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ABSTRACT 
 

Public transit and Ambient Nitrogen Dioxide (NO2) Levels in Four Atlanta Neighborhoods 
 

 
By 

 
Tareq Alhonaiti 

 
12/18/2019 

   
 

 
INTRODUCTION:  The aim of this study is to explore elements of the built environment related 
to transportation, including state and interstate roads, railroads, daily traffic and bus stops and 
their relationship to ambient nitrogen dioxide (NO2) levels. Taking place in predominantly 
African American communities of Atlanta across more affluent and poorer census tracts, this 
study also considered SES demographics. This study will pay particular attention to identify 
associations between NO2 levels and proximity to bus stops. 
 
METHODS: NO2 data (ug/kg) was sampled in 2012 and distance to transportation was 
estimated. SES data was taken from the 2010 American Community Survey (ACS) at the block 
group level for the 17 block groups where NO2 readings were taken. A multiple linear regression 
was modelled to test the relationship between NO2 and distance from roads, bus stops, 
railroads, and attributes such as average daily traffic while controlling for SES variables. 
 
RESULTS: In multivariable models, controlling for each variable through stepwise selection, 
variance was attributed more so to site distance to state road (m) (β=-0.1564; CI (-0.2114, -
0.1014)), distance from bus stops (β=-1.3226; CI(-2.0459, -0.5993)), and average annual daily 
vehicle counts (β=0.00178; CI (0.000484, 0.00308)), than to demographic differences. Once 
controlling for traffic variables, no SES variables where selected into the model. Using the 
maximum r-squared approach to variable selection, the final model included 3 variables and an 
adjusted r-squared of 0.3835.  
  
DISCUSSION: We were able to identify elements of the built environment that contribute to the 
increase of NO2 in an urban area. Results show that factors such as proximity to roads and bus 
stops plays a statistically significant role in increased NO2 readings. While exploratory in nature, 
and despite stated limitations, we were able to identify a statistically significant association 
between bus stops, state roads and daily traffic counts and increased NO2 levels. 
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1.0 CHAPTER I: INTRODUCTION  

1.1 Background 

The majority of the world’s population lives in urban areas, with the trend of 

urbanization set to continue (UN, 2019). With growing urbanization comes increased 

importance of exposure to urban pollution sources. Recent concerns about residential 

proximity to major roadways has stemmed from links to impaired fetal development, 

cardiovascular health (Peng,2018; Beckerman, 2012), and environmental injustice (Clark, 2017; 

Johnson, 2016). In the US, more than a third of nitrogen oxides and a quarter of particulate 

matter (PM) are emitted from roadways. With a sizable share of the US population (45 million) 

living within 100 meters of a road (Liu,2013), and an estimated 11.4 million living with 150 

meters of a major road (Boehmer,2013) the potential for exposure is large. NO2 interacts with 

the oxygen and water vapor in the atmosphere creating nitric acid which, in addition to sulfur 

dioxide, are the main sources of acid rain (Likens, 1979).  

The sources of and health outcomes related to air pollution – including hazardous gases, 

chemical vapors, PM and metals - are routinely the subject of public health inquiry 

(Bazyar,2019). Chronic exposure to air pollutants such as nitrogen dioxide (NO2) and black 

carbon (BC) are associated with negative health outcomes such as cardiovascular and 

respiratory diseases (Beckerman, 2012; Li,2016). Overwhelmingly emitted by gasoline and 

diesel engines, NO2 is commonly used as a proxy for traffic-related air pollution. Focus has 

routinely been placed on residential proximity to roads and SES factors with studies finding that 

communities with low SES are associated with higher ambient NO2. Unfair zoning practices 

(Jerrett,2007) result in the release of disproportionate amounts of hazardous materials near 
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vulnerable communities (Johnson,2016). This has been cited as environmental injustice 

resulting in higher NO2 in these communities. 

Nitrogen dioxide exposures are classified as acute or chronic depending on the duration 

of exposure and can result in different health effects. Acute exposures are defined as exposure 

to elevated concentrations for a shorter duration of hours to days. Severe exposures can result 

in immediate or near immediate death. Even if not fatal, many acute exposures can result in 

permanent injury (National Research Council (US) Subcommittee on Rocket-Emission 

Toxicants,1998).  

Chronic exposures to NO2 are typically of lower concentrations over long periods of time 

of months or years. These kinds of exposures are linked to adverse respiratory outcomes, and 

are correlated with asthma prevalence (Studnicka et al., 1997), wheezing (Kramer et al., 2000), 

more severe asthmatic reactions (Strand et al., 1998), and hay fever. Traffic, power plants and 

residential heating are major sources of ambient NO2 levels in urban environments.  

Traffic produces a varied mixture of pollution containing both solid and gaseous organic 

and inorganic species that contribute to health consequences. Pollution is emitted through a 

number of sources. Tailpipe emissions, road dust, brake pad wear each produce differing 

compositions of pollution (Krall, 2018). In urban areas, air quality is greatly affected by the 

trends and regulation of road transportation. Because transportation is a major source of NO2 in 

the environment, the U.S. Environmental Protection Agency has set regulations on both diesel 

and gasoline vehicles in order to comply with the Clean Air Act (EPA, 1963). Due to 

modernization, economic growth and zoning practices in the US, metropolitan expansion has 
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resulted in a greater reliance on motor vehicles to move from residential areas to work. This 

dependence on motor transport has facilitated the construction of more roads and highways, 

thereby increasing the prevalence of people living near major roads (Parvez,2019). 

Several methods are used to assess ambient air pollution including land use regression 

models and direct air sampling. NO2 has been used as an estimate of specific contributions of 

traffic to ambient air pollution. Studies have found pollution concentrations increases at points 

where traffic flow is slowed or halted such as at bus stops or congested roads (Xing, 2019).  

In Atlanta, the provider of public transit options is the Metro Atlanta Rapid Transit 

Authority (MARTA), which offers both rail and bus services to different parts of the metro-

Atlanta region. Rail services by MARTA are powered through an electrified track construction, 

and while not without its own pollution footprint, generates limited local emissions. A greater 

focus is drawn to MARTA’s extensive bus transit offerings, the majority of which use diesel or 

compressed natural gas fuel.  

1.2 Research Questions 

The aim of this study is to explore transportation infrastructure elements of the built 

environment including state and interstate roads, railroads, and bus stops and their relationship 

to ambient NO2 levels with consideration given to SES factors such as poverty rate, education 

attainment, and unemployment. We sampled in predominantly African American communities 

across four census tracts with varying levels of poverty (<20%, 21-30%,31-40%, >40%). This 

choice was made in order to observe the relationship between transportation covariates and 

NO2 while holding race constant.  These findings may be used to inform future transit and 
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regional development policy planning as well as increased awareness of traffic-related 

pollution. 
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2.0 Chapter II: Literature review 

Studies exploring the adverse health effects of NO2 on health have found positive 

associations between NO2 and mortality. Tied to mortality from non-accidental causes such as 

hypertension, CVD, stroke and chronic obstructive pulmonary disease, increases of 10 μg/m3 

resulted in increases in hazard ratios between 1.02 and 1.05 (Atkinson,2018).  Other studies 

have linked chronic NO2 concentrations with common but less severe outcomes. Between 18-

42% of asthma cases between 2000 and 2010 were attributable to air pollution, representing 

141,900 - 331,200 of asthma cases (Alotaibi,2019) 

A synthesis of near road studies conducted by Karner, compiled 42 papers written 

between 1978 and 2008 to characterize the relationship between various pollutants and 

roadside distance. (Karner, 2010) Papers that included information or findings on near-road 

concentration gradients were selected as part of the analysis with the assumption that 

sufficient data quality controls were conducted. Consideration was also given to weather 

conditions across studies. These data points were then normalized using two different 

methods. The first, normalized to the background, results in the relative concentration of 

pollutants between near road concentrations and those unaffected by the road. The second, 

normalizing to edge-of-road, compares the maximum expected concentration to other 

concentrations in the measured area. Using an edge of road normalization, pollutants decay to 

background between 115-570m from the road, while using a more traditional background 

normalization saw decay between 160-570m. Differences were attributed to inherent biases 

associated with background estimation. Using either normalization method, nitrogen dioxide 
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saw high levels at the roadway and a gradual decline in concentration further from the roadside 

(Karner,2010). 

To determine the efficacy of using NO2 as a proxy for air pollution, researchers 

measured correlations between NO2 and black carbon, particulate matter, sulfur dioxide, and 

carbon dioxide. Results suggest that air pollution measures taken in the winter were more 

correlated than in the summer, specifically, nitrogen dioxide with ultrafine particles (UFPs) and 

hydrocarbon organic aerosols (HOA). Furthermore, pollutants such as HOA, UFPs, and nitrogen 

oxides share common sources, namely traffic exhaust while sulfur dioxide and benzene were 

more commonly were emitted by industry (Levy,2014). Given that nitrogen dioxide is largely 

produced by the combustion of fossil fuels it is routinely used as a proxy for traffic related air 

pollution (Yanosky, 2008). 

Studies aiming to assess the impact of different modes of road transport such as buses 

have been conducted in cities such as Hong Kong and Poland (Bogacki,2019; Xing,2017). One 

such study in Hong Kong was able to locate a bus route along a single road with relatively low 

traffic lights and other traffic obstructions (Xing,2019). This allowed researchers to isolate the 

effect of bus stops by taking measures of NO2 and particulate matter (PM2.5) every 5 stops. NO2 

and particulate matter concentrations were plotted for the bus route and it was found that the 

greatest spikes in air pollution measures were present shortly after a bus stop (Xing,2019). 

Environmental injustice is defined by a disproportionate distribution of environmental 

health risks on more vulnerable communities, especially low-income and communities of color. 

(Clark,2017) Well documented in the US, a wide range of pollutants have been found at higher 
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ambient concentrations in lower socioeconomic status areas.  North American zoning is 

decentralized with specific homogenous zones for industry and retail necessitating longer travel 

between home, industry, and retail (Jerrett,2007).  Disparities in air pollution exposure is often 

a result of these inequalities in zoning or regional planning based on a community’s SES (Clark, 

2017; Marshall 2014). A longitudinal study by Clark et al used LUR models to estimate the 

disparity in ambient air pollution associated with SES factors (Clark, 2017). The researchers 

found race to be the most pronounced differentiating demographic variable. Reduction of 

absolute ambient NO2 concentrations was attributed to the reduction of the relative difference 

between white and nonwhite populations by 2.1 ppm between 2000 and 2010. Despite this, the 

relative difference persisted shrinking from 37% to 31% in 2010 (Clark,2017). Alternatively, 

using SES data and a GIS model approach, researchers in the Worcester, Massachusetts MSA 

found significant inverse associations between income, education; and positive associations 

between crowding and NO2 at the block group level (Yanosky,2008). 

The Massachusetts based study by Yanosky et al, developed a predictive model 

assessing the relationship between SES factors including low educational attainment, poverty 

rate, income, and crowding.  Their GIS model, built using NO2 measurements, was used to 

estimate NO2 levels in both urban and rural environments.  Using data from 418 block groups in 

the Worcester, MA area, they found positive correlations with poverty, lower educational 

attainment, and crowding while a negative correlation was established with income.  Even after 

controlling for spatial autocorrelation, the natural clustering of like values in GIS analysis, 

associations stayed statistically significant. Each additional standard deviation increases of NO2 

was associated decreases of $9090 median household income, with corresponding rates of 



14 

 

poverty, crowding, and low educational attainment increasing by 3.1%, 1%, 3.4%, respectively. 

This provides evidence that those with a lower SES are disproportionately affected by NO2 

exposure when compared to those of higher SES. (Yanosky,2008) 

An ecological study conducted in France sought to observe the association between 

socioeconomic status and air quality and how the relationship has trended over time (Padilla, 

2014). To do so, a composite “deprivation index” was constructed using family and household 

income, immigration status and mobility, employment and income, education, and housing 

taken at the sub-municipal French census block in four French cities- Lille, Paris, Marseille, and 

Lyon. NO2 data was retrieved from local air monitoring networks for each city.  This deprivation 

index was used to assess the relationship between SES and air quality taken at two points in 

time. It was found that while overall NO2 concentrations trended downwards, the strength and 

direction of the association between low SES and NO2 estimates varied between cities resulting 

in the inability to characterize an association (Padilla, 2014). 

A similar conclusion was found when a study, conducted in New York, sought to observe 

the relationship between social stressors and air pollution to determine the combined chemical 

and non-chemical effect on childhood asthma (Shmool, 2014). Using data from the census and 

local government agencies, a GIS model was used to assess relationships between stressors and 

indicators as well as between stressors and ambient NO2 levels. The study found that social 

stressors, such as high crime and crowding were not consistently correlated, nor were they 

correlated with SES factors such as poverty. Lastly, apart from crowding, social stressors were 

not correlated with ambient NO2 levels (Shmool,2014). 
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3.0 Chapter III: Methods 

3.1 Study Design 

Census tracts were chosen in majority (>80%) African American population in Atlanta 

based on four brackets of poverty corresponding to <20% in poverty, 20-29% in poverty, 30-

39% in poverty, and >40% of population in poverty. All sampling was accomplished in October 

2013 using the OGAWA Badge sampler, a passive sampler that allowed for greater flexibility in 

site selection (Ogawa USA, Pompano Beach, Florida).  Samplers were deployed for 1 week at 

each location. Exposed Ogawa pads were refrigerated after exposure and shipped to RTI 

International for analysis. For quality control purposes, 20% duplicates and 10% blanks were 

also collected. A total of 120 samplers were deployed, and 116 were successfully retrieved.  

3.2 Covariates 

Geospatial Data collected from the Atlanta Regional Commission (ARC) was used to map 

bus stops, railroads, state highways, and interstate roads. Once all GIS data was mapped, 

distance of each collection site from: state roads, interstate roads, railroads, and bus stops was 

calculated using a distance to hub function then saved as a variable for each NO2 site. Traffic 

data was obtained in the form of average annual daily traffic (AADT) counts from Georgia 

department of transportation (GDOT) regional counters corresponding to each NO2 collection 

site. GIS data was mapped, sorted, and analysis using QGIS 3.4 (QGIS dev team, Open source). 

Data on race, education, and poverty status was compiled from the 2010 American 

community survey (ACS) at the block group level for the 17 block groups where NO2 samples 
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were taken. Proportions were generated using block group population for each variable. A 

correlation matrix was generated to observe for collinearity between variables. 

3.3 Statistical Analysis 

Using a statistical software package (SAS 9.4) univariate models for each variable 

included in the model was generated. Using Pearson's correlation, which is best utilized to 

observe linear correlations between two variables, matrices were generated to assess whether 

any strong associations existed between covariates. NO2 site distributions were evaluated 

across quantiles for each variable. Lastly, covariates were first evaluated separately before 

model generation was completed using stepwise selection.  This selection method sequentially 

adds covariates based on statistically significant P-values <.05. To compare, a second selection 

approach, RMAX was used. This approach sequentially adds variables that have the largest 

effect on the R-squared value. 

Sensitivity analyses were conducted to determine if the number of bus stops in a block 

group are affected by poverty or unemployment. Using QGIS, the number of bus stops in each 

block group was saved as a variable and a correlation table was generated between the number 

of bus stops and unemployment rate and poverty. This is important as the initial correlation 

assessment focuses on the relationship between the distance of bus stops from the 

measurement sites and the poverty level in that area. By comparing the count of bus stops 

across the tracts a more direct conclusion is possible.  
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4.0 Chapter IV: Results 

NO2 was measured as NO2 mass (ug/kg) in four census tracts corresponding to 17 unique 

block groups. The mean was found to be 3712 ug/kg (SD: 934 ug/kg). A correlation table (Table 

1) was created to assess the relationship between all variables considered in the analysis with 

attention given to Pearson coefficients greater than 0.60. Notably, distance from state and 

interstate roads was found to be co-linear resulting in the necessity to remove one. State road 

distance was chosen to remain in the model as state roads tended to be closer to the sampling 

sites and as a result would be more directly the source of NO2 emissions. 

To observe the individual effect of each variable on NO2 mass, a univariate model was 

generated between each variable and NO2 and included in table 2. For Univariate models, 

statistically significant beta estimates were found for each covariable of interest with the 

exceptions of distance from railroads and unemployment. All covariates were then included in 

the stepwise selection from which a multivariable regression model was estimated. After 

selection, the model included distance of state roads (m), railroad, bus stops as well as traffic 

volume as predictors. No SES indicators were selected into the model once controlling for built 

environment factors. Adjusted R-squared values for the stepwise selected model (Adj R-

Sq=0.3835) was compared to the full model that included all covariates (Adj R-Sq= 0.3787). 

Adjusted R-squared is a modified version of the R-squared value that takes into account the 

number of variables in the model which increases if variables added to the model improve the 

model more than what would be expected by chance.  

The final model included distance to bus stop (m), distance to state roads (m), and 

average daily traffic as statistically significant predictors. This means that variance was 
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attributed more so to site distance to state road (m) (β=-0.1564; CI (-0.2114, -0.1014)), distance 

from bus stops (β=-1.3226; CI(-2.0459, -0.5993)), and average annual daily counts (β=0.00178; 

CI (0.000484, 0.00308)), than demographic differences. Given the small count of block groups, 

only 17 unique proportions were available for inference limiting the variance and lowering the 

power to identify trends. Using the maximum R-squared selection approach, we found that the 

same model was generated, validating variable selection. The final model included 3 variables 

and an adjusted R-squared of 0.3835 (Table 3).  

As a sensitivity analysis we explored the relationship between the SES variables and the 

number of bus stops in a block group. We ran Pearson correlations between the number of 

stops in each block group and the unemployment and poverty rate. In Table 4 we show that no 

statistically significant correlations between poverty status nor unemployment rate with 

number of bus stops in a block group were observed.
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Table 4.1: Pearson correlation Table 

  

NO 
Mass 

Railroad 
Distance 

(m) 

low 
Educational 
attainment 

Poverty 
Unemploymen

t 

Distance 
form State 

Road 

Avg. Daily 
Traffic 

bus stop 
dist.(m) 

NO Mass 
1.000 -0.171 0.238 0.347 0.109 -0.495 0.212 -0.33238 

- 0.066 0.010 0.000 0.245 <.0001 0.036 0.0003 

Railroad 
Distance (m) 

-0.171 1.000 -0.589 -0.420 -0.234 0.611 0.092 0.08983 

0.066 - <.0001 <.0001 0.011 <.0001 0.365 0.3376 

low Educational 
attainment 

0.238 -0.589 1.000 0.646 0.166 -0.457 -0.035 -0.04968 

0.010 <.0001 - <.0001 0.075 <.0001 0.730 0.5964 

Poverty 
0.347 -0.420 0.646 1.000 0.319 -0.553 -0.036 -0.19359 

0.000 <.0001 <.0001 - 0.001 <.0001 0.727 0.0373 

Unemployment 
0.109 -0.234 0.166 0.319 1.000 -0.406 -0.231 -0.05492 

0.245 0.011 0.075 0.001 - <.0001 0.021 0.5582 

Distance from 
State Road (m) 

-0.495 0.611 -0.457 -0.553 -0.406 1.000 0.020 0.2328 

<.0001 <.0001 <.0001 <.0001 <.0001 - 0.844 0.0119 

Avg. Daily 
Traffic 

0.212 0.092 -0.035 -0.036 -0.231 0.020 1.000 -0.01525 

0.036 0.365 0.730 0.727 0.021 0.844 - 0.8809 

bus stop 
dist.(m) 

0.33238 0.08983 -0.04968 -0.19359 -0.05492 0.2328 -0.01525 1 

0.0003 0.3376 0.5964 0.0373 0.5582 0.0119 0.8809  - 

 
Table 4.2: Basic statistics and univariate models 
Note: basic statistics as well as the p-value of univariate regression models.  σ2 = Variance, σ = Coefficient of Variation 

 
 
 
 
  
 
 
 
 
 

Variable N Mean Std Dev Std Error σ2 σ t value Pr > |t| 

NO2 mass 116 3711.99 934.65 86.78 873578.98 25.18   

NO2 (ppm) 116 11 3 0.25 7 25   

Distance from state road 116 3848.37 2567.98 238.43 6594510.5 66.73 -6.08 <.0001 

Distance from railroad 116 1125.04 892.54 82.87 796633.9 79.33 -1.86 0.0660 

average daily total traffic 99 141022.42 108483.93 10903.04 11768762429 76.93 2.13 0.0355 

bus stop distance 116 188.47 197.64 18.35 39061.6 104.86 -3.76 0.0003 

Poverty 116 0.268 0.18 0.017 0.032 66.69 3.95 0.0001 

Unemployment 116 0.224 0.11 0.011 0.013 50.76 1.17 0.2451 

Low educational Attainment 116 0.364 0.069 0.006 0.005 18.91 2.62 0.0100 

Coefficient > 0.6

Key

Pearson Correlation 

Coefficients

Prob > |r| under H0: 

Rho=0
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Table 4.3: Adjusted model using stepwise selection 
 

Adjusted model using stepwise selection 

Variable DF N 
N 

missing 
Parameter 
estimate 

Standard 
Error 

t 
Value 

Pr > 
|t| 

95% Confidence 
Limits 

Adj R-Sq 

Intercept 1 99 17 4316.006 165.1893 26.13 <.0001 3988.064 4643.948 0.3835 
Distance from state 

road 1   -0.15642 0.0277 -5.65 <.0001 -0.21142 -0.10142   
Distance from bus 

stop (m) 1   -1.32257 0.36433 -3.63 0.0005 -2.04585 -0.59929   

Avg daily Traffic 1   0.00178 0.000654 2.73 0.0076 0.000484 0.00308   

             

             

             

Model: NO2 mass= intercept + variable 

 

 
Table 4.4: Pearson Correlation for Bus stop (N) and SES 
 

Pearson Correlation Coefficients, N = 13 

  unemployment Poverty status 
  

Bus 
stops 

(N) 

-0.49007 -0.37374 

Pr > |t|= 0.0891 Pr > |t|= 0.2084 
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5.0 Chapter V: Discussion 

We were able to identify that distance from bus stops and state roads and annual 

average daily traffic have statistically significant relationships with NO2 mass. Sociodemographic 

variables, such as unemployment or poverty status, have a lesser impact after controlling for 

the transportation variables. This increase in NO2 emission at bus stops, as well as points of 

congestion, has been observed in Chinese studies on traffic emissions (Xing,2019). The 

associations between bus routes and increased NO2 are present, likely due to the nature of 

buses and bus stops. Not only do buses typically produce a large amount of emissions, it is not 

uncommon for a bus to idle waiting for passengers at stops on busy routes. This may lead to the 

beta estimate for the effect of bus stop distance to be notably higher than distance to state 

roads. 

Site selection was done such that race would be a relative constant across the study 

area by sampling in largely African American communities. While many studies in the US have 

identified SES as an indicator for increased ambient NO2 levels, this study aimed to observe 

differences in built environment that may account for these differences. Variables such as 

proximity to roads, road traffic volume and distance to bus stops were focused on and play a 

statistically significant role in increased NO2 mass levels. Once built environment factors were 

included in the model, SES factors lost statistical significance and were removed from the final 

model by software. This removal may be due to a modifiable areal unit problem. Data from 

sources such as the Census bureau are aggregated into groups and averaged for privacy. This 

means that, despite using the smallest scale, enough variance is not present to determine 

trends. 
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Attention was also given to whether block groups with higher poverty or unemployment 

had more bus stops than those with less poverty. In the case of this study, we found that 

poverty did not have a statistically significant correlation with either unemployment or poverty. 

This could be due to the extensive and uniform bus service offered by MARTA in the Atlanta 

region.  

5.1 Limitations 

Study limitations include reliance on ACS block group data for all major demographics. 

While expansive in topics and scope, ACS surveys are a rolled average of 5 years conducted at 

the Census level. This results in a large margin of error at the block group level. Moreover, given 

the few block groups the data was collected over resulted in only 17 distinct values for each 

demographic, severely limiting the ability to include demographic variable in the model. 

Despite these limitations, demographic data was included on basis that this study is exploratory 

in nature and does not seek to establish causal links between variables and outcomes. 

Another limitation stems from the reliance on bus stop data from 2017. Data was not 

present for 2012, the year the samples were taken. A dataset was found for the year 2014 

however it was not possible to verify the validity of the dataset given its source. Largely similar 

to the 2014 data set, to ensure the reliability of the data the 2017 dataset available on the 

Fulton county GIS database was selected instead. This does necessitate the assumption that 

there was no dramatic change in bus stops between 2012 and 2017 in the study area. Lastly, 

since all data was collected at the same point in time, it is impossible to draw any causal 

relationships. In addition, given the study’s cross-sectional design and reliance on regression to 
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adjust for confounding, limitations result in an inability to account for unknown and 

unmeasured confounders. 

Finally, while model selection using either stepwise or R-max selection did result in the 

same model, this could be due to the greater variance of traffic variables when compared to 

SES measures. While the estimates regarding the relationship between traffic variables and NO2 

hold valid, this prevents any conclusions regarding the relationship between SES factors and 

ambient NO2. In future studies, sampling across a larger area that corresponds to a greater 

number of census tracts could be used to alleviate this limitation.  

5.2 Conclusion 

This study contributes to the body of air pollution literature with its focus on exposure 

sources and GIS approach to identifying variables in the Atlanta area. While exploratory in 

nature, we were able to establish statistically significant correlations between bus stops, 

distance to road and daily traffic with increased NO2 levels. Further study may be warranted to 

establish whether factors such as shorter residential distance from roads are associated with 

lower SES. City transit systems can employ more efficient buses and bus routes that allow for 

less idling and stops. Since the collection of the data in 2012, the city of Atlanta has 

incorporated newer buses allowing for potential follow up studies.  

 
  



25 

 

References 
 
Alotaibi, R., Bechle, M., Marshall, J. D., Ramani, T., Zietsman, J., Nieuwenhuijsen, M. J., & Khreis, 

H. (2019). Traffic related air pollution and the burden of childhood asthma in the 
contiguous United States in 2000 and 2010. Environment international, 127, 858-867. 

Atkinson, R. W., Butland, B. K., Anderson, H. R., & Maynard, R. L. (2018). Long-term 
Concentrations of Nitrogen Dioxide and Mortality: A Meta-analysis of Cohort Studies. 
Epidemiology (Cambridge, Mass.), 29(4), 460–472.  

Bart Ostro, Aurelio Tobias, Xavier Querol, Andrés Alastuey, Fulvio Amato, Jorge Pey, Noemí 
Pérez, and Jordi Sunyer 2011. The Effects of Particulate Matter Sources on Daily 
Mortality: A Case-Crossover Study of Barcelona, Spain Environmental Health 
Perspectives 119:12  

Beckerman, B. S., Jerrett, M., Finkelstein, M., Kanaroglou, P., Brook, J. R., Arain, M. A., ... & 
Chapman, K. (2012). The association between chronic exposure to traffic-related air 
pollution and ischemic heart disease. Journal of Toxicology and Environmental Health, 
Part A, 75(7), 402-411. 

Boehmer TK, et al. Residential proximity to major highways - United States, 2010. MMWR 
Surveill Summ. 2013;62(Suppl 3):46–50.  

Clark, L. P., Millet, D. B., & Marshall, J. D. (2017). Changes in Transportation-Related Air 
Pollution Exposures by Race-Ethnicity and Socioeconomic Status: Outdoor Nitrogen 
Dioxide in the United States in 2000 and 2010. Environmental Health 
Perspectives, 125(9), 1–10.  

Grahame T.J., Klemm R., Schlesinger R.B. Public health and components of particulate matter: 
The changing assessment of black carbon. J. Air Waste Manag. Assoc. 2014;64:620–660.  

Jerrett, M, Arain, M A, Kanaroglou, P, Beckerman, B, Crouse, D, Gilbert, N L, Brook, J R, 
Finkelstein, N, and Finkelstein, M M. "Modeling the Intraurban Variability of Ambient 
Traffic Pollution in Toronto, Canada." Journal of Toxicology and Environmental 
Health. 70.3/4 (2007): 200-12. Web. 

Johnson, R., Ramsey-White, K., & Fuller, C. H. (2016). Socio-demographic Differences in Toxic 
Release Inventory Siting and Emissions in Metro Atlanta. International journal of 
environmental research and public health, 13(8), 747. doi:10.3390/ijerph13080747 

Karner, A.A., Eisinger, D.S., Niemeier, D.A., 2010. Near-Roadway Air Quality: Synthesizing the 
Findings from Real-World Data. Environmental Science & Technology 44, 5334-5344. 

Krall, J. R., Ladva, C. N., Russell, A. G., Golan, R., Peng, X., Shi, G., … Sarnat, J. A. (2018). Source-
specific pollution exposure and associations with pulmonary response in the Atlanta 



26 

 

Commuters Exposure Studies. Journal of exposure science & environmental 
epidemiology, 28(4), 337–347.  

Krämer, U., Koch, T., Ranft, U., Ring, J., & Behrendt, H. (2000). Traffic-Related Air Pollution Is 
Associated with Atopy in Children Living in Urban Areas. Epidemiology, 11(1), 64-70. 
Retrieved from www.jstor.org/stable/3703656 

Levy, I., Mihele, C., Lu, G., Narayan, J., & Brook, J. R. (2014). Evaluating Multipollutant Exposure 
and Urban Air Quality: Pollutant Interrelationships, Neighborhood Variability, and 
Nitrogen Dioxide as a Proxy Pollutant. Environmental Health Perspectives, 122(1), 65–
72. 

Li, Y., Henze, D. K., Jack, D., Henderson, B. H., & Kinney, P. L. (2016). Assessing public health 
burden associated with exposure to ambient black carbon in the United States. The 
Science of the total environment, 539, 515–525.  

Li, Yi, Wang, Wen, Kan, Haidong, Xu, Xiaohui, & Chen, Bingheng. (2010). Air quality and 
outpatient visits for asthma in adults during the 2008 Summer Olympic Games in 
Beijing. The Science of the Total Environment., 408(5), 1226-1227 

Likens, G. E., Wright, R. F., Galloway, J. N., & Butler, T. J. (1979). Acid rain. Scientific American, 
241(4), 43-51. 

Liu, H. Y., Skjetne, E., & Kobernus, M. (2013). Mobile phone tracking: in support of modelling 
traffic-related air pollution contribution to individual exposure and its implications for 
public health impact assessment. Environmental health : a global access science 
source, 12, 93.  

Marshall JD, Swor KR, Nguyen NP. 2014. Prioritizing environmental justice and equality: diesel 
emissions in Southern California. Environ Sci Technol 48(7):4063–4068. 

National Research Council (US) Subcommittee on Rocket-Emission Toxicants. Assessment of 
Exposure-Response Functions for Rocket-Emission Toxicants. Washington (DC): National 
Academies Press (US); 1998. Appendix E, ACUTE TOXICITY OF NITROGEN DIOXIDE. 

Nowak DJ, Crane DE, Stevens JC. Air pollution removal by urban trees and shrubs in the United 
States. Urban For. Urban Green. 2006;4:115–23. 

Obropta, Christopher C, & Kardos, Josef S. (2007). Review of Urban Stormwater Quality Models: 
Deterministic, Stochastic, and Hybrid Approaches1. Journal of the American Water 
Resources Association /, 43(6), 1508-1523. 

Oiamo, T. H., Johnson, M., Tang, K., & Luginaah, I. N. (2015). Assessing traffic and industrial 
contributions to ambient nitrogen dioxide and volatile organic compounds in a low 
pollution urban environment. Science of the Total Environment, 529, 149–157.  

http://www.jstor.org/stable/3703656


27 

 

Padilla, C. M., Kihal-Talantikite, W., Vieira, V. M., Rossello, P., Le Nir, G., Zmirou-Navier, D., & 
Deguen, S. (2014). Air quality and social deprivation in four French metropolitan areas--a 
localized spatio-temporal environmental inequality analysis. Environmental 
research, 134, 315–324.  

Peng, C., den Dekker, M., Cardenas, A., Rifas-Shiman, S. L., Gibson, H., Agha, G., ... & DeMeo, D. 
L. (2018). Residential proximity to major roadways at birth, DNA methylation at birth 
and midchildhood, and childhood cognitive test scores: project viva (Massachusetts, 
USA). Environmental health perspectives, 126(9), 097006. 

RISTOVSKI, Z. D., MILJEVIC, B. , SURAWSKI, N. C., MORAWSKA, L. , FONG, K. M., GOH, F. and 
YANG, I. A. (2012), Respiratory health effects of diesel particulate matter. Respirology, 
17: 201-212. doi:10.1111/j.1440-1843.2011.02109.x 

Schmidt C. W. (2011). Black carbon: the dark horse of climate change drivers. Environmental 
health perspectives, 119(4), A172–A175.  

Shmool, J.L., Kubzansky, L.D., Dotson Newman, O. et al. Social stressors and air pollution across 
New York City communities: a spatial approach for assessing correlations among 
multiple exposures. Environ Health 13, 91 (2014)  

Sierra-Vargas, M. P., & Teran, L. M. (2012). Air pollution: impact and prevention. Respirology 
(Carlton, Vic.), 17(7), 1031–1038. 

Strand, V., Svartengren, M., Rak, S., Barck, C., & Bylin, G. (1998). Repeated exposure to an 
ambient level of NO2 enhances asthmatic response to a nonsymptomatic allergen dose. 
European respiratory journal, 12(1), 6-12. 

Studnicka, M., Hackl, E., Pischinger, J., Fangmeyer, C., Haschke, N., Kuhr, J., ... & Frischer, T. 
(1997). Traffic-related NO2 and the prevalence of asthma and respiratory symptoms in 
seven year olds. European Respiratory Journal, 10(10), 2275-2278. 

United Nations, Department of Economic and Social Affairs, Population Division (2019). World 
Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420).  New York: United 
Nations. 

U.S. Environmental Protection Agency, 42 U.S.C. §§ 7401 et seq. The “Clean Air Act” December 
17, 1963 

Vlahogianni, E. I., Golias, J. C., & Ziomas, I. C. (2011). Traffic flow evolution effects to nitrogen 
dioxides predictability in large metropolitan areas. Transportation Research: Part D, 
16(4), 273–280.  

Xing, Y., Brimblecombe, P., & Ning, Z. (2019). Fine-scale spatial structure of air pollutant 
concentrations along bus routes. Science of the Total Environment, 658, 1-7. 



28 

 

Yanosky, Jeff D, Joel Schwartz, and Helen H Suh. "Associations Between Measures of 
Socioeconomic Position and Chronic Nitrogen Dioxide Exposure in Worcester, 
Massachusetts." Journal of Toxicology and Environmental Health. 71.24 (2008): 1593-
602. Web. 

 

 

 


	Public Transit and Ambient Nitrogen Dioxide (NO2) Levels in Four Atlanta Neighborhoods
	Recommended Citation

	tmp.1576695847.pdf.QPbx8

