 -1.244 0.8058 -2.83100 0.34300 -- 0.124

2.5 -0.122700 0.13 -0.38200 0.13660 -- 0.352

5 -0.050050 0.12 -0.27750 0.17740 -- 0.665

missing -0.019570 0.12 -0.25200 0.21290 -- 0.868

PM2.5 Dose x time

0.00001 0.009186 0.01 -0.01544 0.03381 -61.69 0.463

2.5 0.000616 0.001988 -0.00330 0.00453 -9.84 0.757

5 0.000141 0.001743 -0.00329 0.00357 -4.47 0.935

missing -0.00006 0.001737 -0.00349 0.00336 -2.12 0.971

0.00001 0.000352 0.000275 -0.00019 0.00089 -33.67 0.201

2.5 0.00011 0.000047 0.00002 0.00020 14.77 0.019

5 0.000091 0.000041 0.00001 0.00017 17.99 0.027

missing 0.000078 0.000042 -3E-06 0.00016 17.96 0.060

0.00001 -0.00035 0.00142 -0.00315 0.00245 -74.46 0.805

2.5 -0.00008 0.000226 -0.00053 0.00036 -13.96 0.719

5 -0.00007 0.000198 -0.00046 0.00032 -7.16 0.736

missing -0.00005 0.000198 -0.00044 0.00033 -3.62 0.782

0.00001 0.01297 0.02919 -0.04451 0.07045 -64.99 0.657

2.5 0.001112 0.004786 -0.00831 0.01054 -10.06 0.817

5 0.000081 0.004199 -0.00819 0.00835 -4.77 0.985

missing -0.00032 0.004236 -0.00867 0.00802 -2.41 0.940

0.00001 -6.7E-06 8.33E-06 -0.00002 0.00001 -- 0.420

2.5 -2.8E-06 1.42E-06 -0.00001 -1E-08 -- 0.049

5 -2.4E-06 1.25E-06 -5E-06 4E-08 -- 0.054

missing -2.1E-06 1.26E-06 -5E-06 4E-07 -- 0.095

PNC Dose x Activity x time

Table 7.

Sensitivity Analysis for eNO values below the detectable limit

Estimated β 

Coefficient

Standard 

error 95% CI

Δ for IQR 

increase in dose

PNC  Dose x time

Values of eNO that were below the detectable limit were imputed prior to taking a natural log transformation of eNO. 

Abbreviations: CI, confidence interval; CYSS, cystine; eNO, exhaled nitric oxide; IQR, interquartile range; O3, ozone; n, 

number;  PM2.5 , particulate matter 2.5; PNT, particle number total; SE, standard error;

O3  Dose x time

Activity Level x time
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Chapter 5. Discussion 

We hypothesized that interactions exist between physical activity and air pollution, and 

that when controlling for physical activity, increased inhaled doses of air pollutants 

would be associated with a decrease in measures of lung function, an increase in eNO, 

and an increase in the %GSSG, %CYSS, and %Oxidized as GSH and CYS are oxidized 

during the course of exposure. In keeping with the hypothesis, we found that in both 

single and multi-pollutant models, an increase in the particle number total in the inhaled 

dose (PNT) is associated with a decrease in lung function, FEF25-75, and in multi-pollutant 

models only, an increase in airway inflammation marked by exhaled nitric oxide. 

Furthermore, we see that in multi-pollutant models, the relationship between PNT and 

eNO, as well as the relationship between O3 and %CYSS are both attenuated by activity 

level. Contrary to our hypothesis, in multi pollutant models, an increased inhaled dose of 

O3 is associated with a decrease in %CYSS and %Oxidized. Likewise, in single pollutant 

models, increasing inhaled doses of O3 and BC are associated with a decrease in %CYSS 

and %Oxidized. An increasing inhaled dose of PM2.5, however, is associated with a 

decrease in %CYSS, but attenuates an increase in %Oxidized, and at doses higher than 

41μg is associated with a decrease in %Oxidized.  No significant relationships were 

found in multi-pollutant models between any type of air pollution and %GSSG, FEV1, or 

FVC. In single pollutant models, BC was associated with a decrease in FEV1.  

This study has several limitations which warrant consideration and suggest that the 

results of this study should be interpreted with caution. First, the non-probability sample 

is not representative of the general population of adolescents in the U.S., thus the results 

are not generalizable to all healthy adolescents. Second, the data collection process for 

the Study of Air Pollution and Physical Activity is still ongoing and the study has not yet 

reached it intended sample size, as such, this analysis may be underpowered. Third, due 

to the difficulty of measuring multiple outcomes quickly among energetic adolescents in 

a field setting, as well as repeated air quality monitoring equipment failures, much of the 

data are missing. While the missingness of the data is unlikely to be correlated with either 

the predictors or the outcomes, with the exception of observations where eNO is below 

the detectable limit, there is still a possibility that excluding observations with missing 

data could have introduced bias. Furthermore, missing data may have been at the source 

of the estimability problems of the models with random effects for time and 

time*occurrence. Not including these random effects in the final models may have 

underestimated the standard error and inflated the possibility of type one error. Fourth, 

while it is important to acknowledge that a single imputation of the value 2.5 is unlikely 

to approximate well the actual distribution of values of eNO below the detectable limit, it 

is clear that leaving these values as missing would ignore important information about the 

nature of their missingness, and would bias our results towards the null. The value 2.5 

represents a best guess, avoiding extremes within the possible range of real values. Given 

the sensitivity of the eNO model to different imputed values of eNO, the results of this 

model should be interpreted with caution. In light of these limitations and the present 

findings, we offer five considerations:   

First, that there are no significant relationships observed between air pollution and 

%GSSG in either multi-pollutant models or single pollutant models is consistent with 
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similar findings which showed that, in mouse models, combined diesel exhaust particle 

and house dust mite exposure had significant effects on the CYS redox state but no effect 

on the GSH redox state, which suggests that the CYS redox state may be a better 

biomarker for oxidative stress induced by diesel exhaust particles and allergens [39].   

Second, the presence of unmeasured factures could have affected the results. the study by 

Lee et al., suggests that diesel exhaust particles alone do not significantly alter the redox 

balance among mice, but that in combination with allergens, diesel exhaust can induce 

oxidative stress and may amplify the cellular inflammatory response [39].  The present 

study did not measure or control for the presence of allergens and thus the possibility of a 

synergistic relationship between allergens and pollution exposure could introduce bias. 

Another unmeasured factor that may lead to variability in redox status after exposure to 

particulate matter is the oxidative potential of the specific mix of particles inhaled at the 

time of exposure. Several studies have demonstrated that for a given mass concentration 

of particulate matter the oxidative potential can vary according to the composition, 

particularly the presence of redox-active metals, which will be affected by proximity to 

roadways and other sources of particulate pollution [22], [60], [61].   

Third, while the associations between pollutant dose and markers of oxidative stress are 

the opposite of what was hypothesized, the negative relationship between air pollution 

and percent of oxidized compounds may signal the predominance of a protective 

antioxidant response to oxidative stress induced by increasing O3  dose [22]. These 

findings are consistent with other research that has shown a nonsignificant increase in 

CYS, and a corresponding decrease in %CYSS after diesel exhaust exposure in mice 

when compared to saline exposure [39]. Similarly, Behndig et al. observed an early 

adaptive increase in the antioxidant GSH in both the bronchial lavage and the alveolar 

compartment within six hours of diesel exhaust particle exposure. This increase in 

antioxidants was subsequently overwhelmed and followed by the development of an 

inflammatory response in the bronchial lavage but not in the alveolar compartment [36].  

The authors offer the explanation that within the alveolar compartment, deeper into the 

airway, the tissue particle doses are lower, and thus the cells’ adaptive antioxidant 

response can cope with the onslaught of oxidants, demonstrating a dose threshold for 

respiratory response to diesel exhaust [36].  

Fourth, with a few exceptions, single pollutant and multi-pollutant models reflected 

similar significant relationships between air pollutant inhaled doses and outcomes, 

though varying slightly in effect size. That PM2.5 showed significant relationships with 

markers of oxidative stress in single pollutant models, but not in multi-pollutant models, 

may reflect that in the single pollutant model, the relationship between PM2.5 and 

oxidative stress is confounded by O3. The degree of correlation between PM2.5 and O3 is 

moderate, with Pearson’s r=0.67. This suggests that multi-pollutant models may be 

necessary in order to truly evaluate the separate effects of each air pollutant, holding all 

other pollutant levels constant. However, this information comes with a cost, namely, the 

increased number of parameters in multi-pollutant models sacrifice power and increase 

the chance of a type II error. Thus, it is also possible that both types of air pollution have 

relationships with oxidative stress but we were not able to measure it. Furthermore, in the 

multi-pollutant models explored in this analysis, BC was not included because of the high 

rate of missing data for this pollutant. In addition to black carbon, other types of air 
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pollutants and interactions between pollutants were not examined in this analysis. Future 

research that is adequately powered to examine a wider range of pollutants and 

interactions between pollutants in a single multivariable model would help to tease apart 

the individual effects of each different pollutant.  

Fifth, in the present study an increase in PNT is associated with both an apparent increase 

in the antioxidant CYS and with airway inflammation marked by an increase in eNO, 

suggesting that high concentration doses may have overwhelmed the antioxidant 

response. The present study only considers the total dose over a period of several hours, 

and as such ignores variability in dose concentration over the exposure period. However, 

someone who inhales a high cumulative dose despite a low activity level is likely 

breathing in a higher concentration of air pollution in a shorter period of time than a 

person who receives the same dose with a high activity level, thus the differences seen 

according to activity level may actually reflect differences in dose concentration over 

time. The moderating effects of activity level on eNO and %CYSS suggest that peaks of 

high concentration inhaled doses of air pollution may overwhelm cells’ endogenous 

redox balance resulting in increased airway inflammation. Further research that examines 

the relationships between dose peaks at the minute level and oxidative stress and 

inflammation over time could help to determine whether a high concentration dose over a 

short period of time has a different effect than a lower concentration dose over a longer 

period of time. 
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