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ABSTRACT 

 

SUB-EPIDEMIC GENERALIZED LOGISTIC-GROWTH MODEL PERFORMANCE FOR 

INFLUENZA SEASON IN THE UNITED STATES, OCTOBER 2015–APRIL 2019 

 

by 

 

Hannah E. Fast 

 

15 December 2020 

 

INTRODUCTION: The public health response to an emerging infectious disease epidemic is 

based on risk assessments that predict the severity of the health threat. Although infectious 

disease surveillance data is often limited in scope, mathematical models can provide meaningful 

information about epidemic growth dynamics to inform development of public health 

interventions.  

 

AIM: This investigation aims to validate application of a sub-epidemic version of the generalized 

logistic-growth model (GLM) to a delineated period of epidemic growth representing the 

influenza season, using national surveillance data for incidence of influenza-like illness (ILI) in 

the United States. 

 

METHODS: Surveillance data for ILI case counts were obtained from the Centers for Disease 

Control and Prevention (CDC) website, FluView. GLM models with one, two, and three sub-

epidemics were fit to four epidemic growth periods across four years, each containing 30 weekly 

ILI incidence counts. Parameter estimates were obtained through nonlinear least squares curve-

fitting and sub-epidemic curves were aggregated into the best fit model. Model performance was 

evaluated using calculation of performance metrics, bootstrapping, and visual analysis. 

 

RESULTS: Model performance consistently improved across all four seasons as the number of 

sub-epidemics incorporated into the GLM increased (n=1 to n=3). The parameter and sub-

epidemic estimates provided information about the growth dynamics of the epidemic period, 

identifying trends specific to each season. 

 

DISCUSSION: The sub-epidemic GLM provides useful results about epidemic dynamics using 

national case count data. In addition, while logistic growth models are often applied to discrete 

outbreaks, the results of this investigation support application of the model to periods of 

epidemic growth within seasonal trends as well. The findings support the continued use of this 

model for academic and other public health application. 
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CHAPTER I – INTRODUCTION 

1.1 Description of the Public Health Problem 

The emergence of an infectious disease outbreak poses serious risks for the health and 

well-being of susceptible populations. An outbreak begins as a cluster of cases, 

epidemiologically linked by time and place, that exceeds the endemic prevalence for the area 

(CDC, 2011). Without public health intervention, an outbreak often shows exponential growth 

and can quickly become an epidemic, a term indicating wider geographic spread, and eventually 

evolve into a pandemic after achieving infections across multiple countries. Extensive, epidemic 

spread is likely to have severe health, economic, and social consequences if transmission cannot 

be brought under control. For this reason, epidemics are best dealt with preemptively and the 

strength of the response benefits from early identification and institution of swift public health 

interventions. Interventions encompass a wide range of policies and recommendations, such as 

mandatory quarantines, school closures, outbreak vaccination clinics, travel restrictions, product 

recalls, and limitations on the movement and sale of livestock.  

To design effective interventions, public health researchers and authorities must 

recognize that the response to an infectious disease does not occur in a vacuum; it occurs in a 

highly complex social, political, and economic environment. Thus, designing an intervention in 

theory can be much different than in practice, as each occurrence of an outbreak brings its own 

idiosyncratic set of challenges. In 1990, sociologist Philip Strong observed the extraordinary 

ways in which epidemics, referring to both the spread of disease and the strategies put in place to 

control spread, disrupt public order and create the “medical version of a Hobbesian nightmare – 

the war of all against all.” With such serious consequences, it is essential that all public health 
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recommendations are grounded in scientific knowledge and that the processes for developing 

that knowledge are widely validated and understood.  

Amidst the challenges posed by an epidemic, the public health goal remains to derive 

accurate, meaningful, and expert information from the constantly evolving stream of 

epidemiologic data that is generated. The ability to rapidly disseminate accurate epidemiologic 

research and analysis in a quickly evolving infectious disease outbreak or epidemic situation is 

crucial to intervention development. This information will be used to make difficult decisions 

regarding how to balance the costs and benefits of preventative measures, how to gain funding 

and access to resources, and how to communicate to the public.  

There have been extensive efforts in the field of epidemiology over the past few centuries 

to specifically define what epidemiologic information is needed during an epidemic response. 

Public health professionals are trained to use descriptive epidemiology to identify details 

regarding the elements of person, place, and time (CDC, 2011). Brockmann and Helbing in 2013 

developed these concepts further and described four key questions public health authorities must 

ask in the event of an epidemic with potential for global spread:  

“1) Where did the [novel] pathogen emerge?  

2) Where are new cases to be expected?  

3) When is an epidemic going to arrive at distant locations?  

4) How many cases are to be expected?” 

Three of the four questions involve some degree of prediction to determine where, when, 

and to what extent the epidemic will spread. These predictions are likely to be informed by 

statistical models, which are used to explore the relationship between an independent and a 

dependent variable, predict outcomes, and determine the likelihood and error around that 
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outcome (Casals, Giraben-Farrés & Carrasco, 2014). Models are useful tools because they 

simplify the complexity of transmission dynamics, allowing application to disparate geographic 

regions, populations, and circumstances (Vynnycky & White, 2010).  

In addition to defining relevant research questions, public health authorities also need to 

be familiar with what data sources are available, as well as the time and resources required to 

analyze the data to create meaningful, accurate findings. Questions to ask include: are existing 

data sources sufficient or is the development of new data collection methods required? How 

reliable are existing data sources? How much time would it take to develop new methods of data 

collection, such as a survey or case report form? Useful epidemiologic analysis depends on the 

identification of accurate data sources, as well as existing capacity for data access and 

transmission among public health and healthcare partners. It also depends on a skilled workforce 

for appropriate scientific analysis and the ability to successfully translate scientific findings into 

information that can be consumed by a variety of audiences.  

In recent years, public health has increasingly sought to develop advanced technological 

methods and utilize big data for epidemiologic purposes. Vast technological advances in other 

sectors of society have allowed for increased collection of health, demographic, and social 

networking information, resulting in a proliferation of novel data sources for incorporation into 

epidemiologic investigation and research. Forays into the use of big data to answer these key 

questions in the event of an outbreak offer exciting and promising results. Some of the 

developments in this field include researchers looking to implement complex and unsupervised 

machine learning processes (Waldner, Osgood & Seitzinger, 2017). However, increased access 

to data comes with the important caveat that more data does not always correlate to better results. 

There are several important limitations that may not make these advanced methods suitable for 
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all agencies and all public health responses. Novel data sources might not be able to be 

reconciled with official or validated sources. National infectious disease surveillance systems 

and infrastructure, such as the National Notifiable Diseases Surveillance System, are limited in 

scope by interoperability challenges and the cost of updating data standards and collection 

(Garcia et al., 2018). Furthermore, analysis of big data requires expert data management skills 

and the ability to translate existing data fields into the form that is needed to answer scientific 

questions. Appropriate use of big data can be severely limited by a shortage of computational 

resources, lack of skilled staff, and challenges in validating and communicating the results. 

While fully acknowledging the value of these technological advances, there is still a justified 

need to examine how to efficiently and accurately obtain epidemiologic information from 

relatively simple, validated, and consistent data sources.  

The United States recently saw the importance of early-time infectious disease models 

during the development of the novel COVID-19 pandemic in February and March 2020. In 

March, U.S. governors, including Jay Inslee of Washington1, Gavin Newsom of California2, and 

Andrew Cuomo of New York3, chose to make the difficult decision to implement mandatory 

school and business closures and stay-at-home orders, with much of the U.S. following in their 

footsteps shortly after. These high-risk decisions, for which the extent of the impact has yet to be 

determined, were justified by caseload predictions informed by models. The global development 

of COVID-19 reaffirms the importance of developing and validating infectious disease models 

 
1 Example of March 2020 media coverage of Washington COVID-19 models: https://www.seattletimes.com/seattle-

news/how-about-without-intervention-400-could-die-from-coronavirus-in-western-washington-by-april-7-study-

suggests/  
2 California example: https://www.nytimes.com/2020/03/19/us/California-stay-at-home-order-virus.html 
3 New York example: https://www.nytimes.com/2020/03/31/world/coronavirus-live-news-updates.html 

https://www.seattletimes.com/seattle-news/how-about-without-intervention-400-could-die-from-coronavirus-in-western-washington-by-april-7-study-suggests/
https://www.seattletimes.com/seattle-news/how-about-without-intervention-400-could-die-from-coronavirus-in-western-washington-by-april-7-study-suggests/
https://www.seattletimes.com/seattle-news/how-about-without-intervention-400-could-die-from-coronavirus-in-western-washington-by-april-7-study-suggests/
https://www.nytimes.com/2020/03/19/us/California-stay-at-home-order-virus.html
https://www.nytimes.com/2020/03/31/world/coronavirus-live-news-updates.html
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prior to the emergence of major public health emergencies. This ensures officials will have the 

information necessary to prevent morbidity, mortality, and other harms related to well-being. 

 

1.2 Research Aim 

 This study aims to evaluate a sub-epidemic version of the generalized logistic-growth 

model (GLM) developed by Chowell and Tariq (2019). The model will be fit to a delineated 

period of epidemic growth within four influenza seasons, using U.S. influenza-like illness (ILI) 

weekly incidence as a proxy. The study will compare the model performance results between the 

GLM with 1 sub-epidemic curve to the modified GLM with 2 and 3 sub-epidemic curves. The 

intent is to validate how incorporation of sub-epidemics into the model affects the utility of the 

GLM for use on government case reporting data. The hypothesis is that the sub-epidemic model 

will perform better than the single curve GLM. Gathering support for this model will help 

strengthen the use of sub-epidemic methodology as a relatively quick and scalable approach to 

improve understanding of epidemic growth dynamics and inform public health response efforts. 
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CHAPTER II – LITERATURE REVIEW 

2.1 Risk Assessment in an Epidemic 

 A sudden, unexpected rise in cases of an infectious disease is a cause for concern due to 

the uncertainty of risk involved and the potential for harmful outcomes. The World Health 

Organization (WHO) and other prominent scientific institutions have used the precautionary 

principle framework to establish the necessity of public health action in an emergency despite the 

presence of scientific uncertainty (Martuzzi and Tickner, 2004). In summary, the principle posits, 

“in cases of serious or irreversible threats to the health of humans or ecosystems, acknowledged 

scientific uncertainty should not be used as a reason to postpone preventative measures” 

(Martuzzi and Tickner, 2004). The uncertain circumstances that surround the rapid development 

of an infectious disease outbreak make the precautionary principle applicable. For example, 

when the 2003 SARS epidemic began, little was known about the disease (Bensimon & Upshar, 

2007). In Singapore, introduction of 1 index case into a hospital rapidly evolved into a healthcare 

outbreak of 109 cases, despite infection control measures, and then spread into the community 

(Goh, Cutter, & Heng et al., 2006). The demonstrated risk, despite scientific uncertainty, justified 

implementation of strict control measures such as the closure of a 24-hour market and mandatory 

quarantine of thousands who may have been exposed (Goh, Cutter, & Heng et al., 2006). 

Subsequent analysis of the SARS outbreak in Singapore shows that the rapid control measures 

were effective in slowing the spread. Lipsitch et al. (2003) found an initial effective reproductive 

number of R=7 in the first week of the Singapore outbreak, later declining to R=1.6 in the second 

week and R <1 in following weeks. Precautionary action to introduce control measures in a high-

risk situation ultimately reduced harm to the community and was able to control and stop spread 

of the disease. 
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As the precautionary principle is defined broadly and theoretically, there is much 

discussion within the scientific and legal community about how to apply the principle 

objectively. Critics of the principle argue that aggressive use of precaution can be harmful, 

(Wilson et al., 2019) while others have made the case that historically, existing assumptions 

about causality, which precautionary action might draw upon, have had to be overturned in order 

to stop disease transmission and advance scientific understanding (Goldstein, 2012). From a 

legal perspective, Kegge (2020) argues a standard of proof must be met to use the precautionary 

principle as justification. That standard is based on a risk assessment that shows a significant 

level of risk. In other words, evoking the precautionary principle requires a threshold of severity. 

In an outbreak, this implies that the consequences of uncontrolled disease spread to the public’s 

health must outweigh any potential costs or damage caused by control measures (Fischer & 

Ghelardi, 2016). Overall, outbreak response is highly dependent on accurate and validated 

methods of estimating risk. 

Risk assessments during the early growth period of an epidemic are often informed by 

mathematical models (Chowell et al., 2016b). Statistical models that use principles of 

exponential growth are able to define the relationship between cases of disease and time, 

providing insight into transmission dynamics. This information makes it possible to gauge the 

severity of the health threat by estimating epidemic size, anticipated growth rate, and the 

likelihood of clinical outcomes such as hospitalization, disability, and death. During the early 

stage of an epidemic, when data on case-patient outcome is likely to be incomplete, models may 

be able to provide more accurate information than crude calculations. For example, during onset 

of COVID-19, Verity et al. (2020) estimated case fatality rates using a parametric model because 
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the crude case fatality rates calculated during past respiratory disease epidemics (e.g., SARS and 

H1N1 influenza) were later found to be underestimated.  

A wide range of different model structures are used within the field of infectious disease 

modeling. Thus, after defining the research question and appropriate data sources, analysis 

design must take into account how to select an appropriate model structure for the investigation.  

Vynnycky & White (2010) describe the process of choosing a model structure as dependent on 

the natural course of the infection and the time period being investigated. For example, a model 

structure will need to take into consideration the length of the incubation period and whether 

infected individuals will return to the susceptible population. If this information is not available, 

as is the case with a novel pathogen, or data is incomplete, parsimonious models are able to 

account for these limitations by incorporating built-in assumptions into the model.  

The exponential growth model is a phenomenological model, which means it is a 

mathematical model that can describe the relationship between an independent and dependent 

variable (Chowell et al., 2016a). A phenomenological model is able to derive all of the necessary 

information from case count data because it makes assumptions about the transmission based on 

mathematical principles of exponential growth, rather than parameters that need to be defined 

based on an understanding of the natural history of the infection. This makes the model a 

promising candidate for use in situations where data is limited, such as the case of a novel 

epidemic where existing knowledge on the disease is limited. The exponential growth model is 

able to provide meaningful information during the initial phase of outbreak when case counts 

grow exponentially within the population and outcomes such as recovery and death are still 

limited (Bertozzi et al., 2020). Bertozzi et al. (2020) identified exponential growth as a one of 

three parsimonious models that was effective to use with COVID-19 early-time local and 
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national government case data. Their selection of the model was based on the criteria that the 

model be relatively simple, require few parameters, and have the ability to be scaled to 

accommodate varying region sizes.  

Epidemics often show exponential behavior during the growth period, such as the 2014 

Ebola epidemic (Hunt, 2014) and the 2009 H1N1 pandemic (de Picoli Junior et al., 2011). It is 

also common to see sub-exponential behavior, depending on the circumstances in which the 

epidemic is occurring. For example, sub-exponential behavior was observed during the 

emergence of COVID-19 in mainland China (Maier & Brockmann, 2020) and Ebola in Uganda 

(Viboud, Simonsen & Chowell, 2016). The generalized logistic-growth model distinguishes 

between exponential and sub-exponential growth by the inclusion of a growth scaling factor into 

the model (Viboud, Simonsen & Chowell, 2016). This allows the model to be scaled to a many 

different diseases and situations. 

 

2.2 Sub-epidemic Model Development 

Chowell and Tariq (2019) introduced a novel sub-epidemic modeling framework that 

aggregates multiple sub-epidemic curves to better fit overall incidence data. In the initial 

investigation, the sub-epidemic model was found to perform better than simple logistic-growth 

models when applied to historical outbreaks of SARS, Ebola, and Plague. The sub-epidemic 

model is fit to epidemic curve data. The epidemic curve, a histogram which shows incidence of 

cases over time, is one of the simplest tools used frequently by epidemiologists (CDC, 2011). 

The epidemic curve has remained a foundational tool for summarizing the distribution of cases 

because it is multi-functional and mathematical analysis of the epidemic curve is able to provide 

information about modality, generation time, and growth rate. In reality, the growth of an 
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epidemic is complex, with transmission occurring in various settings and among different 

populations with different beliefs and types of social interactions. The sub-epidemic model 

identifies mathematical variation within an aggregate epidemic curve and highlights ways the 

distribution might be broken down to show differences in transmission dynamics between sub-

populations. This information could be used to identify different transmission settings, target 

interventions, and generate hypotheses. While visual analysis of the epidemic curve is able to 

provide some answers to the key questions during an epidemic, mathematical analysis informed 

by a model will be able to provide more comprehensive epidemiologic information. 

The sub-epidemic model is a modified version of the generalized logistic-growth model 

(GLM) that creates estimates for a specified number (n) of sub-epidemics within one overall 

epidemic curve (Chowell & Tariq, 2019). Model fit is determined by aggregating the sub-

epidemics and comparing the fit of the aggregate curve to the actual data. Figure 1 contains an 

example of the differences between these two approaches, with 1 GLM curve on the left 

compared to an aggregated curve from 2 sub-epidemics on the right. It is important to note in 

Figure 1 that both models were generated using the same source data. The model estimates three 

parameters for each sub-epidemic: r, the growth rate, p, a growth scaling factor, and K, the total 

epidemic size. Thus, the total number of parameters estimated for the model will be 3n, or 3 

times the number of sub-epidemics. Increased parameters come at a cost to the model’s utility. 

As the model derives all of its information from the available data, parameter estimation 

becomes less reliable as more parameters are required to be estimated. The multiplication of 

parameters as the number of sub-epidemics increases can lead to parameter identifiability 

challenges and increase model uncertainty (Roosa & Chowell, 2019).  
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When the number of sub-epidemics is 1 (n=1), the model represents the GLM, with 

equation 
𝑑𝐶(𝑡)

𝑑𝑡
= 𝑟 × 𝐶(𝑡)𝑝 × (1 −

𝐶(𝑡)

𝐾
) and C(t) representing the incidence over time. As shown 

on the right in Figure 1, only one curve is generated to fit the data. As the number of sub-

epidemics increases, the equation incorporates an index, i: 
𝑑𝐶𝑖(𝑡)

𝑑𝑡
= 𝑟𝑖−1 × 𝐶𝑖(𝑡)𝑝 × (1 −

𝐶𝑖(𝑡)

𝐾𝑖
). In 

the sub-epidemic version, multiple curves using the GLM equation are used to fit the data.  

 

 
Figure 1 Example of sub-epidemic curve aggregation using SARS outbreak data, for n=1 and n=2. 

 
 

2.3 Application to Seasonal Influenza 

Influenza is a viral respiratory disease caused by the family of influenza viruses, 

including influenza A and influenza B viruses. Transmission dynamics for influenza are 

complex, partially due to frequent mutations and circulation of multiple strains, and partially due 

to the effect of environmental and behavioral changes on influenza transmission (Lofgren et al., 

2007).  There is an observed seasonality to influenza spread in the United States, with increased 

transmission beginning in the fall and winter months of each year. The seasonality occurs for 

several reasons, including the effect of humidity and temperature on spread (Lowen et al., 2007) 

and increased human susceptibility and the increase in behavior (e.g., crowding) that is 

conductive to spread (Lofgren et al., 2007). Thus, although influenza is being transmitted year-
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round, periods of epidemic growth occur due to both the effect of seasonality and potential 

introduction of new strains into susceptible populations.  

For influenza, the average generation time is 3 days (Nasserie et al., 2017). This means 

that fluctuations in growth rate can cause epidemics of high magnitude quickly. It is often 

identified as the pathogen of interest in planning for novel pandemics because the disease 

is “more likely to occur than other pathogen types and which is also relatively likely to result in a 

large epidemic” (Biggerstaff et al., 2019). With national surveillance data delayed by 1 to 2 

weeks, staying aware of influenza transmission dynamics to provide nowcasts and forecasts is 

important for situational awareness (Leuba et al., 2020). Severity assessments of influenza 

inform resource distributions of vaccination, hospitalization bed availability, antivirals, and assist 

with communication to the public (Barr & Cheng, 2018). The sub-epidemic GLM is one 

approach to assess influenza dynamics in real time and inform public health response.  
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CHAPTER III – METHODS AND PROCEDURES 

3.1 Influenza-like Illness (ILI) Surveillance Data 

The national surveillance system for influenza activity in the U.S. includes eight 

components and monitors five types of data sources: virologic testing, outpatient visits, 

geographic spread of disease, hospitalizations, and mortality reporting (National Center for 

Immunization and Respiratory Diseases [NCIRD], 2020a). One of these components is the U.S. 

Outpatient Influenza-like Illness Surveillance Network (ILINet), which is comprised of nearly 

3,000 outpatient healthcare providers that voluntarily report to CDC weekly. ILINet surveillance 

data includes the total number of outpatient visits to the provider per week and of these, the 

number of patients with ILI. ILI is defined as a fever greater than 100º F and cough and/or sore 

throat, without another known cause (NCIRD, 2020a). It is important to note that ILINet counts 

are not laboratory-confirmed and should not be interpreted as influenza incidence, as ILI is non-

specific and could potentially have another cause. In addition, only a subset of healthcare 

providers participates in the surveillance system and many individuals do not seek out healthcare 

or receive laboratory testing for influenza when ill. While measures of ILI do not capture the 

magnitude of influenza transmission, fluctuations in ILI activity over time can be used as a proxy 

to study overall patterns and trends in the influenza season (World Health Organization [WHO], 

2015). Thus, because the logistic-growth model captures growth dynamics over time, the change 

in ILI counts from week to week can offer insight into seasonal dynamics for influenza.  

ILINet summary-level data are published on two FluView Interactive dashboards4,5 and 

made available for public use. For this investigation, national ILI counts by week were obtained 

 
4 National, Regional, and State Level Outpatient Illness and Viral Surveillance: https://gis.cdc.gov/grasp/fluview/ 

fluportaldashboard.html 
5 Age Group Distribution of Influenza Positive Tests Reported by Public Health Laboratories: 

https://gis.cdc.gov/grasp/fluview/flu_by_age_virus.html 

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/flu_by_age_virus.html
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from FluView Interactive for four influenza seasons: 2015–2016, 2016–2017, 2017–2018, and 

2018–2019. Data on virus characterization, age group, and geographic region were also obtained 

for supplemental analysis. 

Since ILI activity occurs year-round, the fall and winter influenza season for each year 

was delineated and analyzed as an epidemic period. The epidemic period was defined beginning 

in early October at Morbidity and Mortality Weekly Report (MMWR) Week 40, which is the 

start of the influenza reporting period for each season, through late April, MMWR Week 17, of 

the next year (NCIRD, 2020a). Each season contained a total of 30 data points. The specific start 

and end dates for each season are listed in Table 1. A baseline adjustment was made so that the 

ILI incidence for all 30 weeks within the season was decreased by 1 less than the epidemic week 

0 incidence. After the adjustment, each epidemic period started at a count of 1 (Figure 3). This 

was done to counter the inflation of growth dynamics for the first data point, which occurred 

when the epidemic period was removed from seasonal context and no longer able to be analyzed 

in relation to the preceding week. 

 

 
Figure 2 Influenza seasons were delineated by week of report and analyzed as an epidemic period. Each 

season started in early October (MMWR Week 40) and ended in late April (MMWR Week 17) of the next 

year. 
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Table 1 Date of start, peak, and end of the delineated seasons. The date corresponds to the Saturday at the end 

of the week of report (MMWR Week). 

 

 
Figure 3 The reported ILI incidence was adjusted so that each season started at a value of 1. 

 

 

3.2 Fitting the Model 

Analysis was conducted using MATLAB, with code development supported by Dr. 

Gerardo Chowell and Kimberlyn Roosa at Georgia State University School of Public Health. The 

sub-epidemic generalized-logistic growth equation, 
𝑑𝐶𝑖(𝑡)

𝑑𝑡
= 𝑟𝑖−1 × 𝐶𝑖(𝑡)𝑝 × (1 −

𝐶𝑖(𝑡)

𝐾𝑖
), was 

created into a function. A simple two column matrix with time in one column and case counts in 

another was created for each epidemic period, and prior to analysis, the measure of time was 

converted from weeks to days. Parameter values were estimated for r, the growth rate, p, the 

growth scaling factor, and K, the total epidemic size, for n sub-epidemics. The number of sub-

epidemics was specified as 1, 2, and 3 sequentially for each dataset, which resulted in estimation 

of 3, 6, and 9 parameters, respectively. Parameter estimates were obtained through nonlinear 

least squares curve-fitting of the epidemic period using the MATLAB lsqcurvefit function. This 

function identifies the set of parameters that produce a model with the least summed differences 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

A
u

g-
16

Se
p

-1
6

O
ct

-1
6

N
o

v-
1

6

D
e

c-
1

6

Ja
n

-1
7

M
ar

-1
7

A
p

r-
17

M
ay

-1
7

Ju
n

-1
7

R
ep

o
rt

ed
 IL

I I
n

ci
d

en
ce

Incidence 
Adjustment

Season Week of Season Start / 

MMWR Week (Date) 
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Week of Season End / 

MMWR Week (Date) 

# Data Points 

2015–2016 0 / 40 (10-10-15) 22 / 10 (3-12-16) 29 / 17 (4-30-16) 30 

2016–2017 0 / 40 (10-8-16) 18 / 6 (2-11-17) 29 / 17 (4-29-17) 30 

2017–2018 0 / 40 (10-7-17) 18 / 6 (2-10-18) 29 / 17 (4-28-18) 30 

2018–2019 0 / 40 (10-6-18) 19 / 7 (2-16-19) 29 / 17 (4-27-19) 30 
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between the estimated data point and the actual source data at each point in time (Roosa & 

Chowell, 2019). Starting parameter estimates for the least squares curve-fitting process were 

randomly generated from a continuous uniform distribution using the unifrnd function in 

MATLAB. Since the solver is sensitive to the starting values, the random generation of these 

values meant model outcomes often differed across runs. To account for this, each model 

scenario was generated a minimum of 10 times and the best fit for that scenario was chosen 

using a comparison of residuals, performance metrics, and parameter identifiability metrics, as 

described in a following section. Upper and lower bounds for the parameters were defined as 

follows: 0 < r < 10; 0 < p < 1; 1 < K < cumulative count for the epidemic period. C(t) was 

defined as the starting incidence divided by the number of sub-epidemics (n).  

After the best fit parameter estimates were identified, an ordinary differential equation 

solver (ode45 function in MATLAB) used these estimates to calculate cumulative incidence 

curves for each sub-epidemic. Cumulative incidence was transformed into weekly incidence and 

plotted. Finally, weekly incidence for all sub-epidemics was summed to produce the aggregate 

model. 

Parametric bootstrapping was conducted to provide additional information on model fit 

and parameter identifiability metrics. During the bootstrapping process, two hundred simulated 

datasets were generated from the aggregate incidence curve using a Poisson error structure. 

Then, the model fit process was repeated for each simulated dataset, which resulted in 200 

estimates for each parameter value and 200 incidence curves. These curves were used to 

calculate a 95% CI around the model and the best fit parameter value.  
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3.3 Model Comparison and Performance Metrics 

 Four performance metrics were used to assess model fit: root-mean-square error (RMSE), 

mean absolute error (MAE), mean interval score (MIS), and 95% confidence interval (CI) 

percent coverage (Chowell & Tariq, 2019). All four metrics were used together to provide a 

comprehensive assessment of model performance. In addition, qualitative and visual analysis of 

fit, residual variance, and parameter confidence interval widths also informed model selection 

and interpretation.   

The RMSE and MAE are statistics that measure the average magnitude of distance 

between the model and the underlying data point (Willmott & Matsuura, 2005). The RMSE 

equation averages the squared residuals and then takes the square root. This is represented in the 

following equation, 𝑅𝑀𝑆𝐸 = [∑  (𝑧𝑓𝑖
− 𝑧𝑜𝑖

)
2

/𝑛]1/2𝑛
𝑖=0 ] (Barnston, 1992). The MAE takes the 

absolute value of the residuals, 𝑀𝐴𝐸 = [∑ |𝑧𝑓𝑖
− 𝑧𝑜𝑖

|𝑛
𝑖=0 ] (Willmott & Matsuura, 2005). Since 

both the RMSE and MAE represent the magnitude of the residuals, lower values for these 

metrics indicate better model performance because a better fit to the data will minimize the 

distance between the model and data points. Qualitative analysis of the distribution of residuals 

also informed model selection. Model fits with residuals showing constant variance and random 

distribution were preferred over model fits showing residuals with nonconstant variance, even if 

RMSE and MAE were similar in magnitude. These three methods of evaluation were applied to 

the best fit models. 

 The remaining two metrics, MIS and 95% CI percent coverage, were obtained after the 

bootstrapping process. The MIS calculates the width of the 95% confidence interval generated 

from the 200 model curves that were fit to the simulated datasets. The metric scores whether or 

not data points fall into that interval and how close they fall to the bounds. The MIS follows the 
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equation, 𝑀𝐼𝑆 =
1

ℎ
∑ (𝑈𝑡𝑖

− 𝐿𝑡𝑖
) +

2

0.05
(𝐿𝑡𝑖

− 𝑦𝑡𝑖
)𝐼{𝑦𝑡𝑖

< 𝐿𝑡𝑖
} +

2

0.05
(𝑦𝑡𝑖

− 𝑈𝑡𝑖
)𝑈{ℎ

𝑖=0 𝑦𝑡𝑖
< 𝑈𝑡𝑖

} 

(Chowell & Tariq, 2019). If the data point falls outside the lower or upper bounds of the interval, 

it is assigned 1 point. In addition, the MIS incorporates a calculation of the difference between 

the upper and lower bounds, meaning that narrow intervals will have a lower score while wider 

intervals will have a higher score. Overall, a lower MIS indicates better performance. Lower 

scores are obtained from a narrower 95% CI with less variation and may also be indicative of the 

95% confidence interval’s ability to represent the underlying data points. Similarly, the 95% CI 

percent coverage captures the percent of data that falls into the bounds of the 95% CI. A model 

with high percent coverage indicates a good fit while decreasing percent coverage would be 

interpreted as weaker model performance. Comparison of the width of the 95% CI around the 

parameter estimates provided information about parameter identifiability, with a wider 95% CI 

indicating increased uncertainty around the value of the estimate (Roosa & Chowell, 2019). 
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CHAPTER IV – RESULTS 

4.1 Description of Epidemic Curves 

The growth curve of reported ILI incidence was skewed left for all four seasons, with 

epidemic peak occurring after the midway point, at epidemic week 22, 18, 18, and 19 for the 

2015 to 2018 seasons, respectively. The 2018–2019 season had the highest cumulative incidence 

of ILI, closely followed by the 2017–2018 season, which also had the steepest curve and highest 

peak. The 2015–2016 season had both the latest peak and the lowest peak. 

 

  

Figure 4 Comparison of ILI trends across years. This figure represents reported incidence, not adjusted. A) 

Weekly incidence on a linear scale. B) Cumulative incidence on a linear scale. C) Cumulative incidence on a 

log-linear scale. 
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4.2 Parameter Estimates 

Across the four years that were analyzed, best fit estimates for r, the growth rate, ranged 

from 0.0695 to 6.33, with a median of 0.2485. Best fit estimates for p, the growth scaling factor, 

ranged from 0.466 to 1.00, with a median of 0.8845. Lastly, best fit estimates for K, total 

epidemic size, ranged from 5,353 to 627,515, with a median of 166,167. Best fit estimates from 

each model are shown in Figure 5 and Table 2. 

With the sub-epidemic model, parameter estimates are expected to vary within one 

season as sub-epidemics can take many different shapes within an aggregate curve. However, 

there are observable patterns across parameter estimates related to the shape of the aggregate 

curve. For example, the 2015–2016 season had both the highest estimates for r and the lowest 

estimates for p of the four years. Although the overall shape of this curve is the most gradual of 

all the seasons, it had the latest peak and therefore the longest left tail. The sub-epidemic curve 

generated to fit this tail had a high r value (6.33 for 1 curve when n=2; 6.23 for 1 curve when 

n=3) but when paired with a low p (0.473 for 1 curve when n=2; 0.466 for 1 curve when n=3), 

this created a wide and gradual curve. This relationship between r and p was also seen in the 3 

sub-epidemic model of the 2018–2019 season, where a relatively high r value (2.877 for 1 curve 

when n=3) was paired with a relatively low p value (0.633 for 1 curve when n=3) to create a 

small and gradual curve to fit the skewed left tail of that season. 

The 2017–2018 season had the highest peak and the steepest incline. This resulted in the 

largest estimate for K, total epidemic size, when n=1 because the one sub-epidemic curve 

generated also had a high peak. Individual estimates for K typically decreased as the number of 

sub-epidemics increased, as the aggregate incidence curve would then have multiple sub-

epidemics contributing to its height and shape. 
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A 

 

B 

 
C 

 

 

Figure 5 Distribution of sub-epidemic parameter estimates obtained from the best fit model. A) Estimates for 

r, the growth rate. B) Estimates for p, the growth scaling factor. C) Estimates for K, total epidemic size. 

 
Table 2 Values for sub-epidemic parameter estimates obtained from the best fit model. 

Season Model Type 
Growth Rate 

(r) 

Growth Scaling Factor 

(p) 

Total Epidemic Size 

(K) 

2015–2016 GLM 1 Sub-Epidemic r: 0.180  p: 0.887 K: 195,728 

GLM 2 Sub-Epidemics r1: 6.33 

r2: 0.0839 

p1: 0.473 

p2: 1.00 

K1: 163,407 

K2: 98,353 

GLM 3 Sub-Epidemics r1: 6.23 

r2: 0.218 

r3: 0.0885 

p1: 0.466 

p2: 0.894 

p3: 0.996 

K1: 168,926 

K2: 5,353 

K3: 99,417 

2016–2017 GLM 1 Sub-Epidemic r: 0.330 p: 0.837 K: 336,989 

GLM 2 Sub-Epidemics r1: 0.116 

r2: 1.40 

p1: 0.967 

p2: 0.667 

K1: 133,615 

K2: 232,218 

GLM 3 Sub-Epidemics r1: 0.675 

r2: 0.104 

r3: 0.0775 

p1: 0.767 

p2: 0.997 

p3: 0.998 

K1: 120,095 

K2: 137,775 

K3: 84,230 

2017–2018 GLM 1 Sub-Epidemic r: 0.279 p: 0.882 K: 627,515 

GLM 2 Sub-Epidemics r1: 0.881 

r2: 0.111 

p1: 0.755 

p2: 1.00 

K1: 386,564 

K2: 275,307 

GLM 3 Sub-Epidemics r1: 0.113 

r2: 0.676 

r3: 0.0695 

p1: 1.00 

p2: 0.788 

p3: 1.00 

K1: 289,733 

K2: 334,404 

K3: 34,211 

2018–2019 GLM 1 Sub-Epidemic r: 0.331 p: 0.831 K: 223,450 

GLM 2 Sub-Epidemics r1: 1.01 

r2: 0.951 

p1: 0.720 

p2: 0.680 

K1: 449,210 

K2: 108,699 

GLM 3 Sub-Epidemics r1: 0.204 

r2: 2.877 

r3: 0.154 

p1: 0.900 

p2: 0.633 

p3: 1.00 

K1: 478,771 

K2: 61,192 

K3: 63,499 
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4.3 Model Performance Metrics 

The performance metric results represent model outcomes from both the least squares 

curve-fitting process and the bootstrapping process. As the number of sub-epidemics 

incorporated into the model increased, the magnitude of error as measured through RMSE and 

MAE decreased. MIS also showed a consistent decrease, indicating that the 95% CI around the 

best fit model became narrower as the number of sub-epidemics increased. Overall, the model 

95% CI did not capture a high percentage of the underlying data, with a maximum of 17%. For 

two seasons, 2015–2016 and 2016–2017, percent coverage slightly increased as number of sub-

epidemics increased. For the other two seasons, 2017–2018 and 2018–2019, percent coverage 

stayed consistent for all values of n. The results for fit, residual variance, and width of 95% CI 

around parameter estimates are included in season-specific figures. 

A 

 

B 

 
C 

 

D 

 
Figure 6 Model performance metrics for four seasons with number of sub-epidemics increasing from n=1 to 

n=3. A) RMSE results. B) MAE results. C) MIS results. D) 95% CI percent coverage results. 
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Table 3 Model performance metrics for the four seasons. 

Season Model Type RMSE MAE MIS 95% CI Coverage 

2015–2016 GLM 1 Sub-Epidemic 2246.8 1794.6 67416 13.3% 

GLM 2 Sub-Epidemics 667.9 519.1 15499 13.3% 

GLM 3 Sub-Epidemics 654.1 500.2 14782 16.7% 

      

2016–2017 GLM 1 Sub-Epidemic 2793.0 2516.3 94311 6.7% 

GLM 2 Sub-Epidemics 2005.4 1511.5 54052 13.3% 

GLM 3 Sub-Epidemics 1417.4 1194.6 41337 16.0% 

      

2017–2018 GLM 1 Sub-Epidemic 6043.4 4789.2 183221 6.7% 

GLM 2 Sub-Epidemics 2193.6 1841.6 65133 6.7% 

GLM 3 Sub-Epidemics 2052.3 1586.2 55241 6.7% 

      

2018–2019 GLM 1 Sub-Epidemic 5609.4 4838.5 185222 6.7% 

GLM 2 Sub-Epidemics 2974.4 2458.5 89619 6.7% 

GLM 3 Sub-Epidemics 2118.6 1569.9 53515 6.7% 
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4.4 2015–2016 Season Results 

A 

 
B 

 
C 

 
 

Figure 7 2015–2016 results. A) Sub-epidemic curves generated by fitting the model with 1, 2, and 3 sub-

epidemics (L to R). The red line is the aggregate curve. B) Residuals from model fit to epidemic period data, 

sub-epidemics 1, 2, and 3 (L to R). C) Parameter estimates (marked by x) and 95% confidence intervals 

generated by bootstrap method using 200 simulated datasets. First chart shows r, sub-epidemics 1, 2, and 3, 

followed by similar charts for p and K. 
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4.5 2016–2017 Season Results 

A 

 
B 

 
C 

 
Figure 8 2016–2017 results. A) Sub-epidemic curves generated by fitting the model with 1, 2, and 3 sub-

epidemics (L to R). The red line is the aggregate curve. B) Residuals from model fit to epidemic period data, 

sub-epidemics 1, 2, and 3 (L to R). C) Parameter estimates (marked by x) and 95% confidence intervals 

generated by bootstrap method using 200 simulated datasets. First chart shows r, sub-epidemics 1, 2, and 3, 

followed by similar charts for p and K. 
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4.6 2017–2018 Season Results 

A 

 
B 

 
C 

 
 

Figure 9 2017–2018 results. A) Sub-epidemic curves generated by fitting the model with 1, 2, and 3 sub-

epidemics (L to R). The red line is the aggregate curve. B) Residuals from model fit to epidemic period data, 

sub-epidemics 1, 2, and 3 (L to R). C) Parameter estimates (marked by x) and 95% confidence intervals 

generated by bootstrap method using 200 simulated datasets. First chart shows r, sub-epidemics 1, 2, and 3, 

followed by similar charts for p and K. 
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4.7 2018–2019 Season Results 

A 

 
B 

 
C 

 
 

Figure 10 2018–2019 results. A) Sub-epidemic curves generated by fitting the model with 1, 2, and 3 sub-

epidemics (L to R). The red line is the aggregate curve. B) Residuals from model fit to epidemic period data, 

sub-epidemics 1, 2, and 3 (L to R). C) Parameter estimates (marked by x) and 95% confidence intervals 

generated by bootstrap method using 200 simulated datasets. First chart shows r, sub-epidemics 1, 2, and 3, 

followed by similar charts for p and K. 
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4.8 Comparison to Virologic Surveillance 

Model results were generated by fitting to adjusted ILI incidence data. Because ILI is 

nonspecific, a comparison was made to the virologic surveillance data reported by public health 

laboratories during the same time period. Counts and type of influenza-positive viral specimens 

was obtained from FluView and grouped as A (H3), A (H1N1), A (No Subtyping Done), and B 

(All Types). Selected results are displayed in Figure 11 with additional results included in the 

Appendix. 

A 

 

B 

 
C 

 

D 

 
Figure 11 Counts and types of viral specimens reported to CDC each week from public health laboratories. 

The best fit sub-epidemic model results obtained from fitting to the adjusted ILI incidence data are shown in 

grey. One model from each year was selected for the figure, depending on which was most aligned to the 

virologic data. A) 2015–2016 season, 2 sub-epidemic model. B) 2016–2017 season, 3 sub-epidemic model. C) 

2017–2018 season, 2 sub-epidemic model. D) 2018–2019 season, 3 sub-epidemic model. 
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CHAPTER V – DISCUSSION AND CONCLUSIONS 

5.1 Discussion of Key Findings 

There was a demonstrated improvement in model performance when sub-epidemics were 

incorporated into the GLM. As the number of sub-epidemics increased from 1 to 3, the distance 

between the aggregate model curve and the underlying incidence data decreased. The observed 

improvement in model fit is likely because the sub-epidemic model has more parameters than the 

1 curve GLM and is therefore able to capture more variation in the data. This is one of the 

benefits of using the sub-epidemic model for influenza, as factors such as different virus types, 

seasonal effects, and changing vaccination coverage, can easily cause variation in the shape of 

the incidence curve. While the improvement in model performance is notable, improved fit does 

not necessarily indicate epidemiologic information has been gained. Thus, an additional benefit 

of the sub-epidemic model is its ability to identify and visualize complex epidemic growth 

dynamics from simple case count data. While the sub-epidemic curves were not always able to 

be traced back to an underlying epidemiologic cause, several results from this investigation 

support the conclusion that incorporation of 2 or 3 sub-epidemics into the model enhanced 

identification of unique seasonal characteristics. 

The 2015–2016 season peaked in mid-March, which happened only two other times in 

the previous 18 influenza seasons (Davlin et al., 2016). While the GLM with n=1 was not able to 

capture both the longer left tail and the peak of the season, the GLM with n=2 and n=3 fit sub-

epidemic curves to both components. The comparison of the model to the virologic data 

indicates that the left tail observed in the ILI data for this season may not have been caused by 

influenza, due to the absence of reported viral specimens during that time (Figure 11A). Instead, 

this feature was likely a result of using standard season start and end dates that were not specific 
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enough for each year. However, despite the inclusion of ILI noise at the start of this season, the 

sub-epidemic model separated that component out into its own sub-epidemic. This is helpful 

because it was able to fit the left tail and peak separately, which helps to limit the effects of ILI 

noise on parameter estimation for peak growth dynamics. 

Comparison of the virologic surveillance data to the 3 sub-epidemic model for the 2016–

2017 season showed that the model was able to successfully identify individual peaks for A (H3) 

viruses and B viruses (Figure 11B).  This season primarily consisted of influenza A (H3N2) 

viruses, but a small wave of influenza B activity was seen late in the season, from the end of 

March through May (Blanton et al., 2017). The model identified a small sub-epidemic curve later 

in the season, which aligned with the timing of the emergence of the influenza B virus wave. In 

addition, for this season, the narrow confidence interval around each parameter estimate supports 

the identifiability of the results, even with 9 parameters being estimated from the data. Similar 

results were seen for the 2017–2018 season, where both sub-epidemics from the 2 sub-epidemic 

model aligned with peak timing for two waves seen in the viral results: an initial influenza A 

(H3N2) virus wave followed by an influenza B wave (Figure 11C) (Garten et al., 2018).  

The 2018–2019 influenza season was also characterized by two waves of activity, 

however both due to influenza A viruses. During this season, there was an initial wave 

of influenza A (H1N1), followed by a second wave of influenza A (H3N2) viruses (Xu et al., 

2019). The 2 and 3 sub-epidemic models did not distinguish the two waves, instead combining 

both into one large sub-epidemic (Figure 11D). This is likely because the ILI incidence was not 

able to capture the distinction between the two waves, since the peaks of both waves were 

relatively close, separated by 7 weeks, and of similar magnitude. The similarities in growth 

patterns between the two waves mean the curves would share transmission dynamics and similar 



 31 

parameter estimates. It is possible that the sub-epidemic curves indicate another component of 

transmission, such as variation due to different spread among age groups or across different 

regions. However, a brief analysis of the curve stratified by age group and HHS regions 

components did not show any notable differences from the overall ILI incidence curve. Although 

the model combined the two viral activity waves into one, Figure 10C shows wide 95% CIs 

around the parameter estimates for r, p, and K, indicating uncertainty. The uncertainty around 

estimates for this season is much higher than the uncertainty for the 3 sub-epidemic model for 

the two previous seasons. Thus, this finding supports the continued use of parameter 

identifiability metrics, as these metrics provided crucial information about the certainty of the 

model results. For both seasons where the models did not align closely with virologic 

surveillance, 2015–2016 and 2018–2019, uncertainty around the parameters was much higher 

than for the other two seasons that were aligned with activity waves observed in the virologic 

surveillance. 

5.2 Strengths and Limitations 

This investigation used national ILI surveillance data to validate the use of the sub-

epidemic GLM, which was a novel framework introduced by Chowell and Tariq in 2019. One of 

the strengths of the model is that it is built on assumptions about exponential growth and can be 

applied to different diseases, periods of time, and regions. In addition, the results demonstrated 

the ability of the model to identify meaningful information about complex growth dynamics 

from simple data, which is notable considering the challenges surrounding collection, use, and 

validation of surveillance data. Overall, the model was scalable, easily modified, and provided 

results quickly once the programming was set up.  
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Another strength of the investigation was that the methodology for measuring uncertainty 

was able to identify the two seasons that did not align with underlying virologic transmission 

dynamics. Measures of model fit, such as RMSE and MAE, were not by themselves sufficient to 

identify this, but the parameter identifiability metrics obtained through bootstrapping provided 

another tool for evaluation. Overall, the process developed for fitting and evaluating the model, 

including the least squares curve-fitting and bootstrapping, were shown to be comprehensive and 

necessary. 

In practice, there is a need to obtain results in real time, which means the full shape of the 

epidemic curve is not going to be available. It would be beneficial to further investigate the 

accuracy of the sub-epidemic model when applied to the early growth period of the influenza 

season. Preliminary results were explored during this investigation by applying the methodology 

to the early growth period of the 2018–2019 season. The sub-epidemic model fit and 

bootstrapping process was repeated on a series of seven time periods with an increasing number 

of data points, starting at 6 data points and sequentially increasing until 12 data points. The 

preliminary results showed that model fit to the early growth period was also improved by 

incoporating sub-epidemics into the GLM. However, more thorough investigation is needed to 

understand how the model performs with a number of data points fewer than 30. 

One of the limitations of the investigation was the nonspecific definition of epidemic 

periods, which added noise into the data. The start and end periods were standardly defined for 

consistency and to control factors that might affect model comparison. Further development of 

the methodology around how to precisely determine the epidemic threshold is needed to improve 

the results. Suggestions in the literature include use of a baseline (Xu et al. 2019; WHO, 2015), 
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identification of monotonic increases (Viboud, Simonsen & Chowell, 2016), or use of an 

algorithm such as the Nelder-Mead simplex algorithm (Charu et al., 2017). 

 Finally, more investigation is needed to understand how to translate the information 

gained from modeling ILI counts for application to influenza dynamics. Since the influenza 

surveillance system into the U.S. monitors several components to understand influenza activity, 

it would be valuable to see how other types of influenza surveillance data could contribute to the 

model process and whether or not other data sources are more appropriate. 

5.3 Conclusion 

 There is value in the use and validation of phenomenological and parsimonious models 

that can quickly generate meaningful results on simple epidemic curve data. The GLM, in all of 

its forms, generated meaningful results when applied to a period of epidemic growth for seasonal 

influenza. Incorporating sub-epidemics (n=2 or n=3) into the GLM improved model performance 

and fit.  Most significantly, the sub-epidemic model identified unique characteristics of each 

season that were not immediately observable from the aggregate epidemic curve. For two of the 

four seasons investigated, model sub-epidemics were aligned with underlying virologic 

transmission trends. For the two seasons that were not aligned with virologic results, the 

methodology for determining uncertainty around parameter estimates indicated relatively high 

uncertainty. These findings support the continued use of this model for academic and other 

public health application. 

 

  



 34 

REFERENCES 

Baltrusaitis, K., Vespignani, A., Rosenfeld, R., Gray, J., Raymond, D., & Santillana, M. (2019). 

Differences in Regional Patterns of Influenza Activity Across Surveillance Systems in the 

United States: Comparative Evaluation. JMIR public health and surveillance, 5(4), e13403. 

https://doi.org/10.2196/13403 

Barnston, A. (1992). Correspondence among the correlation, RMSE, and Heidke forecast 

verification measures; refinement of the Heidke score. Weather and Forecasting, 7(4), 699-

709. https://doi.org/10.1175/1520-0434(1992)007%3C0699:CATCRA%3E2.0.CO;2 

Barr, I. G., & Cheng, A. C. (2018). Difficulties of predicting the timing, size and severity of 

influenza seasons. Respirology, 23(6), 562–563. https://doi.org/10.1111/resp.13310 

Bensimon, C. M., & Upshur, R. E. G. (2007). Evidence and effectiveness in decisionmaking for 

quarantine. American Journal of Public Health, 97 Suppl 1, 44–48. 

https://doi.org/10.2105/AJPH.2005.077305 

Bertozzi, A.L., Franco, E., Mohler, G., Short, M.B., Sledge, D. (2020). The challenges of 

modeling and forecasting the spread of COVID-19. Proceedings of the National Academy 

of Sciences, 117(29), 16732-16738. doi:10.1073/pnas.2006520117 

Biggerstaff, M., Dahlgren, F. S., Fitzner, J., George, D., Hammond, A., Hall, I., … Wu, J. T. 

(2019). Coordinating the real-time use of global influenza activity data for better public 

health planning. Influenza and Other Respiratory Viruses. https://doi.org/10.1111/irv.12705 

Blanton, L., Alabi, N., Mustaquim, D., Taylor, C., Kniss, K., Kramer, N., Budd, A., Garg, S., 

Cummings, C. N., Chung, J., Flannery, B., Fry, A. M., Sessions, W., Garten, R., Xu, X., 

Elal, A. I. A., Gubareva, L., Barnes, J., Dugan, V., … Brammer, L. (2017). Update: 

Influenza Activity in the United States During the 2016–17 Season and Composition of the 

2017–18 Influenza Vaccine. MMWR. Morbidity and Mortality Weekly Report, 66(25), 668–

676. https://doi.org/10.15585/mmwr.mm6625a3 

Brockmann, D, & Helbing, D. (2013). The hidden geometry of complex, network-driven 

contagion phenomena. Science, 342(6164), 1337–1342. 

https://doi.org/10.1126/science.1245200 

Casals, M., Girabent-Farrés, M., & Carrasco, J. L. (2014). Methodological Quality and Reporting 

of Generalized Linear Mixed Models in Clinical Medicine (2000–2012): A Systematic 

Review. PLoS ONE, 9(11), 1–10. https://doi.org/10.1371/journal.pone.0112653 

 

Centers for Disease Control and Prevention (CDC). Principles of epidemiology in public health 

practice. 3rd ed. Centers for Disease Control and Prevention; 2011. 

https://www.cdc.gov/csels/dsepd/ss1978 

/lesson1/section6.html. Accessed April 24, 2020. 

https://doi.org/10.1175/1520-0434(1992)007%3C0699:CATCRA%3E2.0.CO;2
https://doi.org/10.1111/irv.12705
https://doi.org/10.1126/science.1245200
https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section6.html
https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section6.html


 35 

 

Centers for Disease Control and Prevention (CDC). (n.d.). Weeks ending log 2017–2018 [PDF 

file]. Retrieved from https://wwwn.cdc.gov/nndss/document/w2017-18.pdf 

 

Charu, V., Zeger, S., Gog, J., Bjørnstad, O. N., Kissler, S., Simonsen, L., Grenfell, B. T., & 

Viboud, C. (2017). Human mobility and the spatial transmission of influenza in the United 

States. PLoS Computational Biology, 13(2), 1–23. 

https://doi.org/10.1371/journal.pcbi.1005382 

Chowell, G., Hincapie-Palacio, D., Ospina, J., Pell, B., Tariq, A., Dahal, S., Moghadas, S., 

Smirnova, A., Simonsen, L., & Viboud, C. (2016a). Using Phenomenological Models to 

Characterize Transmissibility and Forecast Patterns and Final Burden of Zika Epidemics. 

PLoS Currents, 3, 1–16. 

https://doi.org/10.1371/currents.outbreaks.f14b2217c902f453d9320a43a35b9583 

Chowell, G., Sattenspiel, L., Bansal, S., & Viboud, C. (2016b). Mathematical models to 

characterize early epidemic growth: A review. Physics of life reviews, 18, 66–97. 

https://doi.org/10.1016/j.plrev.2016.07.005 

 

Chowell, G., Tariq, A., & Hyman, J. M. (2019). A novel sub-epidemic modeling framework for 

short-term forecasting epidemic waves. BMC Medicine, 17(1), 1–18. 

https://doi.org/10.1186/s12916-019-1406-6 

Davlin, S. L., Blanton, L., Kniss, K., Mustaquim, D., Smith, S., Kramer, N., Cohen, J., 

Cummings, C. N., Garg, S., Flannery, B., Fry, A. M., Grohskopf, L. A., Bresee, J., Wallis, 

T., Sessions, W., Garten, R., Xu, X., Elal, A. I. A., Gubareva, L., … Brammer, L. (2016). 

Influenza Activity — United States, 2015–16 Season and Composition of the 2016–17 

Influenza Vaccine. MMWR. Morbidity and Mortality Weekly Report, 65(22), 567–575. 

https://doi.org/10.15585/mmwr.mm6522a3 

de Picoli Junior, S., Teixeira, J. J., Ribeiro, H. V., Malacarne, L. C., dos Santos, R. P., & dos 

Santos Mendes, R. (2011). Spreading patterns of the influenza A (H1N1) pandemic. PloS 

one, 6(3), e17823. https://doi.org/10.1371/journal.pone.0017823 

 

Fischer, A. J., & Ghelardi, G. (2016). The Precautionary Principle, Evidence-Based Medicine, 

and Decision Theory in Public Health Evaluation. Frontiers in public health, 4, 107. 

https://doi.org/10.3389/fpubh.2016.00107 

Garcia, M. C., Garrett, N. Y., Singletary, V., Brown, S., Hennessy-Burt, T., Haney, G., Link, K., 

Tripp, J., Mac Kenzie, W. R., & Yoon, P. (2018). An Assessment of Information Exchange 

Practices, Challenges, and Opportunities to Support US Disease Surveillance in 3 

States. Journal of public health management and practice : JPHMP, 24(6), 546–553. 

https://doi.org/10.1097/PHH.0000000000000625 

Garten, R., Blanton, L., Isa, A., Elal, A., Alabi, N., Barnes, J., Biggerstaff, M., Brammer, L., 

Budd, A. P., Burns, E., Cummings, C. N., Davis, T., Garg, S., Gubareva, L., Jang, Y., 

https://wwwn.cdc.gov/nndss/document/w2017-18.pdf
https://doi.org/10.1186/s12916-019-1406-6
https://doi.org/10.3389/fpubh.2016.00107


 36 

Kniss, K., Kramer, N., Lindstrom, S., Mustaquim, D., … Jernigan, D. (2018). Update : 

Influenza Activity in the United States During the 2017 – 18 Season and Composition of the 

2018 – 19 Influenza Vaccine Antigenic and Genetic Characterization of Influenza Viruses. 

67(22). 

Goh, K. T., Cutter, J., Heng, B. H., Ma, S., Koh, B. K. W., Kwok, C., … Chew, S. K. (2006). 

Epidemiology and control of SARS in Singapore. Annals of the Academy of Medicine 

Singapore, 35(5), 301–316. 

Goldstein, B. D. (2012). John Snow, the Broad Street pump and the precautionary 

principle. Environmental Development, 1(1), 3–9. 

https://doi.org/10.1016/j.envdev.2011.12.002 

Harremoes, P., Gee, D., MacGarvin, M., Stirling, A., Keys, J., Wynne, B., & Guedes Vaz, S. 

(2002). The Precautionary Principle in the 20th Century : Late Lessons From Early 

Warnings. Routledge. 

Hunt, A. G. (2014). Exponential Growth in Ebola Outbreak Since May 14, 2014. Complexity, 

20(2), 8–11. https://doi.org/10.1002/cplx.21615 

Kegge, R. (2020). The precautionary principle and the burden and standard of proof in European 

and Dutch environmental law. Review of European Administrative Law, 13(2), 113–121. 

https://doi.org/10.7590/187479820X159307018522741874-7981 

Lipsitch, M., Cohen, T., Cooper, B., Robins, J. M., Ma, S., James, L., … Murray, M. (2003). 

Transmission dynamics and control of severe acute respiratory syndrome. Science, 

300(5627), 1966–1970. https://doi.org/10.1126/science.1086616  

Lofgren, E., Fefferman, N. H., Naumov, Y. N., Gorski, J., & Naumova, E. N. (2007). Influenza 

Seasonality: Underlying Causes and Modeling Theories. Journal of Virology, 81(11), 5429–

5436. https://doi.org/10.1128/jvi.01680-06 

Lowen, A. C., Mubareka, S., Steel, J., & Palese, P. (2007). Influenza virus transmission is 

dependent on relative humidity and temperature. PLoS Pathogens, 3(10), 1470–1476. 

https://doi.org/10.1371/journal.ppat.0030151 

Leuba, S. I., Yaesoubi, R., Antillon, M., Cohen, T., & Zimmer, C. (2020). Tracking and 

predicting U.S. influenza activity with a real-time surveillance network. PLoS 

Computational Biology, 16(11), 1–14. https://doi.org/10.1371/journal.pcbi.1008180 

Maier, B. F., & Brockmann, D. (2020). Effective containment explains sub-exponential growth 

in confirmed cases of recent COVID-19 outbreak in Mainland China. ArXiv, 746(May), 

742–746. https://doi.org/10.1101/2020.02.18.20024414 

https://doi.org/10.1371/journal.ppat.0030151


 37 

Martuzzi, M., & Tickner, J. a. (2004). The precautionary principle: protecting public health, the 

environment and the future of our children. World Health Organisation, 220. Retrieved 

from http://www.euro.who.int/__data/assets/pdf_file/0003/91173/E83079.pdf 

Matrajt, L., & Leung, T. (2020). Evaluating the Effectiveness of Social Distancing Interventions 

to Delay or Flatten the Epidemic Curve of Coronavirus Disease. Emerging Infectious 

Diseases, 26(8), 1740–1748. https://doi.org/10.3201/eid2608.201093 

 

Murphy, M. S. Q., Wilson, K., Atkinson, K. M., Fergusson, D. A., Forster, A., Tinmouth, A. T., 

Brown, A., & Keelan, J. (2019). Problems with precaution: the transfusion medicine 

experience. Journal of Risk Research, 22(2), 137–149. 

https://doi.org/10.1080/13669877.2017.1351478 

Nasserie, T., Tuite, A. R., Whitmore, L., Hatchette, T., Drews, S. J., Peci, A., Kwong, J. C., 

Friedman, D., Garber, G., Gubbay, J., & Fisman, D. N. (2017). Seasonal Influenza 

Forecasting in Real Time Using the Incidence Decay With Exponential Adjustment Model. 

Open Forum Infectious Diseases, 4(3). https://doi.org/10.1093/ofid/ofx166 

National Center for Immunization and Respiratory Diseases (CDC NCIRD). (2020a, October 6). 

U.S. influenza surveillance system: purpose and methods. 

https://www.cdc.gov/flu/weekly/overview.htm 

 

National Center for Immunization and Respiratory Diseases (CDC NCIRD). (2020b, January 8). 

Estimated influenza illnesses, medical visits, hospitalizations, and deaths in the United 

States — 2018–2019 influenza season. https://www.cdc.gov/flu/about/burden/2018-

2019.html 

 

Paul, S., Mgbere, O., Arafat, R., Yang, B., & Santos, E. (2017). Modeling and Forecasting 

Influenza-like Illness (ILI) in Houston, Texas Using Three Surveillance Data Capture 

Mechanisms. Online journal of public health informatics, 9(2), e187. 

https://doi.org/10.5210/ojphi.v9i2.8004 

Roosa, K., & Chowell, G. (2019). Assessing parameter identifiability in compartmental dynamic 

models using a computational approach: application to infectious disease transmission 

models. Theoretical Biology and Medical Modelling, 16(1), 1–15. 

https://doi.org/10.1186/s12976-018-0097-6 

Sah, P., Alfaro-Murillo, J. A., Fitzpatrick, M. C., Neuzil, K. M., Meyers, L. A., Singer, B. H., & 

Galvani, A. P. (2019). Future epidemiological and economic impacts of universal influenza 

vaccines. Proceedings of the National Academy of Sciences of the United States of 

America, 116(41), 20786–20792. https://doi.org/10.1073/pnas.1909613116 

 

Strong, P. (1990). Epidemic psychology: a model. Sociology of Health & Illness, 12(3), 249–

259. https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9566.ep11347150 
 

https://doi.org/10.3201/eid2608.201093
https://www.cdc.gov/flu/weekly/overview.htm
https://www.cdc.gov/flu/about/burden/2018-2019.html
https://www.cdc.gov/flu/about/burden/2018-2019.html
https://doi.org/10.1186/s12976-018-0097-6
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9566.ep11347150


 38 

Tamerius J, Steadman J, Tamerius J. Synchronicity of influenza activity within Phoenix, AZ 

during the 2015-2016 seasonal epidemic. BMC Infectious Diseases. 2017;17(1):109. 

doi:10.1186/s12879-017-2197-z.  

 

Vandekerckhove, J., Matzke, D., & Wagenmakers, E.-J. (2015). Model comparison and the 

principle of parsimony. In J. R. Busemeyer, Z. Wang, J. T. Townsend, & A. Eidels 

(Eds.), Oxford library of psychology. The Oxford handbook of computational and 

mathematical psychology (p. 300–319). Oxford University Press. 

Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., Cuomo-Dannenburg, 

G., Thompson, H., Walker, P., Fu, H., Dighe, A., Griffin, J. T., Baguelin, M., Bhatia, S., 

Boonyasiri, A., Cori, A., Cucunubá, Z., FitzJohn, R., Gaythorpe, K., Green, W., … 

Ferguson, N. M. (2020). Estimates of the severity of coronavirus disease 2019: a model-

based analysis. The Lancet. Infectious diseases, 20(6), 669–677.  

Viboud, C., Simonsen, L., & Chowell, G. (2016). A generalized-growth model to characterize 

the early ascending phase of infectious disease outbreaks. Epidemics, 15, 27–37. 

https://doi.org/10.1016/j.epidem.2016.01.002 

Vynnycky, E., & White, R. (2010). Introduction to infectious disease modelling. Oxford: Oxford 

University Press. 

Waldner, C., Osgood, N., & Seitzinger, P. (2017). Big data for infectious diseases surveillance 

and the potential contribution to the investigation of foodborne disease in Canada. National 

Collaborative Centre for Infectious Diseases Canada. https://nccid.ca/publications/big-data-

for-infectious-diseases-surveillance/ 

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the 

root mean square error (RMSE) in assessing average model performance. Climate 

Research, 30(1), 79–82. https://doi.org/10.3354/cr030079 

World Health Organization. (2015). A manual for estimating disease burden associated with 

seasonal influenza. World Health 

Organization. https://apps.who.int/iris/handle/10665/178801 

Xu, X., Blanton, L., Elal, A. I. A., Alabi, N., Barnes, J., Biggerstaff, M., Brammer, L., Budd, A. 

P., Burns, E., Cummings, C. N., Garg, S., Kondor, R., Gubareva, L., Kniss, K., Nyanseor, 

S., O’Halloran, A., Rolfes, M., Sessions, W., Dugan, V. G., … Jernigan, D. (2019). Update: 

Influenza Activity in the United States During the 2018–19 Season and Composition of the 

2019–20 Influenza Vaccine. MMWR. Morbidity and Mortality Weekly Report, 68(24), 544–

551. https://doi.org/10.15585/mmwr.mm6824a3 

  

https://nccid.ca/publications/big-data-for-infectious-diseases-surveillance/
https://nccid.ca/publications/big-data-for-infectious-diseases-surveillance/
https://doi.org/10.3354/cr030079
https://apps.who.int/iris/handle/10665/178801


 39 

APPENDIX 

Table 4 Parameter estimates and confidence intervals determined from bootstrapping with 200 

realizations. 

Model Type Growth Rate (r) Growth Scaling Factor (p) Total Epidemic Size (K) 

2015–2016 SEASON    

GLM 1 Sub-Epidemic r: 0.180 (0.178, 0.182) p: 0.887 (0.885, 0.889) K: 195,496 (194689, 196369) 

GLM 2 Sub-Epidemics r1: 6.13 (5.75, 6.47) 

r2: 0.0840 (0.0835, 0.0853) 

p1: 0.477 (0.471, 0.484) 

p2: 1.00 (0.996, 1.00) 

K1: 163,841 (159063, 167677) 

K2: 98,335 (96856, 100106) 

GLM 3 Sub-Epidemics r1: 5.81 (2.74, 9.04) 

r2: 0.415 (0.153, 2.93) 

r3: 0.0100 (0.0864, 0.131) 

p1: 0.495 (0.416, 0.601) 

p2: 0.871 (0.567, 0.967) 

p3: 0.979 (0.934, 1.00) 

K1: 134,163 (21407, 193744) 

K2: 14,541 (3588, 46295) 

K3: 116,813 (95696, 165513) 

    

2016-2017 SEASON    

GLM 1 Sub-Epidemic r: 0.329 (0.326, 0.332) p: 0.837 (0.836, 0.838) K: 336,897 (335785, 337988) 

GLM 2 Sub-Epidemics r1: 0.118 (0.114, 0.122) 

r2: 1.41 (1.36, 1.47) 

p1: 0.966 (0.961, 0.970) 

p2: 0.665 (0.661, 0.670) 

K1: 135,211 (131105, 139399) 

K2: 230,647 (226243, 234652) 

GLM 3 Sub-Epidemics r1: 0.673 (0.632, 0.705) 

r2: 0.103 (0.102, 0.106) 

r3: 0.0822 (0.0765, 0.0889) 

p1: 0.767 (0.760, 0.776) 

p2: 0.999 (0.994, 1.00) 

p3: 0.996 (0.977, 1.00) 

K1: 120,966 (113199, 126581) 

K2: 136,165 (131386, 143287) 

K3: 85,684 (81967, 96185) 

    

2017-2018 SEASON    

GLM 1 Sub-Epidemic r: 0.347 (0.278, 0.459) p: 0.861 (0.826, 0.883) K: 627,748 (625015, 629841) 

GLM 2 Sub-Epidemics r1: 0.874 (0.860, 0.888) 

r2: 0.110 (0.110, 0.112) 

p1: 0.756 (0.754, 0.757) 

p2: 1.00 (1.00, 1.00) 

K1: 386,670 (383192, 389191) 

K2: 275,426 (272855, 279145) 

GLM 3 Sub-Epidemics r1: 0.114 (0.113, 0.117) 

r2: 0.657 (0.641, 0.675) 

r3: 0.0780 (0.0692, 0.0788) 

p1: 1.00 (0.995, 1.00) 

p2: 0.791 (0.788, 0.795) 

p3: 0.992 (0.980, 1.00) 

K1: 294,312 (287170, 307218) 

K2: 325,660 (310845, 336819) 

K3: 39,205 (34288, 44255) 

    

2018-2019 SEASON    

GLM 1 Sub-Epidemic r: 0.362 (0.313, 0.401) p: 0.820 (0.807, 0.839) K: 223,449 (223449, 223450) 

GLM 2 Sub-Epidemics r1: 0.825 (0.179, 1.48) 

r2: 0.772 (0.701, 0.951) 

p1: 0.773 (0.674, 0.913) 

p2: 0.732 (0.685, 0.785) 

K1: 413,798 (339294, 469474) 

K2: 140,316 (97702, 192223) 

GLM 3 Sub-Epidemics r1: 0.202 (0.139, 0.206) 

r2: 2.84 (1.67, 3.12) 

r3: 0.197 (0.154, 1.13) 

p1: 0.902 (0.900, 0.944) 

p2: 0.638 (0.623, 0.674) 

p3: 0.988 (0.781, 1.00) 

K1: 471,806 (303,216, 480983) 

K2: 63,854 (56659, 65356) 

K3: 68,265 (61624, 68875) 
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C) n=3 

 
 

 

 

Figure 12 Results from the 2015–2016 season. The type and count of viral specimens reported from public 

health laboratories are shown along with the GLM sub-epidemic best fit model results obtained from fitting to 

the ILI adjusted incidence. A) Results from the GLM with 1 sub-epidemic. B) Results from the GLM with 2 

sub-epidemics. 3) Results from the GLM with 3 sub-epidemics. 
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Figure 13 Results from the 2016–2017 season. The type and count of viral specimens reported from public 

health laboratories are shown along with the GLM sub-epidemic best fit model results obtained from fitting to 

the ILI adjusted incidence. A) Results from the GLM with 1 sub-epidemic. B) Results from the GLM with 2 

sub-epidemics. 3) Results from the GLM with 3 sub-epidemics. 
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A) n=1 

 

B) n=2 

 
C) n=3 

 
 

 

 

Figure 14 Results from the 2017–2018 season. The type and count of viral specimens reported from public 

health laboratories are shown along with the GLM sub-epidemic best fit model results obtained from fitting to 

the ILI adjusted incidence. A) Results from the GLM with 1 sub-epidemic. B) Results from the GLM with 2 

sub-epidemics. 3) Results from the GLM with 3 sub-epidemics. 
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C) n=3 

 
 

 

 

Figure 15 Results from the 2018–2019 season. The type and count of viral specimens reported from public 

health laboratories are shown along with the GLM sub-epidemic best fit model results obtained from fitting to 

the ILI adjusted incidence. A) Results from the GLM with 1 sub-epidemic. B) Results from the GLM with 2 

sub-epidemics. 3) Results from the GLM with 3 sub-epidemics. 
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