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Abstract
Jazz improvisations are composed of repeated rhyth-
mic and melodic patterns. By studying how these pat-
terns come to be can help us to better understand how
real-time decisions are made in the context of a given
structure. One theory proposes that improvisers rely on
memorized patterns of pitch and rhythm and these pat-
terns are inserted into an ongoing improvisation. The
competing theory states that improvisers are able to
generate notes using algorithms and rules of tonal jazz
without the aid of memorized patterns. Previous study
analyzed a large corpus of 48 improvised solos by the
jazz great Charlie Parker. Results from this study shows
that the incidence of patterns present in the Charlie
Parker corpus coincides with the current pattern-based
algorithm, while Impro-Visor, a rule-based software,
does not generate this presence of patterns. In addi-
tion to these results and to the current algorithm, the
next step is to incorporate chords without letting them
dictate the melody and contour of the output of the
current algorithm. A possible solution is to use non-
homogeneous Markov models and to treat the chords
as constraints. There are many applications to these al-
gorithms, that go beyond jazz and even music, given
they are based on patterns. Creativity in areas such as
gaming can be studied using these algorithms, where
players must respond creatively while acquiring certain
patterns of response as a result of rules and constraints.

Introduction
When performing with small jazz groups, professional jazz
musicians do not read music. Jazz players will choose
phrases that seem to the audience to be preordained but
are actually being created at that moment. These profes-
sional musicians are creating a very intricate form of theme
and variation; each aware of their tune and role[1], which
is why jazz improvisation serves as an excellent paradigm
for studying real-time creativity. Jazz improvisation is also a
prototype of the mental activity common to speech recogni-
tion and other areas of interest in Artificial Intelligence.

Currently, there are two competing cognitive theories in
the study of jazz improvisation: (1) the pattern-based ap-
proach and (2) the rule-based approach (see Fig. 1). There

Figure 1. Competing Cognitive Theories

are several improvisation softwares that are based on one
of these two approaches. One example of a rule-based soft-
ware is Impro-Visor, a music notation software designed to
help jazz musicians compose and hear solos similar to ones
that might be improvised. A previous study explored the two
competing theories by analyzing a large corpus of improvi-
sations by jazz great, Charlie Parker. The results from this
study (shown in Fig. 2) showed that the percentage of notes
that start a 4-interval pattern as a function of the number
of times the pattern occurs in the improvisations made by
Impro-Visor is not coherent with the Charlie Parker corpus.
However, our melody algorithm seems to mirror the Char-
lie Parker corpus. In order to incorporate the chords while
changing the resulting improvisations of our algorithm as lit-
tle as possible we will be using non-homogeneous Markov
chains.

Figure 2 (part 1). Comparison of percentage of notes that start a 4-interval pattern as a

function of the number of times the pattern occurs. [2]



Figure 2 (part 2). Comparison of percentage of notes that start a 4-interval pattern as a

function of the number of times the pattern occurs. [2]

Markov Models Markov processes are a popular model-
ing tool used in content generation, such as text generation,
music composition and interaction. The basic principle of
the Markov assumption is that future states depend only on
the immediate past and not on the sequence of events that
occurred before it. Mathematically,
for a sequence {q1, q2, ..., qn}:

p(qi|q1, ..., qi−1) = p(qi|qi−1). (1)

Example of Markov Processes[4] Weather prediction is
all about trying to guess what the weather will be like to-
morrow based on a history of observations of weather. Given
Table 1 of arbitrarily picked numbers shown and the automa-
ton generated from this table in Fig. 3, let us try to predict
the weather.

For example, given that today is sunny, what is the proba-
bility that tomorrow is sunny and the day after is rainy?
This translates to:

P (q2 = Sunny, q3 = Rainy |q1 = Sunny)
= P (q3 = Rainy |q2 = Sunny, q1 = Sunny) ×
P (q2 = Sunny |q1 = Sunny)

= P (q3 = Rainy |q2 = Sunny) ×
P (q2 = Sunny |q1 = Sunny)

= (0.05)(0.8)

= 0.04

This probability can also be obtained by moving through the
automaton in Fig. 3 and multiplying the probabilities as you
go.

Results
In Pachet’s paper Finite-length Markov processes with con-
straints, he shows that control constraints can be compiled
into a new Markov model that is statistically equivalent to
the initial one. ”This yields the advantage of retaining the
simplicity of random walk, while ensuring that control con-
straints are satisfied.”[5] These results can be applied to our
current melody algorithm to maintain the probabilities of the
originally generated ”improvised” output while incorporat-
ing the chords as constraints.

Table 1. Arbitrarily picked probabilities for the weather.

Figure 3. Automaton generated from Table 1.

Our goal is to generate a non-homogeneous Markov
model, represented by a series of transition matrices. In or-
der to show how constraints can be compiled into a non-
homogeneous Markov model, we will look at a melody gen-
eration example with a simple constraint. Let the constraint
be that all the 4-note melodies generated must end in C.
Consider a Markov model M estimated from the sequences
in Fig. 4.
The prior vector M :

(

C D E
1/3 1/2 1/6 )

where the entries are found using the input melodies in Fig.
4. For instance, to find the probability of C we first take the
total number of notes in each melody, which in this case is 6
notes for each. Then, of those six notes two are C’s and thus
we get the probability 2/6 = 1/3.

The transition probabilities of M can also be generated
from the two input melodies.

(C D E

C 0 2⁄3 1⁄3
D 3⁄5 1⁄5 1⁄5
E 1⁄2 1⁄2 0

)

For example when C goes to D, we can see from our
melodies that the total possible transitions starting with C
are:

• C goes to D (first melody)

• C goes to E (second melody)

• C goes to D (second melody).



Figure 4. Two simple input melodies used to estimate M .

Figure 5. All possible combinations of 4-note melodies satisfying the constraint.

Of the three possible transitions, 2 out of 3 end in D. Hence
the probability of going from C to D is 2/3.

Using a simple program to generate all possible combi-
nations of 4-note melodies (see Fig. 5), we get 12 possible
non-zero probabilities shown in Table 2.

The probabilities of the 4-note melodies ending in C can
be found using our prior vector M and the transition proba-
bilities. For instance,

pM (CDDC) = pM (C) pM (D|C) pM (D|D) pM (C|D)

= (1/3)(2/3)(1/5)(3/5) = 2/75.
After the generation of these primary matrices, the first

step in our process is to make the induced constraint sat-
isfaction problem arc-consistent. Arc-consistency consists
in propagating the constraints in the whole CSP, through a
fixed-point algorithm that considers constraints individually
[6]. For our example, arc-consistency removes C and E from
the domain of V3 yielding the following domains:

V1
K1 // V2

K2 // V3
K3 // V4

{C,D,E} {C,D,E} {D} {C}

where Ki is the state transition between Z(i−1) to Zi and Vi
is the state. This ensures that during any random walk, there
will not be a situation in where an item with no continuation
is chosen. Now the next step is to extract the matrices from
the domains.

Using Pachet’s algorithm [5]:

• Initialization:
Z(0)←M0 (the prior probabilities of M ),
Z(i)←M , ∀i = 1, ..., L− 1 (the transitions).

• For each ak ∈ A removed from the domain of Vi:
Zj,k

(i) ← 0,∀j = 1, ..., n (set the k-th column to zero).
• All forbidden transitions in the binary constraints should

also be removed from the matrices:
Zj,k

(i) ← 0,∀i, j, k such that Bi(aj , ak) = false.

Table 2. The 12 4-note melodies satisfying the control constraint and their probabilities in M,

where the sum of probabilities for these sequences is s.

we maintain the following matrices:

Z(0) = (1/3 1/2 1/6) Z(1) =
(

0 2⁄3 1⁄3
3⁄5 1⁄5 1⁄5
1⁄2 1⁄2 0

)

Z(2) =
(
0 2⁄3 1⁄3
0 1⁄5 1⁄5
0 1⁄2 0

)
Z(3) =

(
0 0 0
3⁄5 0 0
1⁄2 0 0

)

Lastly, we build the final transition matrices M̃ (i) to M̃
by a simple right-to-left process in order to back propagate
the perturbations in the matrices induced by individual nor-
malization, starting from the right-most one.[5]

To do this, we first normalize individually the last matrix
Z(L1). We then propagate the normalization from right to
left, up to the prior vector Z(0). The elements of the matrices
M̃ (i) and the prior vector M̃ (0) are given by the following
recurrence relations:

Using the above relations, we get the following transition
matrices for our example.

• i = L− 1 = 3

α1
(3) =

3∑
k=1

z1,k
(3) = 0 + 0 + 0 = 0

α2
(3) =

3∑
k=1

z2,k
(3) = 3/5 + 0 + 0 = 3/5

α3
(3) =

3∑
k=1

z3,k
(3) = 1/2 + 0 + 0 = 1/2

M̃ (3) = (m̃
(3)
j,k) =

(
0 0 0
1 0 0
1 0 0

)
• i = 2

α1
(2) =

3∑
k=1

αk
(3)z1,k

(3)
= (0, 3/5, 1/2) • (0, 2/3, 1/3) = 17/30



α2
(2) =

3∑
k=1

αk
(3)z2,k

(3)
= (0, 3/5, 1/2) • (0, 1/5, 1/5) = 11/50

α3
(2) =

3∑
k=1

αk
(3)z3,k

(3)
= (0, 3/5, 1/2) • (0, 1/2, 0) = 3/10

M̃ (2) = (m̃
(2)
j,k) =


0

3/5×2/3
17/30

1/2×1/3
17/30

0
3/5×1/5
11/50

1/2×1/5
11/50

0
3/5×1/2

3/10
0


=

(
0 12⁄17 5⁄17
0 6⁄11 5⁄11
0 1 0

)

By similar computations for i = 1 and i = 0, we conclude
with the following transition matrices:

M̃ (0) = (185/832 999/1664 295/1664)

M̃ (1) =
(

0 22⁄37 15⁄37
85⁄111 11⁄111 5⁄37
85⁄118 33⁄118 0

)

M̃ (2) =

(
0 12⁄17 5⁄17
0 6⁄11 5⁄11
0 1 0

)
M̃ (3) =

(
0 0 0
1 0 0
1 0 0

)

Discussion
This is an efficient approach to control Markov generation
for control constraints that will:
• guarantee that the generated sequences satisfy these con-

straints

• follow the probability distribution of the initial Markov
model.

We can see that the final transition matrix M̃ maintained
the same probability distribution as the prior vector M .

M̃ (0) =
(
185
832

999
1664

295
1664

)
= (0.22 0.60 0.18)

M = (1/3 1/2 1/6) = (0.33 0.50 0.17)

Table 2 shows that the M̃ probabilities of all possible so-
lution sequences, where these probabilities are equal to the
initial probabilities, to the constant multiple factorα(0).

These algorithms do not have to be genre specific to jazz,
given that they are based on the actual patterns of a corpus.
There have been implementations with classical music, fid-
dling, blue grass, etc. It is thought that this algorithm might
even transcend music and be used to study creativity in ar-
eas such as gaming, where improvisation is seen to play a
significant role given that players have to respond creatively

Table 3. The probability of the set of solution sequences in M̃ . The ratio of probabilities is constant.

while acquiring certain patterns of response as a result of
rules and constraints.

Presently, we are working on incorporating chords into
the algorithm by using this method. My contribution in
this research project consisted in finding this technique and
showing its relevance for this important next step in devel-
oping the improvisation software.
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