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Introduction

As more drivers use the roadways in the U.S. and abroad, traffic prob-
lems only become more important to understand and, hopefully, resolve.
Among the long list of traffic problems, traffic jams are quite near the top.
The ”shockwave traffic” theory has emerged recently as a promising way to
model the propagation of these traffic jams by describing them as waves.[1]
In this theory, the shockwaves are mostly described by differences in speeds
between groups of cars. One of the most interesting aspects of this theory
is the idea that traffic jams are not necessarily caused by tight roadway, but
by the interaction between different speed groups, a fact that is backed up
by experimental evidence.[3]

We must examine the interaction of two cars with different velocities. We
do this by describing the motion of two cars having constant acceleration.
We begin by examining the case where the cars have the same velocity.

Case 1: Same Accelerations

To start, we must define some parameters of the cars.

The perception-reaction time, r, is the time it takes for the second car to
react to the motion of the first car.
The acceleration of the cars is denoted by a.
The initial and final velocities of the cars are w and u, respectively.
The initial distance between the back of the first car and front of the second
car is denoted by d.
Naturally, w, u, d, and r must be greater than zero, a must be less than zero,
and w must be greater than u.

We begin in the timeframe where the first car begun to slow down, but he
second car has not.
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w + at w

a

In this first stage the time t is in between 0 and r. In other words,
0 ≥ t > r.
The relative velocity of the two cars is given by

v1(t) = (w + at)− w = at

Integrating from 0 to t and adding the initial following distance, we get the
the relative distance,

s1(t) =

∫ t

0

at̂ dt̂+ d =
a

2
t2 + d

The next timeframe is where both the first and the second car are slowing
down.

r ≥ t >
u− w
a

w + at w + a(t− r)

a a

The relative velocity during this period is given by

v2(t) = (w + at)− (w + a(t− r)) = ar

Integrating v2(t) from r to t and adding s1(r),

s2(t) =

∫ t

r

art̂ dt̂+ s1(r) = d− ar2

2
+ art

The third period occurs when the first car has slowed to velocity u and the
second car is still slowing down.

u− w
a
≥ t >

u− w
a

+ r
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The relative velocity during this period is given by

v3(t) = u− (w + a(t− r)) = u− w − a(t− r)

u w + a(t− r)

a

Again, integrating this function from u−w
a

to t and adding s2(
u−w
a

) gives us
the distance between the cars.

s3(t) =

∫ t

u−w
a

u− w − a(t̂− r) dt̂+ s2(
u− w
a

)

= d−ar
2

2
+ar(

u− w
a

)+(u−w)t−a
2
t2+art−(

(u− w)2

a
−a

2
(
u− w
a

)2+ar
u− w
a

)

= d− ar2

2
+ r(u− w) + (u− w)t− a

2
t2 + art− (

(u− w)2

2a
+ r(u− w))

= d− ar2

2
+ (u− w)t− a

2
t2 + art− (u− w)2

2a

Finally, the relative velocity between the two cars is 0.
u u

vf = u− u = 0

The final distance is given by s3(
u−w
a

+ r).

sf = s3(
u− w
a

+ r)

= d− ar
2

2
+

(u− w)2

a
+r(u−w)− a

2
(
u− w
a

+r)2 +r(u−w)+ar2− (u− w)2

2a

= d+
ar2

2
+

(u− w)2

2a
− (u− w)2

2a
− r(u− w)− ar2

2
+ 2r(u− w)
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= d+ r(u− w)

= d− r(w − u)

The quantity w − u is the speed variation, which we will call ∆v.

sf = d− r∆v

In order for the cars to not crash, the final distance must be greater than
zero.

sf > 0

d− r∆v > 0

d > r∆v

d

r
> ∆v

This means that the ratio between the initial following distance and the
perception-reaction time must be greater than the speed variation.

Before we discuss the implications of this result, we will perform a similar
calculation for the case with different accelerations.

Case 2: Different Accelerations

In this case, parameters w, u, and r remain unchanged. We also define two
new parameters, a1 and a2. These are the accelerations of the front and the
back car, respectively. a1 and a2 must be negative.

Our timeframes are similar to the last calculation.

0 ≥ t > r

Here, the relative velocity is given by

v1∗ = (w + a1t)− w = a1t

Integrating from 0 to t and adding the initial following distance, we get the
the relative distance,

s1∗(t) =

∫ t

0

a1t̂ dt̂+ d = d+
a1
2
t2
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The next timeframe has both cars slowing down.

r ≥ t >
u− w
a1

In this period, the relative velocity is given by

v2∗ = (w + a1t)− (w − a2(t− r)) = a1t− a2(t− r)

Once more, we integrate v2∗ from r to t and add the previous distance at r.

s2∗ =

∫ t

r

a1t̂−a2(t̂−r) dt̂+d+
a1r

2

2
=
a1
2
t2−a2

2
t2+a2rt−(

a1r
2

2
−a2r

2

2
+a2r

2)+d+
a1r

2

2

= d− a2r
2

2
+
a1
2
t2 − a2

2
t2 + a2rt

The next period has the first car at the final velocity u while the second car
is still slowing down.

u− w
a1

≥ t >
u− w
a2

+ r

Here, the velocity function is given by

v3∗(t) = u− (w + a2(t− r))

Again, we integrate this velocity from u−w
a1

to t and add the previous position

function at u−w
a1

.

s3∗(t) =

∫ t

u−w
a1

(u− w)− a2t̂+ a2r dt̂+ s2∗(
u− w
a1

)

= (u− w)t− a2
2
t2 + a2rt− (

(u− w)2

a1
− a2

2
∗ (u− w)2

a21
+ a2r

u− w
a1

)

+d− a2r
2

2
+
a1
2
∗ (u− w)2

a21
− a2

2
∗ (u− w)2

a21
+ a2r

u− w
a1

= d− a2r
2

2
− (u− w)2

2a1
− a2

2
t2 + a2rt+ (u− w)t

The final velocity is zero, as both cars are at velocity u.
The final distance is simply s3∗(

u−w
a2

+ r).

sf∗ = s3∗(
u− w
a2

+ r)
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sf∗ = d−a2r
2

2
−(u− w)2

2a1
−a2

2
(
u− w
a2

+r)2+a2r(
u− w
a2

+r)+(u−w)(
u− w
a2

+r)

sf∗ = d+ r(u− w) +
(u− w)2

2a2
− (u− w)2

2a1

sf∗ = d− r∆v +
(∆v)2

2a2
− (∆v)2

2a1

If we set a1 = a2, then we recover sf .

sf∗ = d− r∆v +
(∆v)2

2a
− (∆v)2

2a
= d− r∆v = sf

Just like in the last case, we much find a condition based on the speed
variation that prevents collisions.

sf∗ > 0

d− r∆v +
(∆v)2

2a2
− (∆v)2

2a1
> 0

Clearly, this relation is quadratic in ∆v.// If a2 > a1, then

r −
√
r2 − 2d( 1

a2
− 1

a1
)

1
a2
− 1

a1

< ∆v

If a1 > a2, then

r +
√
r2 − 2d( 1

a2
− 1

a1
)

1
a2
− 1

a1

< ∆v

These relations allow for more precision in calculations. However, the sim-
plicity of the equation not relying on accelerations makes it easy to apply in a
variety of situations, with less reliance on experimental data. For this reason,
we continue by examining a variety of scenarios using the distance\reaction-
time relation.
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Traffic Scenario 1

On average, the perception-reaction time is not going to change very
much. For this reason, we initially assume the value of r to be 1 second.
This is close to the reported average value of 1.01 seconds, and simplifies our
calculations greatly.[2]

Next, we imagine a line of cars with a uniform speed. The car in the
front of the line decreases its speed by 5 m/s. This means that the distance
between adjacent cars must be at least 5 meters.

An interesting property in this scenario is that the specific speed of the
cars does not matter, as long as it is initially uniform. This indicates that
there is no limit on the speed, minimum or maximum, that these cars can
travel in. A car traveling in a line with a speed near the speed of light would
need the same distance to account of any given change in speed as a line of
cars moving at a near stop.

Traffic Scenario 2

Again, we assume the value of r to be 1 second.

Perhaps a more realistic scenario is where the only information we have
is the density of traffic. If we have the average density of traffic in a given
area, then

1

ρ
− L = d

where ρ is the density of traffic and L is the average length of cars.

Let’s assume L to be 3 meters. Let’s assume that there is 1 car every 10
meters, for a ρ value of .01 cars/meter.

1

0.1
− 3 > ∆v

7 > ∆v

In this case, the change in speed can be up to 7 m/s.
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Traffic Scenario 3

Here, we consider a decreasing perception-reaction time. This case comes
into play in a case where someone becomes distracted. Let us use the dis-
tance between cars of 5 meters from the first scenario. As discussed in the
first scenario, this distance can tolerate a change in speed of 5m/s.

If one driver in this line decides to, say, look at their phone, then their
perception-reaction time will increase. Doubling this time cuts the tolerance
in half; that is, at the current distance that the cars are apart from each
other, the maximum change in speed allowed to prevent a crash is 2.5m/s.

If this change were to happen in the middle of a traffic situation with
changing speeds, it is easy to see that becoming distracted can fairly directly
lead to a crash.

Conclusion

Traffic issues continue to plague roadways around the world. Among
these issues are those of traffic jams during times of high traffic flow. By
analyzing the required distance needed between cars to allow for a certain
speed variation, it becomes possible prevent some of these traffic accidents
and decrease the travel time of everyone in the group. Further research in
this area should provide further insights to prevent traffic jams.

Furthermore, the density of traffic, and not the speed of traffic, deter-
mines the tolerate speed variance. The utility of the equations found here
allows for application to a large number of scenarios.

Lastly, increasing the amount of time it takes any given person to react
to a speed change greatly decreases the speed variation tolerance. This indi-
cates that work must be done to prevent distractions for drivers.
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