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ABSTRACT 
 

Modeling Non-Linear Relationships Between DNA Methylation And Age: The Application of 
Regularization Methods To Predict Human Age And The Implication Of DNA Methylation In 

Immunosenescence 
 

By 
 

Nicholas David Johnson 
 

May 4, 2016 
 
  
Background: Gene expression is regulated via highly coordinated epigenetic changes, the most 
studied of which is DNA methylation (DNAm).  Many studies have shown that DNAm is linearly 
associated with age, and some have even used DNAm data to build predictive models of human 
age, which are immensely important considering that DNAm can predict health outcomes, such 
as all-cause mortality, better than chronological age.  Nevertheless, few studies have investigated 
non-linear relationships between DNAm and age, which could potentially improve these 
predictive models.  While such investigations are relevant to predicting health outcomes, non-
linear relationships between DNAm and age can also add to our understanding of biological 
responses to late-life events, such as diseases that afflict the elderly. 
  
Objectives: We aim to (1) examine non-linear relationships between DNAm and age at specific 
loci on the genome and (2) build upon regularization methods by comparing prediction errors 
between models with both non-transformed and square-root transformed predictors to models 
that include only non-transformed predictors.  We used both the sparse partial least squares 
(SPLS) regression model and the lasso regression model to make our comparisons. 
  
Results: We found two age-differentially methylated sites implicated in the regulation of a gene 
known as KLF14, which could be involved in an immunosenescent phenotype.  Inclusion of the 
square-root transformed variables had little effect on the prediction error of the SPLS model.  On 
the other hand, the prediction error increased substantially in the lasso regression model, 
particularly when few predictors (<30) were included in the model and when many predictors 
(>70) were included. 
  
Conclusion: The growing amount and complexity of biological data coupled with advances in 
computational technology are indispensable to our understanding of biological pathways and 
perplexing biological phenomena.  Moreover, high-dimensional biological data have enormous 
implications for clinical practice. Our findings implicate a possible biological pathway involved in 
immunosenescence. While we were unable to improve the predictive models of human age, 
future research should investigate other possible non-linear relationships between DNAm and 
human age, considering that such statistical methods can improve predictions of health 
outcomes. 
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Chapter 1. The Implication Of DNA Methylation In Immunosenescence 
 

1.1 Tables & Figures 
 

Gene series # Study Abbreviation Tissue type Publication 

N/A Grady Trauma Project GTP Peripheral blood Barfield et al. 
2014 

GSE60132 TOPS Family Study 
 

TOPS Peripheral blood Ali et al. 2015 

GSE56581 MESA Epigenomics 
and Transcriptomics 
Study (human T cells) 
 

MESA-T Purified T cells Reynolds et al. 
2014 

GSE56046 MESA Epigenomics 
and Transcriptomics 
Study (human 
monocytes) 
 

MESA-M Purified monocytes Reynolds et al. 
2015 

GSE59065 Estonian Genome 
Center Investigation 
of Age-related 
epigenetics and 
immune system 
function in PBL, CD4+ 
and CD8+ T cells 
 

EGC-PBL 
EGC-CD4 
EGC-CD8 

Peripheral blood 
leukocytes (PBL), 
CD4+ and CD8+ T 
cells 

Tserel et al. 2014 

GSE74193 Schizophrenia-related 
DNAm and gene 
expression 

CTX Dorsolateral 
prefrontal cortex 

Jaffe et al. 2016 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Reference information regarding each of the four datasets analyzed. 
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Dataset N 𝛽𝑎𝑔𝑒 𝑆𝐸𝑎𝑔𝑒 𝑇𝑎𝑔𝑒 𝑃𝑎𝑔𝑒 

GTP 336 9.6E-4 6.4E-5 14 2.0E-16 

TOPS 192 1.2E-3 1.0E-4 12 2.0E-16 

MESA-T 214 1.1E-3 1.4E-4 7.6 1.0E-12 

MESA-M 1202 1.6E-3 9.7E-5 16 2.0E-16 

EGC-PBL 97 2.9E-3 2.2E-3 1.2 0.20 

EGC-CD4 99 6.8E-4 1.7E-3 0.40 0.69 

EGC-CD8 100 -6.9E-4 2.6E-3 -0.26 0.79 

CTX 346 1.4E-3 2.8E-4 4.9 1.4E-6 

 
 
 
 
 
 
 

 

Dataset N 𝛽𝑎𝑔𝑒 𝑆𝐸𝑎𝑔𝑒 𝑇𝑎𝑔𝑒 𝑃𝑎𝑔𝑒 

GTP 336 4.9E-4 5.0E-5 9.8 2.0E-16 

TOPS 192 6.3E-4 6.5E-5 9.7 2.0E-16 

MESA-T 214 7.4E-4 1.1E-4 6.7 1.8E-10 

MESA-M 1202 9.3E-4 6.4E-5 15 2.0E-16 

EGC-PBL 97 4.7E-5 1.3E-3 0.035 0.97 
EGC-CD4 99 8.0E-4 2.0E-3 0.40 0.69 
EGC-CD8 100 -2.3E-3 1.8E-3 -1.3 0.21 
CTX 346 9.0E-4   2.8E-4    3.2   0.0013 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Statistics corresponding to the age term of the regression model 
fitted separately to each of the six data sets for the CpG site, 
cg07955995. The first two columns include abbreviations of the dataset, 
according to Table 1 and the sample size.  Columns 3 and 4 include the 
slope coefficient estimate of age and corresponding standard error, and 
columns 5 and 6 include the T-statistic for age and corresponding p-
value. The regression model included covariates and excluded the age-
quadratic term. 

Table 3. Statistics corresponding to the age term corresponding to the 
regression model fitted separately to each of the four data sets for the 
CpG site, cg22285878. The type of information included in each column is 
the same as described in Table 2. The regression model included 
covariates and excluded the age-quadratic term. 
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Dataset N 𝛽𝑎𝑔𝑒2 𝑆𝐸𝑎𝑔𝑒2 𝑇𝑎𝑔𝑒2 𝑃𝑎𝑔𝑒2  𝑉𝑎𝑟𝑦𝑜𝑢𝑛𝑔 𝑉𝑎𝑟𝑜𝑙𝑑 𝑃𝑉𝑎𝑟 

GTP 336  3.6E-5  4.1E-6 8.8 2.0E-16 8.3e-5 2.7e-3 4.0e-17 

TOPS 192  3.4E-5  3.9 E-6 8.6  4.3E-15 6.5e-5 3.0e-3 1.5e-48 

MESA-T 214  1.3E-5  1.6E-5 0.84  0.40  1.9e-4 4.2e-4 4.1e-4 

MESA-M 1202  2.2E-5  1.0E-5 2.2  0.025 4.6e-4 1.7e-3 5.3e-6 

EGC-PBL 97 1.6 E-5 2.1 E-5 -0.74 0.46 1.8e-4 1.4e-3 1.7e-11 

EGC-CD4 99 2.9 E-6 1.6 E-5 0.18 0.86 2.9e-4 6.6e-4 2.3e-3 

EGC-CD8 100 2.0E-5 2.5 E-5 0.79 0.43 3.9e-4 1.9e-3 5.9e-8 

CTX 346 2.1 E-6   3.5 E-6    0.61   0.54 4.3e-4 1.2e-3 8.7e-5 

 
 
 
 
 
 
 

 
 

Dataset N 𝛽𝑎𝑔𝑒2 𝑆𝐸𝑎𝑔𝑒2 𝑇𝑎𝑔𝑒2 𝑃𝑎𝑔𝑒2  𝑉𝑎𝑟𝑦𝑜𝑢𝑛𝑔 𝑉𝑎𝑟𝑜𝑙𝑑 𝑃𝑉𝑎𝑟 

GTP 336  2.1E-5  6.8E-3 6.2 1.4E-9 6.6e-5 2.0e-3 3.0e-7 

TOPS 192  1.5E-5  2.7E-6 5.7  5.0E-8 6.6e-5 6.0e-4 9.9e-8 

MESA-T 214  4.8E-6  1.2E-5 0.39 0.70 1.4e-4 2.1e-4 9.9e-3 

MESA-M 1202  1.8E-5  6.5E-6 2.7  6.6E-3  1.8e-4 7.3e-4 2.3e-62 

EGC-PBL 97 5.5E-6 1.3E-5 0.43 0.67 1.5e-4 4.3e-4 1.7e-4 

EGC-CD4 99 -5.4E-7 1.9E-5 -0.028 0.97 1.9e-4 1.2e-3 1.2e-9 

EGC-CD8 100 3.0E-5 1.7E-5 1.73 0.087 3.6e-4 8.0e-4 3.3e-3 

CTX 346 3.0E-6   3.5E-6    0.87   0.38 4.5e-4 1.4e-3 1.6e-3 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Statistics corresponding to the age-quadratic term of the regression model fitted separately to each of the four 
data sets for the CpG site, cg07955995. The regression model included the age term and covariates. The first two columns 
include abbreviations of the dataset, according to Table 1 and the sample size.  Columns 3 and 4 include the slope 
coefficient estimate of age2 and corresponding standard error, and columns 5 and 6 include the T-statistic for age and 
corresponding p-value. Columns 7 and 8 include the variances of the young age group and variance of the old age group 
for each of the 8 datasets. Column 9 is the p-value corresponding to the F-statistic calculated as the ratio of variances of 
the young and old age groups. 

Table 5. Statistics corresponding to the age-quadratic term corresponding to the regression model fitted separately to 
each of the four data sets for the CpG site, cg22285878. The type of information included in each column is the same as 
described in Table 4.  The regression model included the age term and covariates. Columns denote the same information  
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Figure 1. Fitted regression lines with age-quadratic term for each of the 8 datasets, holding covariates constant at their mean 
values. The alphanumeric characters in the top left corner of each graph indicates the dataset and CpG site.  The letter A refers 
to cg07955995 and the letter B refers to cg22285878.  The number 1 corresponds to GTP, 2 to TOPS, 3 to MESA-M, 4 to MESA-T, 
5 to CTX, 6 to EGC-PBL, 7 to EGC-CD4, and 8 to EGC-CD8. Colors of regression lines were chosen to clearly contrast the 
datapoints. 
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Figure 2. Plot of the variance of methylation at cg07955995 for the old age group (73 years or older) against the young age 
group for each dataset. MESA-M and MESA-T appear with different symbols because subjects in these datasets were too old to 
include an age group less than 34 years of age. For these two datasets the median ages (in years) were used (58 for MESA-M 
and 60 for MESA-T) to create young groups (≤median) and old groups (>median). 
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Figure 3. Plot of the variance of methylation at cg22285878 for the old age group (73 years or older) against the young age 
group (34 years of age or younger) for each dataset.  MESA-M and MESA-T appear with different symbols because subjects in 
these data sets were too old to include an age group less than 34 years of age. For these two datasets the median ages (in 
years) were used (58 for MESA-M and 60 for MESA-T) to create young groups (≤median) and old groups (>median). 
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Figure S1. Beta values plotted against age for the 22 CpG sites with a Holm-significant quadratic term (p<5.038799e-05) in the 
primary analysis. Regression lines correspond to a model with an age term and age2 term, holding covariates constant at their 
mean values. 

 

 
Figure S2. Beta values of cg22285878 plotted against beta values of cg07955995 for each of the eight datasets (top left corner) 
with Pearson’s r correlation (bottom right corner). 

 

 

 

 



P a g e  | 15 

 

 

 

Figure S3. Histograms of cell type contamination proportions across MESA-M individuals.  Colored lines indicate the 
contamination proportions among the five individuals with the highest β-values at cg07955995. 
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Figure S4. Histograms of cell type contamination proportions across MESA-M individuals.  Colored lines indicate the 
contamination proportions among the five individuals with the highest β-values at cg22285878. 
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 𝛽𝑎𝑔𝑒 𝑆𝐸𝑎𝑔𝑒 𝑇𝑎𝑔𝑒 𝑃𝑎𝑔𝑒  𝛽𝑎𝑔𝑒2 𝑆𝐸𝑎𝑔𝑒2  𝑇𝑎𝑔𝑒2 𝑃𝑎𝑔𝑒2  

cg00787180 9.7E-03 1.4E-03 7.15 5.8E-12 -9.2E-05 1.6E-05 -5.66 3.3E-08 

cg01331772 1.1E-02 1.8E-03 6.22 1.5E-09 -1.1E-04 2.2E-05 -5.04 7.7E-07 

cg03469054 4.8E-03 8.2E-04 5.84 1.2E-08 -4.8E-05 9.8E-06 -4.92 1.4E-06 

cg07084627 5.4E-03 8.7E-04 6.28 1.1E-09 -5.6E-05 1.0E-05 -5.38 1.4E-07 

cg07955995 -2.0E-03 3.4E-04 -5.83 1.3E-08 3.6E-05 4.1E-06 8.76 1.1E-16 

cg12106976 4.8E-03 8.1E-04 5.91 8.5E-09 -4.8E-05 9.7E-06 -4.90 1.5E-06 

cg12419932 5.4E-03 8.2E-04 6.55 2.2E-10 -5.2E-05 9.9E-06 -5.30 2.2E-07 

cg13468002 2.7E-03 4.4E-04 6.14 2.5E-09 -2.6E-05 5.3E-06 -5.03 8.1E-07 

cg14293223 2.6E-03 6.0E-04 4.40 1.5E-05 -4.1E-05 7.2E-06 -5.65 3.6E-08 

cg15150970 4.7E-03 6.9E-04 6.88 3.1E-11 -4.7E-05 8.3E-06 -5.64 3.6E-08 

cg17002328 4.4E-03 6.9E-04 6.32 8.3E-10 -4.4E-05 8.3E-06 -5.31 2.0E-07 

cg18919209 3.3E-03 5.3E-04 6.27 1.2E-09 -3.2E-05 6.3E-06 -5.04 7.7E-07 

cg20665157 1.2E-02 1.4E-03 8.51 6.5E-16 -1.2E-04 1.7E-05 -6.76 6.4E-11 

cg21075378 2.2E-03 3.4E-04 6.34 7.8E-10 -2.2E-05 4.1E-06 -5.38 1.4E-07 

cg21184711 1.3E-02 1.6E-03 7.82 7.3E-14 -1.1E-04 1.9E-05 -5.71 2.5E-08 

cg22033586 5.4E-03 8.6E-04 6.30 9.5E-10 -5.4E-05 1.0E-05 -5.16 4.3E-07 

cg22285878 -1.2E-03 2.8E-04 -4.38 1.6E-05 2.1E-05 3.3E-06 6.23 1.4E-09 

cg23088126 3.3E-03 5.5E-04 5.87 1.1E-08 -3.3E-05 6.7E-06 -4.99 9.8E-07 

cg23491743 4.7E-03 7.7E-04 6.11 2.9E-09 -4.6E-05 9.3E-06 -4.94 1.2E-06 

cg24699296 7.5E-03 1.2E-03 6.25 1.3E-09 -7.5E-05 1.4E-05 -5.19 3.7E-07 

cg25792410 6.4E-03 1.1E-03 6.09 3.2E-09 -6.3E-05 1.3E-05 -4.99 9.6E-07 

cg26654286 3.9E-03 6.4E-04 6.09 3.1E-09 -3.9E-05 7.6E-06 -5.14 4.7E-07 

Table S1.  Regression statistics corresponding to the 22 CpG sites with a Holm-significant quadratic term (p<5.038799e-05) from 
the primary analysis.  Column 1 indicates the CpG probe site according to the Illumina Infinium 450k Human Methylation Array. 
Columns 2-5 correspond to the slope coefficient estimate, standard error, T-statistic, and P-value corresponding to the age term 
in the primary analysis.  Columns 6-9 correspond to the slope coefficient estimate, standard error, T-statistic, and P-value 
corresponding to the age2 term in the primary analysis. 
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1.2 Introduction: 
 
Gene expression is regulated via highly coordinated epigenetic changes, the most studied of 
which is DNA methylation (DNAm).  DNAm is the binding of a methyl group (-CH3) to DNA, which, 
in mammals, occurs most commonly at a cytosine nucleotide that resides 5’ to a guanine 
nucleotide, referred to as a CpG site (Mendizabal 2014).  CpG sites are clustered in CpG-rich 
regions known as CpG islands (CGIs), regions directly adjacent to CGIs (CpG shores), and CpG-
poor regions (CpG shelves).  The position of the CpG site within the transcription unit (typically, 
comprising a promoter, the RNA coding sequence, and terminator) has a substantial effect on 
how DNAm impacts expression of the downstream gene, e.g. upregulation or downregulation 
(Jaenisch and Bird 2003).  Generally, CpG-poor regions are hypermethylated whereas CpG-rich 
regions are hypomethylated (Day 2013).  Evidence suggests that DNAm in the gene body 
stimulates transcription whereas DNAm of transcription start sites results in gene silencing (Jones 
2012). 
 
While patterns of DNAm across the genome vary according to tissue type and environmental 
exposure, many studies have shown that age explains a substantial portion of the variation in 
human DNAm (Bell 2012; Christensen 2009; Issa et al. 1994, 1996; Ahuja et al. 1998; Nakagawa 
et al. 2001; Fraga et al. 2005; So et al. 2006; Fraga and Esteller 2007; Bjornsson et al. 2008).  
Furthermore, monozygotic (MZ) twin studies indicate that age-related DNAm is not wholly 
explained by genetic factors: DNAm varies more widely between older MZ twins than younger, 
and these differences are less marked among MZ twins who share more time with each other 
and have similar lifestyles (Fraga et al., 2005). 
 
DNAm has been observed to decrease genome-wide with age (Bollati et al. 2009), although the 
relationship between DNAm and age is much more nuanced.  For example, CGIs are associated 
with an increasing rate of DNAm with age whereas non-CGIs are associated with a decreasing 
rate of DNAm with age (Christensen 2009).  Furthermore, post-natal DNA is hypomethylated and 
undergoes a rapid increase in DNAm in early life before stabilizing in adulthood, followed by a 
gradual decrease later in life (Jones 2015).  But not all CpG sites that undergo age-related DNAm 
follow this trend: while CGI promoters are generally hypomethylated with age, one study found 
age-related hypermethylated CGI promoters associated with gene silencing (Shen 2007), and 
another study found a class of CGIs with stably methylated shores associated with high gene 
expression (Edgar 2014).  
 
While general trends in DNAm are important, deviations from these trends will provide essential 
insights into the complex relationship between DNAm and senescence.  Heretofore, studies 
investigating age-related DNAm have shown a few stages in life where rapid DNAm changes occur 
followed by stabilization.  For example, differences in the rates of DNAm have been observed 
between pediatric and adult subjects (Alish et al. 2012).  Less studied is the reverse trend: Stable 
DNAm levels followed by rapid methylation/demethylation.  Here, we present two analyses to 
better understand non-linear trends between DNAm and human aging.  We analyze genome-
wide DNAm data in a set of peripheral blood samples with the goal of identifying loci for which 
DNAm increases or decreases at an increasing rate with age.  We follow up this analysis in seven 
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datasets comprising distinct tissue types including dorsolateral prefrontal cortex and peripheral 
blood, along with purified blood cell types isolated from peripheral blood including monocytes, 
CD4+ T cells, and CD8+ T cells. 
 

1.3 Methods: 
 
Samples:  
A total of eight datasets were analyzed (Table 1).  For each of the datasets, DNA was collected 
from tissue samples and was bisulphite-treated for cytosine to thymine conversion and 
hybridized to the Illumina Infinium 450k Human Methylation Beadchip (Ali et al. 2015; Reynolds 
et al. 2014; Reynolds et al. 2015; Barfield et al. 2015; Gillespie et al. 2009; Jaffe et al. 2016;). 
 
Grady Trauma Project (GTP): 
The primary analysis was performed using a subset of 336 individuals ranging in age from 16 to 
78 from data collected as part of the Grady Trauma Project, a study investigating the effects of 
genetic and environmental factors on individuals’ response to stressful life events. Participants 
were recruited from waiting rooms at Grady Memorial Hospital in Atlanta, GA between 2005 and 
2008.  Individuals who provided informed consent provided either salivary or blood samples.  The 
Institutional Review Boards of Emory University School of Medicine and Grady Memorial Hospital 
approved all procedures of the Grady Trauma Project. (Gillespie et al. 2009; Barfield et al. 2014). 
 
Follow-up analyses were performed on the publicly available datasets listed below to replicate 
findings of the primary analysis.   
 
TOPS Family Study (TOPS) 
 The TOPS Family Study included methylation data collected from peripheral blood of 192 
individuals.   Individual ages ranged from 6 to 85 and each individual belonged to 1 of 7 extended 
families of Northern European descent.  In order to be included in the study, each nuclear family 
was required to have two obese siblings and at least one parent or sibling who was never obese.  
The NCBI Gene Expression Omnibus accession number corresponding to the TOPS Family Study 
is GSE60132. (Ali et al. 2015) 
 
Multi-Ethnic Study of Atherosclerosis (MESA): 
 The Multi-Ethnic Study of Atherosclerosis (MESA) collected methylation data for samples 
of CD4+ T cells (MESA-CD4; 214 subjects) and monocytes (MESA-M; 1,202 subjects) isolated from 
peripheral blood.  The age range was 45-79 for MESA-CD4 subjects and 44-83 for MESA-M 
subjects.  The MESA study was conducted to collect population-based information on the 
prevalence and progression of subclinical cardiovascular disease.  Subjects were recruited from 
six sites: Baltimore City and Baltimore County, Maryland; Chicago, Illinois; Forsyth County, North 
Carolina; Los Angeles County, California; New York, New York; and St. Paul, Minnesota.  The NCBI 
Gene Expression Omnibus accession number corresponding to MESA-CD4 and MESA-M are 
GSE56581 and GSE56046, respectively. (Reynolds et al. 2014; Reynolds et al. 2015) 
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Estonian Genome Center Investigation of Age-related Epigenetics and Immune System function 
in PBL, CD4+ and CD8+ T cells (EGC-PBL, EGC-CD4, EGC-CD8): 
 Peripheral blood leukocytes (EGC-PBL) were collected, in addition to CD4+ T cells (EGC-
CD4) and CD8+ T cells (EGC-CD8), which were isolated from peripheral blood from healthy donors 
of the Estonian Genome Center of the University of Tartu.  A total of 101 subjects were in the 
study, and were divided into a young age group and an old age group whose ranges were 22-34 
and 73-84, respectively.  After quality control, a total of 296 samples were collected from the 101 
subjects: 99 CD4+ T cell samples, 100 CD8+ T cell samples, and 97 PBL samples.  The NCBI Gene 
Expression Omnibus accession number corresponding to the Estonian Genome Center 
Investigation of Age-related epigenetics and immune system function in PBL, CD4+ and CD8+ T 
cells is GSE59065. (Tserel et al. 2014) 
 
Schizophrenia-related DNAm and gene expression (CTX): 
 Samples of dorsolateral prefrontal cortex were surgically removed from post-mortem 
brain samples donated to the NIMH Brain Tissue Collection at the National Institute of Health in 
Bethesda, Maryland.  Our investigation focused on 346 samples from the control group with an 
age range of 2-85.  The NCBI Gene Expression Omnibus accession number corresponding to the 
Schizophrenia-related DNAm and gene expression data is GSE74193. (Jaffe et al. 2016) 
 
Data Analysis 
 
The eight data sets were analyzed using the suite of R functions CpGassoc (Barfield et al. 2012).  
Within the CpGassoc package, the cpg.qc function was used to perform quality control on all the 
datasets.  Quality control included the removal of probes with missing data for >5% of samples, 
removal of samples with >5% missing probe sites, and the removal of samples with a detection 
p-value > 0.001. Methylated and unmethylated signals were then quantile normalized.  A beta-
value (β) was then computed from the methylated signal (M) and unmethylated signal (U) as 

follows: 𝛽 =
𝑀

𝑈+𝑀
.  

 
The GTP data set was analyzed by using the R function cpg.assoc to perform a separate linear 
regression for each CpG site where β was regressed on age, age2, sex, and cell type proportions, 
which were imputed using the R package minfi.  The quadratic term for age was included to allow 
identification of CpG sites demonstrating an increasing rate of change with age.  CpG sites were 
considered significant if the p-value corresponding to the t-statistic on the age2 term was smaller 
than the Holm-Bonferroni corrected level of significance (α=1.034342e-06).   
 
For CpG sites demonstrating an increasing rate of change with age in GTP, follow-up analyses 
were performed on the remaining data sets.  Only CpG sites with a significant quadratic term 
were included in the subsequent analyses, which were performed using the R function lm().  The 
response variable β was regressed on the predictors age and age2 similar to the analysis 
performed on the first data set.  Our TOPS, MESA-T, and MESA-M analyses all included a 
‘racegendersite’ variable as a covariate in the regression models.  While our TOPS regression 
model also included imputed cell type proportions as covariates, the MESA-T and MESA-M 
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models included contaminated cell type proportions, namely, proportions of B-cells, monocytes, 
natural killer cells, and neutrophils.  
 
1.4 Results: 
 
A separate linear regression was performed on each CpG site for data obtained from the GTP.  Of 
the 483,399 CpG sites analyzed, 9,923 were significantly associated with age (P<1.03E-7).  
Subsequently, the 9,923 aDM CpG sites were fitted with an age term and age2 term as 
independent variables.  For the subsequent analysis 22 CpG sites had a Holm-significant age2 
term (P<5.04E-05).  Of these 22 CpG sites (Figure 5 & Table 6), three general trends were 
observed:  
(1) Two of the 22 CpG sites that were modeled exhibited a low level of DNAm and near-zero slope 
between β and age at the minimum age of the GTP age range (agemin=15.9 years) that positively 
accelerated as age increased.  
(2) One CpG site exhibited a near-zero slope and high DNAm at agemin whose slope decreased 
with age.  However, when the oldest individual was removed from the model, both the age term 
and the age2 term were no longer significant. 
(3) The remaining 19 CpG sites that were modeled exhibited a positive relationship between 
DNAm and age at agemin whose slope decreased with age until reaching zero before becoming 
increasingly negative among older individuals. 
 
The two CpG sites (cg07955995 and cg22285878) that exhibited trend (1) are 14 base pairs apart 
from each other.  The GTP analysis and subsequent analyses revealed that models with a 
significant quadratic relationship between β and age for cg07955995 also had a significant 
quadratic relationship between β and age for cg22285878, which is likely attributable to the 
proximity of these two CpG sites on the genome.  In other words, it is plausible that both CpG 
sites are detecting the same signal (Table 4). 
 
There are three SNPs within 10,000 base pairs of these two CpG sites.  Because the three oldest 
subjects in GTP had the largest proportion of cells methylated, we sought to determine whether 
a SNP was driving the relationship found.  When compared to the remaining 333 subjects, none 
of the three oldest subjects had a unique SNP genotype. 
 
To replicate this result in independent datasets, a separate linear regression was fitted for each 
of the two CpG sites identified (cg07955995 and cg22285878) in seven additional datasets (Table 
1).  Among the additional analyses, an increasing rate of DNAm with age was most notably 
observed in the TOPS, similar to observations in the GTP analyses (Figure 1).  The age-quadratic 
terms were significant for cg07955995 in TOPS and MESA-M (p=4.33x10-15 and p=0.0247, 
respectively) but not in MESA-T, EGC-PBL, EGC-CD4, EGC-CD8, and CTX (p=0.402, p=0.460, 
p=0.857, p=0.430, p=0.544, respectively) (Table 4; Figure 1). The other CpG site (cg22285878) 
yielded similar results.  The age-quadratic term was significant in TOPS (p=4.95x10-8) and MESA-
M (p=0.006643) but not MESA-T, EGC-PBL, EGC-CD4, EGC-CD8, and CTX (p=0.698, p=0.668, 
p=0.978, p=0.087, p=0.384, respectively) (Table 5).  
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These results provide evidence that age-related DNAm at these two CpG sites may vary by tissue 
type and blood cell type.  In particular, MESA-M, a sample of isolated monocytes, exhibited 
evidence of an age-quadratic relationship with DNAm whereas MESA-T, a sample of isolated T 
cells, exhibited no evidence of an age-quadratic relationship with DNAm.  To investigate whether 
cell type contamination was driving this relationship, cell type contamination proportions were 
compared between those individuals with the highest β values to the remaining individuals in 
MESA-M (Figure S3 & S4).  We found no substantial difference between the contamination 
proportions between the two groups. 
 
In addition to investigating quadrilinear relationships between DNAm and age, we also 
investigated whether the variance in DNAm differed between young and old individuals by cell 
and tissue type.  Because the EGC data was already split into a young age group (≤34 years) and 
an old age group (≥73 years), we split data from GTP, TOPS, and CTX in a similar fashion.  Because 
MESA-M and MESA-T have age ranges of 45-79 and 44-83, we could not split these data sets in 
the same age groups as the other data sets.  For MESA-M and MESA-T, we instead used the 
median values (58 and 60, respectively) to split the datasets into young groups (≤median) and 
old groups (>median) (Figure 2 & 3). 
 
There was a significantly greater variance in the old age group compared to the young age group 
for all data sets for both cg07955995 and cg22285878 (Tables 4 & 5).  While Figure 2 and 3 plot 
the deviation of these variances from the y=x line for all data sets, EGC-CD4, EGC-CD8, and EGC-
PBL are the most meaningfully comparable considering the data is derived from the same sample 
of subjects.  The other datasets, on the other hand, were recruited from a variety of different 
people across the United States.  When comparing EGC-CD4, EGC-CD8 for cg07955995, EGC-CD8 
exhibited the highest variance in the old age group while CD4 exhibited the lowest variance.  For 
cg22285878, CD4 exhibited the highest variance in the old age group whereas PBL exhibited the 
lowest variance among the old age group. 
 
1.5 Discussion: 
 
Many studies have investigated the relationship between DNAm and human age.  While 
significantly different rates of DNAm have been observed between pediatric and adult 
populations (Alisch et al. 2012), we are unaware of studies investigating CpG sites whereby DNAm 
increases exponentially or decreases exponentially with age within the same cohort.  Such 
investigations are important to unravel the complex relationship between DNAm and 
senescence.  In addition to investigating a quadrilinear relationship between DNAm and age, we 
further explored age-related DNAm at these two CpG sites by comparing the variances between 
young and old individuals across cell types.  In order to understand the importance of these 
results, we first review evolutionary models of human aging and discuss their relevance to 
quadrilinear age-related DNAm.  Next, we discuss the tissue and cell type specific patterns we 
observe and a possible relationship with immune system function.  Lastly, we consider how these 
effects could be implicated in gene regulation, particularly, the regulation of a gene known as 
KLF14. 
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Evolutionary Models of Human Aging: 
 
Methylome-wide association studies provide a novel approach to testing evolutionary models of 
human aging.  The focus of this analysis is the rate of change of DNAm over the lifespan, which 
provides insight into the evolution of aging.  Major models of the evolution of aging include 
mutation accumulation, disposable soma, optimal lifespan, and the developmental model of 
aging.  While these models are not mutually exclusive, the specific association between age and 
DNAm varies from one model to another.  Here, we briefly outline each model, along with the 
type of age-related DNAm it is consistent with. 
 
The mutation accumulation evolutionary model of senescence posits that mutations deleterious 
to late life survival accumulate more readily than those that affect early life survival because 
mutations that threaten survival prior to reproduction –before mutations have been passed on 
to the next generation- are less likely to pass on to the next generation than mutations that 
threaten post-reproductive survival (Medawar 1952). The disposable soma model of human 
aging proposes that there exists a tradeoff between reproduction and longevity (Kirkwood 1977).  
For example, a biological process that allocates more resources to early life reproduction will 
have less resources to spare for bodily maintenance resulting in the deterioration over time, that 
is, the more resources allocated to reproduction, the less resources there will be to stave off 
deterioration of the organism and eventual mortality. Thirdly, the developmental model of aging 
views aging as the prolongation into late life of biological processes beneficial in early life. Lastly, 
the optimal lifespan model of aging posits that there comes a certain point in the late life after 
which it is more likely that an organism’s genes will be passed on to future generations if 
resources are invested into its offspring’s survival and reproduction as opposed to its own 
survival and reproduction (Williams 1957). 
 
The mutation accumulation model, where mutations whose consequences are deleterious later 
in life, is consistent with age differentially methylated sites (aDM) that manifest a change in the 
rate at which the proportion of cells are methylated later in life.  Likewise, the optimal lifespan 
model is consistent with changes in the rate of DNAm, which could correspond to a biological 
mechanism driving a late life event, such as mortality.  Conversely, the disposable soma model 
and developmental model of aging are likely to exhibit a similar or decreasing rate of proportion 
of cells methylated over the course of the lifespan.  The findings of this study, whereby two age-
differentially methylated CpG sites exhibited a quadrilinear increase in DNAm with age, are 
potentially consistent with the optimal lifespan and mutation accumulation models of aging.  
While this study cannot distinguish between the two models of aging, further investigation into 
the evolutionary origin of DNAm at these two CpG sites could provide further insight.  
Furthermore, evidence for one model does not negate another model of senescence, as they are 
not mutually exclusive, that is, multiple evolutionary models could contribute to senescence 
intraspecifically. 
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Tissue and Cell Type Specific DNAm: 
 
While an increased rate of DNAm with age is an interesting finding, it remains unclear what 
biological phenomenon might be responsible for such age-related DNAm.  Many studies have 
found not only tissue specific DNAm patterns but also cell type specific DNAm patterns (Xie et al. 
2013; Lokk et al. 2012).  Furthermore, such tissue- and cell type-specific DNAm patterns could be 
involved in cell lineage differentiation (Reinius et al. 2012).  Here, we investigated age-related 
DNAm patterns among datasets of different tissue and cell types in order to explore the 
possibility that a particular cell type could be driving the change in rate of DNAm with age.  While 
our investigation is far from exhaustive, we consider it a preliminary exploration into the 
possibility that our findings are specific to a particular cell type or set of cell types. 
 
The analyses on GTP and TOPS data (both peripheral blood) exhibited a significant quadratic 
relationship between β and age.  Subsequent to these analyses, we investigated datasets with 
isolated blood cell types to explore the possibility that a particular cell type was driving the effect.  
First MESA-T and MESA-M were analyzed.  From these analyses we found that MESA-M had a 
significant quadrilinear relationship between β and age but MESA-T exhibited no such 
relationship, suggesting that monocytes may be responsible or partially responsible for the 
original finding.  Nevertheless, the age range of MESA-T (45-79 years) lacked young individuals, 
which would render it difficult to detect such an effect, if there was one.  Subsequent analyses 
were performed on EGC-PBL, EGC-CD4, and EGC-CD8 to further investigate cell-type specific 
effects.  While a quadrilinear relationship between age and DNAm was not identified in EGC-PBL, 
EGC-CD4, and EGC-CD8, we cannot conclude that no such relationship exists considering the data 
did not include individuals between the ages 23 and 72, which could hinder the ability to detect 
such a quadratic effect. In order to further understand the quadratic relationship between β and 
age among different cell types at the two CpG sites of interest, future studies should focus on 
cell-type specific data with large samples and a wide age range.  However, our subsequent 
comparison of the variation between young and old individuals suggests that there is an increase 
in variation with age for both of these CpG sites in all cell types and tissues examined.  This 
increase is likely responsible for the significant quadrilinear terms observed in GTP, TOPS, and 
MESA-M, and can itself be explained by a small number of older subjects demonstrating 
increased DNAm at these sites, which are unmethylated in most subjects. 
 
Putative Biological Function of cg07955995 and cg22285878: 
 
cg07955995 and cg22285878 reside in the promoter region of the gene KLF14.  KLF14 belongs to 
a family of 17 proteins known as Kruppel-like factor (KLF) proteins, which are involved in immune 
cell differentiation.  KLF proteins exert their effect via the binding to gene promoters and 
enhancers (Sarmento et al. 2015). 
 
A recent study found that KLF14 represses FOXP3 via the epigenetic regulation at the Treg-
specific demethylated region (TSDR) of FOXP3 in vitro and in vivo using a mouse model (Sarmento 
et al. 2015).  Previous work has shown that FOXP3 induces and is required for the conversion of 
CD14+CD25- naïve T cells to CD4+CD25+ regulatory T cells via the joint stimulation of TCR and TGF-
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β (Chen et al 2003; Fontenot et al. 2003; Hori et al. 2003).  A study of CD25-deficient mice found 
that the over-expression of proinflammatory cytokines, including IL-2 and IFN-γ, in response to 
bacterial superantigen stimulation, particularly staphylococcal enterotoxin B, was curbed by 
injection of CD4+CD25+ suggesting that CD4+CD25+ plays a role in regulating antigen-induced 
inflammatory responses (Pontoux et al. 2002).  In consideration of the aforementioned studies 
and our findings, we suggest a biological pathway whereby late-life DNAm at cg07955995 and 
cg22285878 could induce immunosenescence: (1) Age-related DNAm in the promoter region of 
KLF14 downregulates expression of KLF14; (2) In the absence of normal levels of KLF14, which 
otherwise inhibits FOXP3, FOXP3 expression is upregulated; (3) Higher levels of FOXP3 induces a 
greater number of naïve CD14+25- T cells to convert to CD14+25+ T cells (sometimes referred to 
as Treg cells); and (4) CD14+25+ T cells regulate the inflammatory response to superantigen. 
 
While our results can only be taken as a preliminary investigation, we suggest DNAm at 
cg22285878 could regulate KLF14 thereby contributing to an immunosenescent phenotype in 
older adults.  Immunosenescence is the general deterioration of the immune system over the 
course of the lifespan.  While aging affects all aspects of the immune system, T cells are the most 
severely affected (Linton et al. 2004).  While many factors may contribute to an 
immunosenescent phenotype, one such factor, namely, infection with cytomegalovirus (CMV) is 
particularly prevalent among the elderly and has been implicated in CD8+ T cell proliferation 
(Tserel 2015).  Moreover, a substantial portion of peripheral blood CD4+ T cell and CD8+ T 
responses has been observed in CMV-seropositive individuals comprising approximately 10% of 
T cell memory compartments (Sywester et al. 2005).  Our investigation compared variances of 
DNAm between old age groups and young age groups among EGC-PBL, EGC-CD4, and EGC-CD8.  
Among these three cell types, we found that CD4+ T cells had the greatest variance in DNAm in 
the old age group for cg22285878.  The higher variance among old adults in CD4+ T cells relative 
to other cell types could reflect an immunosenescent phenotype in some elderly people, but not 
others.  Moreover, we found that a few old people had particularly high DNAm at cg07955995 
and cg22285878, which could indicate a possible immunosenescent phenotype in these 
individuals.  More work must be done to understand the role of age-related DNAm at cg22285878 
and its possible relationship with immunosenescence, such as CMV infection. 
 
Conclusion: 
 
Our study is the first to implicate two age differential methylated CpG sites, which reside in the 
promoter region of KLF14, in immune system function, most notably the immunosenescent 
phenotype seen among the elderly.  In order to further understand this putative biological 
pathway, future research should pay particular attention to DNAm data in immunosenescent 
individuals, including those who are CMV-seropositive.  While our investigation suggests 
differences in the variances of DNAm at cg22285878 among the old age group, we were unable 
to discover a significant quadrilinear relationship between DNAm and age in CD4+ T cells.  
Nevertheless, our comparison of CD4+ T cells, CD8+ T cells, and PBL used data that lacked 
individuals between 23 and 72 years of age, which greatly limits the ability to detect such an age-
related effect.  Thus, in order to further understand this relationship, future research should 
collect DNAm data from isolated blood cell types among individuals with a wide range of ages. 
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A number of limitations of this study are worth noting.  Firstly, all eight datasets are cross-
sectional, so it is not possible to infer that an increase in age yields an exponential increase in 
DNAm, merely that there is an association.  Moreover, it is possible that environmental factors, 
such as a pollutant accumulates in the body over time, resulting in an age-related relationship at 
these two CpG sites.  Ideally, longitudinal data could better assess the relationship in question. 
 
Overall, our study is the first to utilize methylome-wide association studies to investigate a 
quadratic relationship between DNAm and age.  We found two CpG sites that exhibit stable 
DNAm early in life followed by a rapid increase in DNAm in late life.  We then determined these 
CpG sites reside in the promoter region of KLF14, which has recently been shown to be involved 
in immune system function via the suppression of FOXP3.  These findings highlight the 
importance of DNAm in furthering our understanding of aging, immunology, and biological 
pathways, more generally. 
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Chapter 2. The Application of Regularization Methods To Predict Human Age 
 

2.1 Tables & Figures 

 
Figure 2. Boxplots of the distributions of test errors corresponding to the 100 iterations for each of the four analyses. GLMNET1 
corresponds to the lasso model of the non-transformed data, GLMNET2 corresponds to the lasso model of the combined data, 
SPLS1 corresponds to the sparse partial least squares model of the non-transformed data, and SPLS2 corresponds to the sparse 
partial least squares model of the transformed data. 

 
Figure 3. Boxplots of the distributions of the number of predictors corresponding to the 100 iterations for each of the four analyses. 
GLMNET1, GLMNET2, SPLS1, SPLS2 designate the same analyses specified in Figure 1. 
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Figure 3. Error vs. number of predictors for each of the four analyses. The first plot (red dots) corresponds to the SPLS model of the 
non-transformed data. The second plot (green dots) corresponds to the SPLS model of the combined data. The third plot (blue 
dots) corresponds to the lasso model of the non-transformed data. The fourth plot (black dots) corresponds to the lasso model of 
the combined data. 

 

 
Error 
Mean (SD) 

Number of 
predictors 
Mean (SD)  

GLMNET1 86.4 (63.7) 45.6 (15.0) 

GLMNET2 296.2 (104.1) 62.1 (28.0) 

SPLS1 204.2 (87.7) 34.82 (24.3) 

SPLS2 215.1 (93.0) 37.0 (27.5) 
Table 1. Mean and standard deviation (SD) values 
corresponding to the error and number of predictors for each 
of the four analyses. 
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2.2 Introduction: 
 
Over the past few decades, technological advancements have permitted the collection of high-
dimensional biological data, which have resulted in the realization that biological systems are 
much more complex than previously imagined (Quackenbush 2007).  In addition to the collection 
of high-dimensional genomics and transcriptomics data, biology has also witnessed the 
introduction of high-dimensional epigenetic data, most notably, DNA methylation (DNAm).  
While previous microarrays included 1,505 CpG sites and 27,000 CpG sites, respectively, currently 
available is the Infinium HumanMethylation450 BeadChip, which permits the detection of 
differential DNAm at 485,764 CpG sites (Sandoval 2011). 
 
A wide range of studies have observed that a substantial portion of differentially methylated CpG 
sites associate with age across many tissues and cell types (Alisch 2012; Barfield 2013; 
Christensen 2009; Florath 2013; Fraga 2005; Gentilini 2013; Heyn 2011; Horvath 2012; Jaffe et al. 
2016; Jones et al 2015; Linton 2004; Martin 2005; Martino 2011; McClay 2013; Poulsen 2007; 
Shroeder 2011).  Furthermore, many researchers have utilized statistical tools to find a linear 
combination of CpG sites in order to predict human age and all-cause mortality.  While some of 
these studies have focused on aging in particular tissues and cell types, others have been adapted 
to predict age across multiple tissues (Bocklandt 2011; Hannum 2013; Horvath 2013; Weidner 
2014). 
 
The tools utilized to create a predictive model of aging using DNAm data build on statistical 
techniques developed several decades ago to address problems corresponding to high 
dimensional data in general (Wold 1966).  More specifically, statisticians have been charged with 
the task of developing a regression method that finds a linear combination of predictors while 
simultaneously addressing common high dimensional data issues, including a large number of 
predictors, high collinearity among these predictors, and a small sample size (Chung 2010). 
 
While the utilization of biological data to predict chronological age is interesting in its own right, 
its importance resides in its ability to detect senescence, that is, the physiological deterioration 
and eventual mortality of an organism over time in general and as a specific consequence of 
disease (Hannum 2012).  Many studies have observed a relationship between environmental 
exposures and senescence.  For example, smoking tobacco has been observed to be a risk factor 
for all-cause mortality (Blair 1989; Prescott 2002). There remains substantial work in order to 
bridge the gap between environmental exposures and biomarkers of physiological decline, 
particularly DNAm.  Nevertheless, among the studies utilizing methylation data to create 
predictive models of aging, one study observed accelerated aging in breast cancer tissue, 
forecasting the promise of such statistical tools as a potential diagnostic tool (Horvath 2013). 
 
While these data-reducing statistical tools have been previously used to predict age via a linear 
relationship between age and DNAm, studies have observed different rates of DNAm change 
among subjects of different age groups (Alisch et al. 2012).  These observations raise the question 
as to whether a data transformation that permits modeling a non-linear relationship between 
age and DNAm could improve the prediction of age. 
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Our study aims to compare predictive models of human aging that only permit the modeling of 
a linear relationship with age to models that permit the modeling of both a linear and non-linear 
relationship with age.  In order to accomplish this, we build prediction models whereby a linear 
combination of age differentially methylated (aDM) CpG sites serve as predictors of age using 
two R packages (glmnet and SPLS), which perform lasso regression models and sparse partial 
least squares regression models, respectively (Chung 2010; Friedman 2010).  We apply these 
models to methylation data obtained from peripheral blood samples (Gillespie et al. 2009; 
Barfield et al. 2014).  We then perform a square root transformation on the aDM CpG sites and 
add these transformed predictors to the original dataset, thereby permitting the modeling of 
both a linear and non-linear relationship between age and aDM CpG sites.  Subsequently, we 
compare the age predictions corresponding to the non-transformed predictors with the age 
predictions corresponding to data that includes both square root transformed predictors and 
non-transformed predictors. 
 
2.3 Methods: 
 
Sample:  
 
The analysis was performed on data obtained from the Grady Trauma Project, which included 
336 subjects (see Methods 1 for more details).  While the original data set included all CpG sites 
on the Illumina Infinium 450k Human Methylation Array (approximately 485,000 CpG sites), our 
analysis was conducted on the 16,747 CpG sites that are also on the Illumina Infinium 27k Human 
Methylation Array (approximately 27,000 CpG sites).  Including only those CpG sites that exist on 
both arrays permits our tool to be used on data obtained from substantially more studies than 
would be the case had we included CpG sites included on one array. 
 
Normalization:  
 
Beta-values were computed using methylated and unmethylated signals (see Methods 1).  The 
probe sites corresponding to the CpG sites on the Illumina arrays come in two different designs, 
which yields beta-values of substantially different distributions.  In order to correct for this bias, 
we used the same beta-mixture quantile normalization method used in Horvath (2013), which 
was adapted from another study (Teschendorff 2013). 
 
Data Transformation:  
 
A square root transformation was performed on the 16,747 CpG sites that served as predictors.  
These transformed values were then added as a new set of predictors to the non-transformed 
data.  Thus, the new data set contained non-transformed and square root transformed predictors 
bringing the total number of predictors to 33,494 predictors. 
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Analysis: 
 
Two data sets were used for the analysis: the non-transformed data set with 16,747 CpG sites 
and the combined data set with 33,494 CpG sites, which included 16,747 non-transformed CpG 
sites as predictors, along with the square root transformation of these same 16,747 CpG sites.  
Chronological age (in years) was used as the dependent variable. 
 
The analysis comprised one hundred iterations of the following steps (1-3): (1) The data set was 
randomly subsetted into a test dataset with 60 subjects and a training data set with 276 subjects.  
(2) A sparse partial least squares regression was performed on the training data set to predict 
age, using cross-validation to select the tuning paramaeter, and the fitted model was applied to 
the test data set to get the test error, using the R package SPLS. The test error is defined as below.  
(3) Step 2 was repeated using a lasso regression model.  Test Errors were computed for each 
method as follows:  

𝐸𝑟𝑟𝑜𝑟 =  
∑(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑔𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑔𝑒)

2

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
 

 
The prediction error for each method was calculated as the average of test errors in the 100 
iterations. 
 
2.4 Results: 
 
The lasso model of combined data had the highest average error (296.2) and the greatest average 
number of predictors (62.1) among the four analyses (Table 1; Figure 1).  The lasso model of non-
transformed data, on the other hand, had the lowest average error (86.4).  The sparse partial 
least squares regression model corresponding to the non-transformed data and the sparse partial 
least squares regression model corresponding to the combined data yielded similar distributions 
of errors.  Figure 1 and Figure 2 show boxplots of the distribution of errors and the distribution 
of number of predictors, respectively, for each of the four analyses. 
 
The error vs. number of predictors for each iteration was plotted for each of the four analyses 
(Figure 3).  The two SPLS plots show no distinct pattern.  The two GLMNET plots, on the other 
hand, each show a distinct pattern.  Pertaining to GLMNET1, as the number of predictors 
increases, the error appears to decrease.  GLMNET2 shows a similar pattern, although the error 
is much larger when the number of predictors are less than forty.  Moreover, as the number of 
predictors exceeds 70, the errors increase substantially. 
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2.5 Discussion: 
 
The original aim of this study was to investigate whether a square root transformation of the 
methylation data could improve the prediction of age.  Neither the lasso model nor the sparse 
partial least squares model showed any improvement in the prediction of age (Table 1).  In fact, 
the lasso model had a substantially higher average error for the combined data compared to the 
non-transformed data. 
 
Theoretically, square root transformed predictors should allow the lasso regression model to fit 
a non-linear relationship between DNAm and age, and possibly improve the prediction of age.  
Thus, it is unclear why the prediction of age would be worse for the lasso model of the combined 
data.  That being said, the scatterplots indicate that the error is markedly higher for few 
predictors (<40) and many predictors (>70) for the combined data compared to the non-
transformed data. 
 
While it is unclear why a square root transformation would substantially increase the prediction 
error, it is not surprising that the prediction error would remain unimproved as is the case for the 
spare partial least squares regression model.  Several studies have observed thousands of age-
associated CpG sites on the Illumina Infinium 27k Human Methylation Array and tens of 
thousands of age-associated CpG sites on the Illumina Infinium 450k Human Methylation Array 
in multiple human tissues based on a linear relationship between DNAm and age (Hernandez 
2011; Zongli 2010).  Moreover, predictive models using a linear combination of these age-
associated CpG sites have yielded relatively accurate predictions of age based on a linear 
relationship between DNAm and age (Horvath 2013).  Although some age-associated CpG sites 
are better modeled as a non-linear relationship with age (see Results 1), it is possible that the 
linearly-related age-associated CpG sites are sufficient to build a relatively accurate prediction 
model of human age. 
 
While the square root transformation did not improve the prediction of age, we should not 
exclude the possibility that other transformations that would permit a non-linear relationship 
could improve the prediction of age.  Moreover, while the square root transformation did not 
improve the prediction of age using methylation data, it is possible that such a transformation 
could improve the prediction for other types of data, particularly those whose relationship 
between the dependent variable and the predictor variables exhibit a non-linear association.  
Further research that extends these models to a variety of transformations and multiple data 
types is necessary to better elucidate how these models would fare under the aforementioned 
circumstances. 
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