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INTERSECTION ALGEBRAS AND POINTED RATIONAL CONES

by

SARA MALEC

Under the Direction of Florian Enescu

ABSTRACT

In this dissertation we study the algebraic properties of the intersection algebra of two

ideals I and J in a Noetherian ring R. A major part of the dissertation is devoted to the finite

generation of these algebras and developing methods of obtaining their generators when the

algebra is finitely generated.

We prove that the intersection algebra is a finitely generated R-algebra when R is a

Unique Factorization Domain and the two ideals are principal, and use fans of cones to find

the algebra generators. This is done in Chapter 2, which concludes with introducing a new



class of algebras called fan algebras.

Chapter 3 deals with the intersection algebra of principal monomial ideals in a poly-

nomial ring, where the theory of semigroup rings and toric ideals can be used. A detailed

investigation of the intersection algebra of the polynomial ring in one variable is obtained.

The intersection algebra in this case is connected to semigroup rings associated to systems

of linear diophantine equations with integer coefficients, introduced by Stanley.

In Chapter 4, we present a method for obtaining the generators of the intersection

algebra for arbitrary monomial ideals in the polynomial ring.

INDEX WORDS: Commutative algebra, Semigroup rings, Fan algebras
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries

In this thesis, we study the intersection of powers of two ideals in a commutative Noethe-

rian ring. This is achieved by looking at the structure called the intersection algebra, a recent

concept, which is associated to the two ideals.

The purpose of this dissertation is to study the finite generation of this algebra, and to

show that it holds in a few significant cases, namely principal ideals in a UFD and monomial

ideals in a polynomial ring.

In the general case, not much is known about the intersection algebra, and there are

many questions that can be asked. Various aspects of the intersection algebra have been

studied by J. B. Fields in [1, 2]. There, he proved several interesting things, including the

finite generation of the intersection algebra of two monomial ideals in the power series ring

over a field. He also studied the relationship between the finite generation of the intersection

algebra and the polynomial behavior of a certain function involving lengths of Tors. It is

interesting to note that this algebra is not always finitely generated, as shown by Fields.

The finite generation of the intersection algebra has also appeared in the work of Ciu-

percă, Enescu, and Spiroff in [3] in the context of asymptotic growth powers of ideals.

We will start with the definition of the intersection algebra. Throughout this disserta-

tion, R will be a commutative Noetherian ring.
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Definition 1.1.1. Let R be a ring with two ideals I and J . Then the intersection algebra

of I and J is B =
⊕

r,s∈N I
r ∩ Js. If we introduce two indexing variables u and v, then

BR(I, J) =
∑

r,s∈N I
r ∩ Jsurvs ⊆ R[u, v]. When R, I and J are clear from context, we will

simply denote this as B. We will often think of B as a subring of R[u, v], where there is a

natural N2-grading on monomials b ∈ B given by deg(b) = (r, s) ∈ N2. If this algebra is

finitely generated over R, we say that I and J have finite intersection algebra.

Example 1.1.2. If R = R[x, y], I = (x2y) and J = (xy3), then an example of an element

in B is 2x + 3x5y9u2v3 + x10y15u4v , since 2 ∈ I0 ∩ J0 = R[x, y], x5y9u2v3 ∈ I2 ∩ J3u2v3 =

(x4y2)∩(x3y9)u2v3 = (x4y9)u2v3, and x10y15u4v ∈ I4∩Ju4v = (x8y4)∩(xy3)u4v = (x8y4)u4v.

We remark that the intersection algebra has connections to the double Rees algebra

R[Iu, Jv], although in practice they can be very different. This relationship is significant

due to the importance of the Rees algebra, but the two objects behave differently. The source

for the different behavior lies in the obvious fact that the intersection Ir ∩ Js is harder to

predict than IrJs as r and s vary. These differences in behavior are of great interest and

should be further explored.

1.2 Semigroups

This thesis relies heavily on semigroup theory. A number of definitions and results are

given below that we will reference later on. The following results come from [4] and [5].

Definition 1.2.1. A semigroup is a set together with a closed associative binary operation.

A semigroup generalizes a monoid in that it need not contain an identity element. We call

a semigroup an affine semigroup if it is finitely generated and isomorphic to a subsemigroup

of Zd for some d. An affine semigroup is called pointed if it contains the identity, which is

the only invertible element of the semigroup.

We will be dealing with a special class of semigroups called polyhedral cones.
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Definition 1.2.2. A polyhedral cone C in Rd is the intersection of finitely many closed linear

half-spaces in Rd, each of whose bounding hyperplanes contains the origin. A hyperplane H

containing the origin is called a supporting hyperplane if H ∩ C 6= 0 and C is contained in

one of the closed half-spaces determined by H. If H is a supporting hyperplane of C, then

H ∩ C is called a face of C. Every polyhedral cone C is finitely generated, i.e. there exist

c1, . . . , cr ∈ Rd with

C = {λ1c1 + · · ·+ λncn|λ1, . . . , λr ∈ R≥0}.

We call the cone C rational if c1, . . . , cr can be chosen to have rational coordinates, and C

is pointed if C ∩ (−C) = {0}.

A special kind of collection of cones are called fans.

Definition 1.2.3. A fan is a collection Σ of cones {Ci}i∈I , where I is a finite set, the faces

of each Ci ∈ Σ are also in Σ, and the intersection of every pair of two cones in Σ is a common

face of both of them. Note that the empty set is considered a face of any cone.

One major property of these cones that we will use is that they are finitely generated.

Theorem 1.2.4. (Proposition 7.15 in [4]) Any pointed affine semigroup Q has a unique

finite minimal generating set HQ.

Theorem 1.2.5. (Theorem 7.16 in [4]) (Gordan’s Lemma) If C is a rational cone in Rd,

then C ∩ A is an affine semigroup for any subgroup A of Zd.

Definition 1.2.6. Let C be a rational pointed cone in Rd, and let Q = C ∩ Zd. Then the

unique finite minimal generating set HQ is called the Hilbert Basis of the cone C.

The next few definitions and theorems will be used to prove Fields’ result in the next

section of this introduction.

Definition 1.2.7. Let Y ⊂ Nn, and let ≤ be the usual partial order on Nn. Define the set

Minimals≤(Y ) to be the minimal set of elements of Y with respect to the order ≤.
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Theorem 1.2.8. (Theorem 5.1 in [5]) (Dickson’s Lemma) Let N be a nonempty subset of

Nn. The set M = Minimals≤(N) has finitely many elements.

Proof. We use induction on n. For n = 1, the result follows easily from the fact that ≤

is a well order on N. Assume that the statement is true for n − 1. Choose an element

(a1, . . . , an) ∈M . For each 1 ≤ i ≤ n and each 0 ≤ j ≤ ai define

Mij = {(x1, . . . , xn) ∈M |xi = j}

and

Bij = {(x1, . . . , xn−1) ∈ Nn−1|(x1, . . . , xi−1, j, xi, . . . , xn−1) ∈Mij}.

Observe that Minimals≤(M) = M and for this reason Minimals≤(Mij) = Mij and

Minimals≤(Bij) = Bij. By the induction hypothesis, Bij must be finite. Hence, Mij is

finite as well. Since there are finitely many sets Mij, the set
⋃
Mij is again finite and

nonempty. Hence it is enough to show that M ⊆
⋃
Mij. Take (x1, . . . , xn) to be an el-

ement in M . There exists i ∈ {1, . . . , n} such that xi ≤ ai (if this were not the case,

(a1, . . . , an) < (x1, . . . , xn) and this is impossible, since (x1, . . . , xn) is a minimal element of

N). Hence (x1, . . . , xn) ∈Mixi .

Proposition 1.2.9. (Corollary 5.3 in [5]) Let {xi|i ∈ I}, I ⊆ N be a nonempty subset of Nn

such that xj < xi whenever i < j. Then I has finitely many elements.

Proof. Clearly, the set

A = {y|y ≤ x1}

is finite and nonempty. Observe that {xi|i ∈ I} ⊆ A. Thus I is finite, since all elements in

{xi|i ∈ I} are different.

Corollary 1.2.10. (Corollary 5.4 in [5]) Let N be a nonempty subset of Nn and let M =

Minimals≤(N). Then for every x ∈ N there exists m ∈M such that m ≤ x.

Proof. Let x ∈ N . If x ∈M , the proof is trivial. Assume that x ∈ N \M . By the definition

of minimal element, there exists an element x1 ∈ N such that x1 < x. If x1 ∈ M , then we
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are done. Otherwise, there exists x2 ∈ N such that x2 < x1 < x. By Proposition 1.2.9, this

process stops, and it does so when there is an i such that xi ∈ M . Since by transitivity

xi < x, we obtain the desired result.

Theorem 1.2.11. (Introduction to Chapter 7 in [5]) Let A be an m×n matrix with integer

entries. Define

S = {x ∈ Nm|Ax = 0},

and let G(S) be the group generated by S. (Observe that 0 ∈ S, and that if x, y ∈ S, then so

is x+ y. Thus S is a submonoid of Nk.) Then

1. G(S) ∩ Nn = S.

2. S is an affine semigroup.

Proof. If x, y ∈ S, then A(x − y) = Ax − Ay = 0. So if x − y ≥ 0, then x − y ∈ S, so

G(S) ∩ Nm = S.

To show 2, note that by Theorem 1.2.8, the set Minimals≤(S \ {0}) is finite. Let

M = Minimals≤(S \ {0}) = {m1, . . . ,mt}.

Take x to be an element of S \ {0}. If x /∈M , then by Corollary 1.2.10 there exists mi1 ∈ N

such that mi1 < x. Define x1 = x−mi1 , which belongs to G(M) ∩ Nn = S. Once more, we

check whether x1 ∈ M . If not, there must be another element si2 ∈ M such that si2 < x1.

Set x2 = x1 − si2 . By Corollary 1.2.9, this process must stop in a finite number of steps.

In other words, there exists k ∈ N such that xk = sik ∈ M and this leads to x =
∑k

i=1 sij .

Therefore S is an affine semigroup.

1.3 Bruce Fields’ Work

Bruce Fields proved the following result in his thesis [1], which is reproduced below for

the convenience of the reader. First, a necessary lemma.
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Lemma 1.3.1. if Q1 and Q2 are finitely generated subsemigroups of Nn, then so is Q =

Q1 ∩Q2.

Proof. Let αi,1, . . . , αi,ei ∈ Nn generate Qi. Define a new semigroup Q′ ⊂ Nn+e1+e2 as the

set of all (a1, . . . , an, b1,1, . . . , b1,e1 , . . . , b2,e2) satisfying the 2m equations

(a1, . . . , an) = b1,1α1,1 + · · ·+ b1,e1α1,e1

(a1, . . . , an) = b2,1α2,1 + · · ·+ b2,e2α2,e2

Since Q ⊂ Nn is the set of solutions to a finite set of Z-linear equations, then Q is a

finitely generated semigroup by 1.2.11. So in this case, Q′ is finitely generated, and it is clear

that Q = Q1 ∩Q2 is the image of Q′ under the map that projects Nn+e1+e2 onto the first n

coordinates. So Q is finitely generated.

Theorem 1.3.2. Let R be a Noetherian ring, and I and J monomial ideals in A =

R[x1, . . . , xn]. Then I and J have finite intersection algebra.

Proof. Let B be a sub-R-algebra of A generated by monomials in x1, . . . , xn. Then B is

also a sub-k-module of A, and is generated over k by those same monomials, together with

x1, . . . , xn. The set of exponents α ∈ Nn of the monomials xα that generate B as a module

over k form a subsemigroup of Nn. Call that semigroup Q. Then we claim that Q is a finitely

generated semigroup if and only if B is a finitely generated R-algebra.

If Q is finitely generated, say by {α1, . . . , αd}, then for any α ∈ Q, α =
∑
niαi, with

ni ∈ N. But this means that, for r ∈ R, rxα = rx
∑
niαi = rxn1α1 · · ·xndαd , so B is finitely

generated as an R-algebra by the xαi . The converse is similar.

Now consider our ideals, and let B be the intersection algebra of I and J . Consider

B1 = R[Iu, v] ⊂ R[u, v]

B2 = R[u, Jv] ⊂ R[u, v]
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Let I = (xα1 , . . . ,xαm). Then then B1 is generated over R by {v,xα1u, . . . ,xαmu}, and simi-

larly B2 is finitely generated. The intersection of B1 and B2 is B. Let Q be the subsemigroup

of Nn+2 consisting of all exponent vectors (a1, . . . , an, b1, b2) which occur as the exponents of

the monomials xa1
1 · · ·xann ub1vb2 in B. In the same way, define semigroups Q1 and Q2 that

correspond to B1 and B2. Then Q1 and Q2 are finitely generated, since B1 and B2 are, and

by the above lemma, Q = Q1 ∩Q2 is finitely generated as well.

1.4 Semigroup Rings

When R is a polynomial ring, the intersection algebra of two monomial ideals is a

semigroup ring, as we will show in Chapters 3 and 4.

Definition 1.4.1. Let k be a field. The semigroup ring k[Q] of a semigroup Q is the

k-algebra with k-basis {ta|a ∈ Q} and multiplication defined by ta · tb = ta+b.

Definition 1.4.2. For c ∈ Nn, we set xc = xc11 · · ·xcnn . Let f be a monomial in R. The

exponent vector of f = xα is denoted by log(f) = α ∈ Nn. If F is a collection of monomials

in R, log(F ) denotes the set of exponent vectors of the monomials in F .

Definition 1.4.3. Let R = k[x] = k[x1, . . . , xn] be the polynomial ring over a field k in n

variables. Let F = {f1, . . . , fq} be a finite set of distinct monomials in R such that fi 6= 1

for all i. The monomial subring spanned by F is the k-subalgebra

k[F ] = k[f1, . . . , fq] ⊂ R.

Note that when F = {f1, . . . , fq} is a collection of monomials in R, k[F ] is equal to

the semigroup ring k[Q], where Q = Nlog(f1) + · · · + Nlog(fq) is the subsemigroup of Nq

generated by log(F ). It is easy to see that multiplying monomials in the semigroup ring

amounts to adding exponent vectors in the semigroup.
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When R is a polynomial ring over a field k, we can consider B both as an R-algebra and

as a k-algebra, and it is important to keep in mind which structure one is considering when

proving results. While there are important distinctions between the two, finite generation

as an algebra over R is equivalent to finite generation as an algebra over k.

Theorem 1.4.4. Let R be a ring that is finitely generated as an algebra over a field k. Then

B is finitely generated as an algebra over R if and only if it is finitely generated as an algebra

over k.

Proof. Let B be finitely generated over k. Then since k ⊂ R, B is automatically finitely

generated over R. Now let B be finitely generated over R, say by elements b1, . . . , bn ∈ B.

Then for any b ∈ B, b =
∑q

i=1 rib
αi
i with ri ∈ R. But R is finitely generated over k, say by

elements k1, . . . , km, so ri =
∑p

j=1 aijk
βij
j , with aij ∈ k. So b =

∑q
i (
∑p

j aijk
βij
j )bαi

i , and B is

finitely generated as an algebra over k by {b1, . . . , bn, k1, . . . , km}.

Since B is a semigroup ring in certain cases, we can use some facts about semigroup

rings and toric ideals to produce a presentation of B as a quotient of a polynomial ring. The

necessary results are listed below.

Definition 1.4.5. Let S = k[x1, . . . , xm] and A be an abelian group together with a list

of generators a1, . . . , an, and write Q for the subsemigroup of A generated by a1, . . . , an.

Let L denote the kernel of the group homomorphism from Zn to A that sends ei to ai for

i = 1, . . . , n. Then L is a lattice in Nn, and the lattice ideal IL ⊂ S associated to L is the

ideal

IL = 〈xu − xv | u,v ∈ Nm with u− v ∈ L〉.

Theorem 1.4.6. (Theorem 7.3 in [4]) The semigroup ring k[Q] is isomorphic to the quotient

S/IL.

If Q generates A, and A is the cokernel of an integer matrix L = (lij with n rows, IL

can be calculated more easily. The lattice L is generated by the columns of L. Form the



9

ideal IL in S that is generated by

∏
i with lij>0

x
lij
i −

∏
i with lij<0

x
−lij
i ,

where j runs over all column indices of the matrix L.

Lemma 1.4.7. (Lemma 7.6 in [4]) The lattice ideal IL is computed from IL by taking the

saturation with respect to the product of all the variables:

IL = (IL : 〈x1 · · ·xm〉∞),

which by definition is the ideal {y ∈ S | (x1 · · ·xm)py ∈ IL for some p > 0}.

Certain properties of semigroups carry over into semigroup rings, namely normality.

The following background definition and theorem come from Chapter 6 of ([15]).

Given a semigroup C, there is a ‘smallest’ group G containing C, characterized by the

fact that every homomorphism from C to a group factors in a unique way through G. We

write ZC for G, and denote QC = Q⊗Z ZC and RC = R⊗Z ZC

Definition 1.4.8. An affine semigroup C is called normal if it satisfies the following condi-

tion: if mz ∈ C for some z ∈ ZC and m ∈ N, m > 0, then z ∈ C.

All normal semigroups give rise to normal semigroup rings.

Theorem 1.4.9. (Theorem 6.1.4 in [15]) Let C be an affine semigroup, and k be a field.

Then the following are equivalent:

1. C is a normal semigroup;

2. k[C] is normal.

By a theorem of Hochster, normal semigroup rings are all Cohen-Macaulay.

Theorem 1.4.10. (Theorem 6.3.5 in [15])(Hochster) Let C be a normal semigroup, and k

be a field. Then k[C] is a Cohen-Macaulay ring.
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Semigroup rings are also graded rings, and our semigroup ring is a special kind of graded

ring called a *local ring.

Definition 1.4.11. A graded ideal m of a graded ring R is called *maximal if every graded

ideal that properly contains m equals R. The ring R is called *local if it has a unique

*maximal ideal m. We define the *dimension of R as the height of m and denote it by

∗ dimR. If n = ∗ dimR, and x1, . . . , xn are homogeneous elements such that (x1, . . . , xn) is

m-primary, then x1, . . . , xn is called a homogeneous system of parameters.

1.5 The Dimension of B

Recall that BR(I, J) =
⊕

r,s (Ir ∩ Js)urvs.

Theorem 1.5.1. Let R be a Noetherian domain of dimension n with ideals I and J , both

nonzero. Then dimBR(I, J) = n+ 2.

Proof. Let Q be a prime ideal in B and let P = Q ∩ R be its restriction to R. Then the

dimension inequality [10] says that

htQ+ tr.degκ(P )κ(Q) ≤ htP + tr.degRB,

where κ(P ) and κ(Q) denote the field of fractions of R/P and R/Q, respectively. Then since

B is a domain, both u
1
, v

1
6= 0 in the fraction field of B, so {u, v} form a transcendence basis

for B over R. Thus tr.degRB = 2, and since dimR = n, htP ≤ n. So htQ ≤ n+ 2, and thus

dimB ≤ n+ 2.

Define the following ideal

B+ = {b ∈ B ⊂ R[u, v]|b has no constant term},

and consider the localization BB+ . Note that u, v ∈ BB+ , since u = Iu
I

and I /∈ B+, and

(u, v)BB+ = B+BB+ = m, the maximal ideal in BB+ . Since B is a domain, BB+ is too. We
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claim dimBB+ ≥ 2.

Assume that dimBB+ = 1. So since 0 6= u ∈ (u, v)BB+ , ht(u) = 1. So htP = 1 for every

P ∈ Min(BB+/(u)BB+), and in fact every prime ideal in BB+ has height 1, since BB+ is local

of dimension 1.

So we have a chain

0 ⊂ (u) ⊂ P = m,

and therefore
√

(u) = m. So there exists an n ∈ N such that mn ⊂ (u). But v ∈ m, so

vn ∈ (u)BB+ , which implies that there exists a b ∈ B,z /∈ B+ such that vn = u b
z
. But then

zvn = ub, and u does not divide vn, so u must divide z. But this is false, because z has a

nonzero constant term z′ ∈ R, and u can not divide z′.

So dimBB+ ≥ n+ 2 and therefore ht B+ ≥ n+ 2.

Since B/B+
∼= R, any chain of primes in R can be extended by 2 primes to a chain in

B, and dimB ≥ n+ 2.

1.6 Outline of the Dissertation

In the next chapter, we prove the first major result of this dissertation.

Theorem 1.6.1. If R is a UFD and I and J are principal ideals, then B is finitely generated

as an algebra over R.

The proof of this theorem comes from the main idea underlying the work presented

here: that many algebras can be associated with fans of cones, and the generators of these

algebras can be produced from the Hilbert bases of the underlying cones. We also give a

description of these Hilbert bases.

Next we outline a generalization of these algebras coming from cones, which we call

fan algebras. We prove that they are finitely generated, and provide a description of their

generating sets.
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In Chapter 3, we extend the idea of the main theorem of Chapter 2 to the special case

of polynomial rings.

Theorem 1.6.2. If R is a polynomial ring in n variables over k, and I and J are ideals

generated by monomials (i.e. monic products of variables) in R, then B is a semigroup ring.

Since B is a semigroup ring, we can provide a list of generators of B as a k-algebra.

Theorem 1.6.3. Let I = (xa1
1 · · ·xann ) and J = (xb11 · · ·xbnn ) be principal ideals in R =

k[x1, . . . , xn], and let Σa,b be the fan associated to a = (a1, . . . , an) and b = (b1, . . . , bn). Let

Qi = Ci ∩ Z2 for every Ci ∈ Σa,b

and HQi
be its Hilbert basis of cardinality ni for all i = 0, . . . , n. Further, let Q be the

subsemigroup in N2 generated by

{(a1rij, . . . , airij, bi+1sij, . . . , bnsij, rij, sij)|i = 0, . . . , n, j = 1, . . . , ni} ∪ log(x1, . . . , xn),

where (rij, sij) ∈ HQi
for every i = 0, . . . n, j = 1, . . . , ni. Then B = k[Q].

We also use the algorithm presented in the proof to give a function in Macaulay2 that

computes a generating set for the intersection algebra of two principal monomial ideals.

The fact that B is a semigroup ring in this case allows us to use properties of toric ideals

to obtain a representation of B as a quotient of a polynomial ring.

Lastly, we examine the specific case of two principal monomial ideals in k[x]. First, we

describe how to obtain a Hilbert basis for a pointed rational cone in the plane, which is then

applied to a specific case of two monomial ideals.

Next, we compute a regular sequence for B:

Theorem 1.6.4. A regular sequence on B((xa), (xb)) is {x, xa+bubva, xau+ xbv}.

To conclude this chapter, we approach the intersection algebra of (xa) and (xb) via a

system of linear diophantine equations. This allows us to construct a generating set for the

canonical ideal of their intersection algebra.
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In the final chapter, we extend our algorithm to produce a generating set for the inter-

section algebra of two non-principal monomial algebras in a polynomial ring.

Corollary 1.6.5. Let R = k[x], x = (x1, . . . , xn), and let

I = (xa1 ,xa2 , . . . ,xam), J = (xb1 ,xb2 , . . . ,xbp),

where ai = (ai1, . . . , ain), bi = (bi1, . . . , bin) ∈ Nn for all i. Then there exists a finite fan of

cones Ci that fill all of Nm+p+2 such that

B = B(I, J) = k[Q], where Q =
⋃
i

(Ci ∩ Nm+p+2),

and B is finitely generated by the set

{xqj |qj ∈ HQi
for all i, j}.

The difficulty in this case lies in the complexity of the associated fan: it is no longer

simply a collection cones in the plane. We provide a method to compute the extremal rays

of a cone given its defining inequalities.
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CHAPTER 2

THE INTERSECTION ALGEBRA OF TWO PRINCIPAL IDEALS IN A

UNIQUE FACTORIZATION DOMAIN

2.1 The Intersection Algebra of Two Principal Ideals in a UFD

First, we state the main result of this chapter.

Theorem 2.1.1. If R is a UFD and I and J are principal ideals, then B is finitely generated

as an algebra over R.

The following gives more detail on the structure of the Hilbert bases that will form the

foundation of the proof, and shows that they are finite and unique in the case of a semigroup

coming from a pointed rational cone.

Theorem 2.1.2. (Theorem 16.4 in [6]) Every rational cone C ⊂ Rn generated by integral

vectors {a1, a2, . . . , at}, ai ∈ Nn admits a Hilbert basis, and that basis is contained within

the finite set B = {b1, . . . ,bk} of all integral vectors contained in the polytope

Z := {x ∈ Rn|x =
t∑
i=1

λiai, 0 ≤ λi ≤ 1, i = 1, . . . , t}.

If C is pointed, the Hilbert basis is unique.

Proof. Let p be any integral point in C. Then, we have

p =
t∑
i=1

λiai, λi ≥ 0, i = 1, . . . , t,

for some λi. This can be rewritten as

p =
t∑
i=1

bλicai +
t∑
i=1

(λi − bλic)ai, whence
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p−
t∑
i=1

bλicai =
t∑
i=1

(λi − bλic)ai.

All terms on the left hand side are integers, so it is an integer vector. The right hand side

lies in Z, since 0 ≤ λi−bλic < 1. So the right hand side is an integer vector in Z, and must

be one of the b1, . . . ,bk. Since a1, . . . , at are contained in {b1, . . . ,bk}, p decomposes as

a nonnegative integer combination of b1, . . . ,bk, so any minimal generating set is amongst

{b1, . . . ,bk}.

Now suppose C is pointed. Define

H := {x ∈ B \ {0}|x is not the sum of two other vectors in B}.

We claim H is the Hilbert basis for C.

Every vector in H must clearly be inside any Hilbert basis for C, since otherwise there

would be no way to generate that vector from those remaining, so H ⊂ H(C). To see the

converse, note that H(C) ⊂ B, so it is enough to show that every vector in B \ H can be

represented as a nonnegative integer combination of vectors in H. Suppose not: that there

exists b ∈ B \ H that violates this property, and choose such a vector b minimizing cᵀb,

where c is a vector such that cᵀx > 0 for all nonzero x ∈ C, and cᵀ denotes the usual vector

transpose. It is known that the existence of c is guaranteed because C is pointed. Because

b /∈ H, b = bi+bj for some nonzero vectors bi,bj ∈ B. So cᵀb = cᵀbi+cᵀbj, and all terms

are positive. Thus cᵀbi < cᵀb and cᵀbj < cᵀb. But we assumed that cᵀb is minimal under

the condition that b /∈ H, so both bi,bj ∈ H, which is a contradiction. So H = H(C).

So the Hilbert basis of a pointed rational cone is the collection of vectors inside B that

are not sums of other vectors in B. In N2, given a cone C defined by two integer vectors

c1, c2, Z is the parallelogram defined by the convex hull of 0, c1, c2 and c1 + c2, so B are

all the integral vectors inside Z. So it suffices to collect those integer vectors inside the
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parallelogram that cannot be written as sums of any of the others.

The following example will be useful in Chapter 3, where we will use it to compute some

facts about a particular intersection algebra.

Example 2.1.3. The Hilbert basis of the cone in N2 defined by the vectors (1, a) and (1, 0)

is {(1, 0), (1, 1), (1, 2), . . . , (1, a−1), (1, a)}, and the Hilbert basis of the cone defined by (0, 1)

and (1, a) is {(0, 1), (1, a)}.

Proof. Call the first cone in the example C0 = {λ1(1, a) +λ2(1, 0)|λ1, λ2 ≥ 0}, and using the

terminology above, define the parallelogram Z0 to be the convex hull of (0, 0), (1, a), (2, a),

and (1, 0). The only integer vectors inside Z0 are the ones defining the boundary along with

(1, 1), (1, 2), . . . , (1, a − 1), so H(C0) must be among these vectors. Again, (0, 0) and (2, a)

can be discarded, and obviously none of the rest can be sums of the others, since the first

coordinate of all of them is 1. So H(C0) = {(1, 0), (1, 1), . . . , (1, a− 1), (1, a)}.

The second cone, call it C1, is the narrow wedge of the first quadrant defined by C1 =

{λ1(0, 1) + λ2(1, a)|λ1, λ2 ≥ 0}, and the parallelogram Z1 that contains the Hilbert basis is

the convex hull of the points (0, 0), (0, 1), (1, a + 1), and (1, a). These are clearly the only

integer vectors inside that parallelogram, and since 0 is never inside a Hilbert basis, and

(1, a+ 1) is a sum of the remaining two vectors, H(C1) = {(0, 1), (1, a)}.

Remark 2.1.4. This theorem allows one to produce a rough upper bound for the Hilbert

basis of a cone, namely the number of integral vectors inside the parallelogram Z.

Now we will provide a list of generators for B. These last definitions will provide the

structure of the fans and cones that we will use to build our generating set.

For any two strings of numbers

a = {a1, . . . , an},b = {b1, . . . , bn} with ai, bi ∈ N,

we can associate to them a fan of pointed, rational cones in N2.
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Definition 2.1.5. We will call two such strings of numbers fan ordered if

ai
bi
≥ ai+1

bi+1

for all i = 1, . . . , n.

By convention, if bi = 0, we will say that ai
bi

= ∞. Assume a and b are fan ordered.

Additionally, let an+1 = b0 = 0 and a0 = bn+1 = 1. Then for all i = 0, . . . , n, let

Ci = {λ1(bi, ai) + λ2(bi+1, ai+1)|λi ∈ R≥0}.

Let Σa,b be the fan formed by these cones and their faces, and call it the fan of a and b in

N2. Hence

Σa,b = {Ci|i = 0, . . . , n}.

Then, since each Ci is a pointed rational cone, Qi = Ci ∩ Z2 has a Hilbert Basis, say

HQi
= {(ri1, si1), . . . , (rini

, sini
)}.

Note that any Σa,b partitions all of the first quadrant of R2 into cones, so the collection

{Qi|i = 0, . . . , n} partitions all of N2 as well, so for any (r, s) ∈ N2, (r, s) ∈ Qi for some

i = 0, . . . , n.

In this chapter, we are studying the intersection algebra when I and J are principal,

so the order of the exponents in their exponent vectors does not matter. In general, for any

two strings of numbers a and b, there is essentially a unique way to rearrange the ratios

in a non-increasing fashion. So a unique fan can be associated to any two vectors. For the

purposes of this section, we will assume without loss of generality that the exponent vectors

are fan ordered.

Here is the major result of this section, proving both the finite generation of B(I, J)

and providing a list of algebra generators.
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Theorem 2.1.6. Let R be a UFD with principal ideals I = (pa1
1 · · · pann ) and J = (pb11 · · · pbnn ),

where pi, i = 1, . . . , n are irreducible elements, and let Σa,b be the fan associated to a =

(a1, . . . , an) and b = (b1, . . . , bn). Then B is generated over R by the set

{pa1rij
1 · · · pairiji p

bi+1sij
i+1 · · · pbnsijn urijvsij |i = 0, . . . , n, j = 1, . . . , ni},

where (rij, sij) run over the Hilbert basis for each Qi = Ci ∩ Z2 for every Ci ∈ Σa,b.

Proof. Since B has a natural N2 grading, it is enough to consider only homogeneous mono-

mials b ∈ B with deg(b) = (r, s). Then (r, s) ∈ Qi = Ci ∩ Z2 for some Ci ∈ Σa,b. In other

words, r, s ∈ N2 and

ai
bi
≥ s

r
≥ ai+1

bi+1

.

So air ≥ bis, and by the ordering on the ai and the bi, ajr ≥ bjs for all j < i. Also,

ai+1r ≤ bi+1s, and again by the ordering, ajr ≤ bjs for all j > i. So

b ∈ Ir ∩ Jsurvs = (pa1
1 · · · pann )r ∩ (pb11 · · · pbnn )survs

= (pa1r
1 · · · p

air
i · p

bi+1s
i+1 · · · pbnsn )urvs.

So b = f · pa1r
1 · · · p

air
i · p

bi+1s
i+1 · pbnsn urvs for some monomial f ∈ R.

Since (r, s) ∈ Qi, the pair has a decomposition into a sum of Hilbert basis elements.

So we have (r, s) =
∑ni

j=1mj(rij, sij) with mj ∈ N, and r =
∑ni

j=1mjrij, s =
∑ni

j mjsij.

Therefore

b =f(pa1r
1 · · · p

air
i p

bi+1s
i+1 · · · pbnsn urvs)

=f

ni∏
j=1

p
mj(a1rij)
1 · · · pmj(airij)

i p
mj(bi+1sij)
i+1 · · · pmj(bnsij)

n umj(rij)vmj(sij)

=f

ni∏
j=1

(p
a1rij
1 · · · pairiji p

bi+1sij
i+1 · · · pbnsijn urijvsij)mj .
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So b is generated over R by the given finite set as claimed.

Remark 2.1.7. This theorem extends and refines the main result in [7]

Theorem 2.1.8. This generating set is minimal, in that no generator is a product of the

others.

Proof. First an easier case: Say I = (pa) and J = (pb), where p is an irreducible in R, and

say that one generator pmax(ar,bs)urvs is a product of the others, in other words, using the

same notation as in the above proof,

pmax(ar,bs)urvs =
∏
i

(
pmax(ar′i,bs

′
i)ur

′
ivs
′
i

)ci
(2.1)

where (r′i, s
′
i) are elements of HQ0 ∪HQ1 and ci ∈ N.

We collect all the (r′i, s
′
i) from Q0 into one pair (r0, s0), and those from Q1 into another,

(r1, s1). However, since both Q0 and Q1 contain any points on the face separating them, we

must make this partition well defined. Define the two sets

Λ0 = {i|(r′i, s′i) ∈ HQ0} and Λ1 = {i|(r′i, s′i) ∈ HQ1 \ HQ0},

and define

(r0, s0) =
∑
i∈Λ0

ci(r
′
i, s
′
i) and (r1, s1) =

∑
i∈Λ1

ci(r
′
i, s
′
i).

In other words, (r0, s0) is the sum of all Hilbert basis elements present in the decomposition

of (r, s) (including coefficients) that come from the cone Q0, and (r1, s1) is the sum of all

Hilbert basis elements in the decomposition of (r, s) (including coefficients) that come from

Q1, not including the face between Q1 and Q0. Note that if the decomposition of (r, s)

doesn’t contain an element from the cone Qk, set (rk, sk) = (0, 0). Then by 2.1,

(r, s) = (r0, s0) + (r1, s1) (2.2)
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and

max(ar, bs) = max(ar0, bs0) + max(ar1, bs1). (2.3)

Since (r0, s0) ∈ Q0, max(ar0, bs0) = bs0. Similarly, max(ar1, bs1) = ar1.

Assume (r, s) ∈ Q0. Then max(ar, bs) = bs, and by 2.3 and 2.2,

bs = bs0 + ar1 = bs0 + bs1.

Therefore, ar1 = bs1, so a/b = s1/r1, i.e. (r1, s1) lies on the face between Q0 and Q1, which

contradicts the definition of (r1, s1).

So (r, s) ∈ Q1 and max(ar, bs) = ar. By 2.3 and 2.2,

ar = bs0 + ar1 = ar0 + ar1.

So bs0 = ar0, and thus (r0, s0) lies on the face between Q0 and Q1. But this means

(r0, s0) ∈ Q1, and also (r1, s1) and (r, s) ∈ Q1. But (r, s) is a Hilbert basis element of

Q1, and (r, s) = (r0, s0) + (r1, s1), which is a contradiction.

The proof of the general case is similar. Let p1, . . . , pn be irreducibles in R, and I =

(pa1
1 . . . pann ), J = (pb11 . . . pbnn ). Say that one generator is a product of the others, i.e.

m∏
i=1

(p
max(a1r′i,b1s

′
i)

1 · · · pmax(anr′i,bns
′
i)

n )ci = p
max(a1r,b1s)
1 · · · pmax(anr,bns)

n , (2.4)

where (r′i, s
′
i), i = 1, . . . ,m and (r, s) are Hilbert basis elements of one of the cones, and

ci ∈ N.

We claim we can assume that bi 6= 0 for all i = 1, . . . , n. To see this, note that if there

exists an h such that bh = 0, then b1, . . . , bh−1 = 0 by the fan-ordering. Also, if b1 = 0, then

a1 6= 0 (otherwise, p1 would simply not be in the decompositions of the generators of I and
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J). So

a1r =
m∑
i=1

cia1r
′
i implies r =

m∑
i=1

cir
′
i.

So by cancelling in 2.4,

m∏
i=2

(p
max(a2r′i,b1s

′
i)

2 · · · pmax(anr′i,bns
′
i)

n )ci = p
max(a2r,b2s)
2 · · · pmax(anr,bns)

n .

If b2 = 0, we continue in the same way with cancelling the p2 terms in 2.4, until the

first nonzero b, say bh. Then we have 2.4 with only terms ph, . . . , pn, and bh, . . . , bn are all

nonzero.

Now assume all bi 6= 0.

We again partition all the (r′i, s
′
i), and sum them into n + 1 pairs (ri, si), i = 0, . . . , n.

To make this partition well defined, define the n+ 1 sets

Λ0 = {i|(r′i, s′i) ∈ HQ0} and Λk = {i|(r′i, s′i) ∈ HQk
\ HQk−1

} for all k = 1, . . . , n}.

Then define

(rk, sk) =
∑
i∈Λk

ci(r
′
i, s
′
i).

By convention, if (bi, ai) = k(bi+1, ai+1) for some k ∈ Q+ and some i from 0 to n, we

say that (ri, si) = (0, 0).

Then by 2.4,

(r, s) =
n∑
i=0

(ri, si) (2.5)

and

max(ar, bs) =
n∑
i=0

max(ari, bsi). (2.6)

Assume that (r, s) ∈ Qj, so by the cone structure

p
max(a1r,b1s)
1 · · · pmax(anr,bns)

n = pa1r
1 · · · p

ajr
j p

bj+1s
j+1 · · · pbnsn .
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Therefore

a1r =
n∑
i=0

max(a1ri, b1si)

... =
...

ajr =
n∑
i=0

max(ajri, bjsi)

bj+1s =
n∑
i=0

max(aj+1ri, bj+1si)

... =
...

bns =
n∑
i=0

max(anri, bnsi).

Also, since every nonzero (rk, sk) is in Qk \Qk−1, for all k = 0, . . . n,

airk ≥ bisk for all i < k

akrk > bksk

airk ≤ bisk for all i > k.

Therefore, the above sums become

a1r = b1

∑0
i=0 si + a1

∑n
i=1 ri

a2r = b2

∑1
i=0 si + a2

∑n
i=2 ri

... =
...

...

ajr = bj
∑j−1

i=0 si + aj
∑n

i=j ri

bj+1s = bj+1

∑j
i=0 si + aj+1

∑n
i=j+1 ri

... =
...

...

bns = bn
∑n−1

i=0 si + an
∑n

i=n ri.
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By (2.5), we can again clear terms on both sides to obtain

a1

∑0
i=0 ri = b1

∑0
i=0 si

a2

∑1
i=0 ri = b2

∑1
i=0 si

... =
...

aj
∑j−1

i=0 ri = bj
∑j−1

i=0 si

bj+1

∑n
i=j+1 si = aj+1

∑n
i=j+1 ri

... =
...

bn
∑n

i=n si = an
∑n

i=n ri.

By the last equation in the above collection, bnsn = anrn. So (rn, sn) lies on the line

with slope an/bn. But this is the face in between Qn and Qn−1, contradicting the definition

of (rn, sn). So there are no generators coming from Qn, so (rn, sn) = (0, 0).

From the n−1th equation in the collection, bn−1sn−1 +bn−1sn = an−1rn−1 +an−1rn. But

since (rn, sn) = (0, 0), an−1/bn−1 = sn−1/rn−1. So (rn−1, sn−1) lies on the face in betweenQn−1

and Qn−2, contracting the definition of (rn−1, sn−1). So again, (rn−1, sn−1) = 0. Continuing

in this way, we see that (rk, sk) = (0, 0) for all j + 1 ≤ k ≤ n.

By the first equation in the list, a1r0 = b1s0, so (r0, s0) is on the line between Q0 and

Q1.

The second equation says a2r0 + a2r1 = b2s0 + b2s1. But since (r0, s0) ∈ Q0 and

(r1, s1) ∈ Q1, a2r0 ≤ b2s0 and a2r1 ≤ b2s1. Therefore a2r0 = b2s0 and a2r1 = b2s1.

This together with the fact that a1r0 = b1s0 gives

a2

b2

=
s1

r1

=
s0

r0

=
a1

b1

.

Therefore, by convention, (r1, s1) = (0, 0).

In a similar way, the third equation a3(r0 + r2) = b3(s0 + s2), together with a3r0 ≤ b3s0

and a3r2 ≤ b3s2 implies that a3

b3
= a2

b2
, and so by convention (r2, s2) = (0, 0). Continuing in

this fashion shows that (rk, sk) = (0, 0) for all 1 ≤ k ≤ j.
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Therefore, (r, s) = (r0, s0), contradicting the choice of (r, s) as a Hilbert basis element.

So (r, s) is not a product of other Hilbert basis elements, and its corresponding algebra

generator is not a product of other generators.

2.1.1 Relationship to Work of Samuel and Nagata

Remark 2.1.9. For any two ideals I and J in R with J ⊂
√
I, where I is not nilpotent and

∩kIk = (0), define vI(J,m) to be the largest integer n such that Jm ⊆ In and wJ(I, n) to be

the smallest m such that Jm ⊆ In. The two sequences {vI(J,m)/m}m and {wJ(I, n), n}n

have limits lI(J) and LJ(I), respectively. See [8–10] for related work.

Given two principal ideals I and J in a UFD R whose radicals are equal (i.e. the factor-

izations of their generators use the same irreducible elements), our procedure to determine

generators also shows that the vectors (b1, a1) and (bn, an) are related to the pairs of points

(r, s) where Ir ⊆ Js (respectively Js ⊆ Ir): notice that C0 is the cone between the y-axis and

the line through the origin with slope a0/b0, and for all (r, s) ∈ C0 ∩N2, Ir ⊆ Js. Therefore

lJ(I) = a0/b0. Similarly, Cn, the cone between the x-axis and the line through the origin

with slope an/bn, contains all (r, s) ∈ N2 where Js ⊆ Ir, so lJ(I) = an/bn. Then, since

lI(J)LJ(I) = 1, this gives that LJ(I) = a1/b1 and LI(J) = bn/an as well. This agrees with

the observations of Samuel and Nagata as mentioned in [3].

2.2 Converting from Fans to Algebras

We have shown that every intersection algebra of two principal ideals in a UFD corre-

sponds to a fan. In fact, the converse is true, too.

Theorem 2.2.1. Every fan of pointed rational cones that fill the first quadrant of N2 corre-

sponds to an intersection algebra.

Proof. Let F be a fan in N2 with faces given by the vectors C0 = 〈1, 0〉, Cn+1 = 〈0, 1〉 and

Ci = 〈ai, bi〉 where ai, bi ∈ N and ai
bi
≥ ai+1

bi+1
for all i. Let I = (xa1

1 · · ·xann ) and J = (xb11 · · ·xbnn )
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be ideals in k[x1, . . . , xn]. It is clear by the construction of the intersection algebra that

B =
⊕

r,s I
r ∩ Jsurvs has F as its corresponding fan.

Definition 2.2.2. Let F be a fan in N2 with faces given by the vectors C0 = 〈1, 0〉, Cn+1 =

〈0, 1〉 and Ci = 〈ai, bi〉 where ai, bi ∈ N and ai
bi
> ai+1

bi+1
and (ai, bi) = 1 for all i. Let I and J

be constructed as in the above proof. Then B is called the minimal intersection algebra for

F , denoted B(F ).

We can consider B as an algebra over any ring which contains the ideals I and J . When

the ring used is unclear, we denote that B is an R-algebra by BR.

2.3 Fan Algebras

This process of first obtaining semigroup generators and then extending them in a

natural way generalizes nicely. Before we formally define this generalization, we need to

define a special kind of function.

Definition 2.3.1. Given a fan of cones Σa,b, a function f : N2 → N is called fan-linear if it

is nonnegative and linear on each subgroup Qi = Ci∩Z2 for each Ci ∈ Σa,b, and subadditive

on all of N2, i.e.

f(r, s) + f(r′, s′) ≥ f(r + r′, s+ s′) for all (r, s), (r′, s′) ∈ N2.

In other words, f(r, s) is a piecewise linear function where

f(r, s) = gi(r, s) when (r, s) ∈ Ci ∩N2 for each i = 0, . . . n, and each gi is linear on Ci ∩N2.

Note that each piece of f agrees on the faces of the cones, that is gi = gj for every (r, s) ∈

Ci ∩ Cj ∩ N2.
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Example 2.3.2. Let a = {1} = b, so Σa,b is the fan defined by

C0 = {λ1(0, 1) + λ2(1, 1)|λi ∈ R≥0}

C1 = {λ1(1, 1) + λ2(1, 0)|λi ∈ R≥0},

and set Qi = Ci ∩ Z2. Also let

f =

 g0(r, s) = r + 2s if (r, s) ∈ Q0

g1(r, s) = 2r + s if (r, s) ∈ Q1

.

Then f is a fan-linear function. It is clearly nonnegative and linear on both Q0 and Q1.

The function is also subadditive on all of N2: Let (r, s) ∈ Q0 and (r′, s′) ∈ Q1, and say that

(r + r′, s+ s′) ∈ Q0. Then

f(r, s) + f(r′, s′) = g0(r, s) + g1(r′, s′) = r + 2s+ 2r′ + s

f(r + r′, s+ s′) = g0(r + r′, s+ s′) = r + r′ + 2(s+ s′).

Comparing the two, we see that

f(r, s) + f(r′, s′) ≥ f(r + r′, s+ s′) whenever r + 2s+ 2r′ + s ≥ r + r′ + 2(s+ s′),

or equivalently when r′ ≥ s′. But that is true, since (r′, s′) ∈ Q1. The proof for (r+r′, s+s′) ∈

Q1 is similar. The two pieces of f also agree on the boundary between Q0 and Q1, since the

intersection of Q0 and Q1 is the ray in N2 where r = s, and

g0(r, r) = 3r = g1(r, r).

So f is a fan-linear function.

If, instead of intersecting ideals together, we apply fan-linear functions to them, the

resulting algebras are still finitely generated.
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Theorem 2.3.3. Let I1 . . . , In be ideals in a domain R and Σa,b be a fan of cones in N2.

Let f1, . . . , fn be fan-linear functions on Σa,b. Then the algebra

B =
⊕
r,s

I
f1(r,s)
1 · · · Ifn(r,s)

n urvs

is finitely generated.

Proof. First notice that the subadditivity of the functions fi guarantees that B is a subalgebra

of R[u, v] with the natural grading. Since B has a natural N2-grading, it is enough to consider

only homogeneous monomials b ∈ B with deg(b) = (r, s). Then (r, s) ∈ Qi = Ci ∩ Z2 for

some Ci ∈ Σa,b. Since Qi is a pointed rational cone, it has a Hilbert basis

HQi
= {(ri1, si1), . . . , (rini

, sini
)}.

So we can write

(r, s) =

ni∑
j=1

mj(rij, sij).

Then, since each fk is nonnegative and linear on Qi, we have

fk(r, s) =

ni∑
j=1

mjfk(rij, sij)

for each k = 1, . . . , n. Since R is Noetherian, for each i, there exists a finite set Λi,j,k ⊂ R

such that

I
fk(rij ,sij)
k = (x|x ∈ Λi,j,k).
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So

b ∈ Br,s = I
f1(r,s)
1 · · · Ifn(r,s)

n urvs

= I
∑ni

j=1 mjf1(rij ,sij)

1 · · · I
∑ni

j=1 mjfn(rij ,sij)
n u

∑ni
j=1 mjrijv

∑ni
j=1 mjsij

= I
m1f1(ri1,si1)
1 · · · Imnif1(rini

,sini
)

1 · · · Im1fn(ri1,si1)
n · · · Imnifn(rini

,sini
)

n

um1ri1 · · ·umnirinivm1si1 · · · vmnisini

=
(
I
f1(ri1,si1)
1 · · · Ifn(ri1,si1)

n uri1vsi1
)m1

· · ·
(
I
f1(rini

,sini
)

1 · · · Ifn(rini
,sini

)
n urinivsini

)mni

.

So B is generated as an algebra over R by the set

{x1 · · ·xnurijvsij |(rij, sij) ∈ HQi
, xk ∈ Λi,j,k}.

This result justifies the following definition.

Definition 2.3.4. Given ideals I1, . . . , In in a domain R, Σa,b a fan of cones in N2, and

f1, . . . , fn are fan-linear functions, we define

B(Σa,b, f) =
⊕
r,s

I
f1(r,s)
1 · · · Ifn(r,s)

n urvs

to be the fan algebra of f on Σa,b, where f = (f1, . . . , fn).

Remark 2.3.5. The intersection algebra of two principal ideals I = (pa1
1 · · · pann ) and J =

(pb11 · · · pbnn ) in a UFD is a special case of a fan algebra. Let Ii = (pi) and fi = max(rai, sbi)

for each i = 1, . . . , n, and define the fan Σa,b to be the fan associated to a = (a1, . . . , an)

and b = (b1, . . . , bn). Then

B(I, J) =
⊕
r,s

(p1)max(ra1,sb1) · · · (pn)max(ran,sbn)urvs.

This is a fan algebra since the max function is fan-linear: it is subadditive on all of N2, and
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linear and nonnegative on each cone, since the faces of each cone in Σa,b are defined by lines

through the origin with slopes ai/bi for each i = 0, . . . , n. So, as in the proof of Theorem

2.1.6, for any pair (r, s) ∈ Qi = Ci ∩ Z2 for every Ci ∈ Σa,b, we have that

ai
bi
≥ s

r
≥ ai+1

bi+1

.

So air ≥ bis, and by the ordering on the ai and the bi, ajr ≥ bjs for all j < i. Also,

ai+1r ≤ bi+1s, and again by the ordering, ajr ≤ bjs for all j > i. Since fk = max(rak, sbk)

for all k = 1, . . . , n, we have that

fk = rak for all k ≤ i and fk = sbk for all k > i.

So each fk is linear on each cone, and the above theorem applies.

2.3.1 Higher-Dimensional Fan Algebras

Fan algebras arise naturally in higher dimensions from two generalizations of the UFD

case: first from intersecting more than two ideals, and second from intersecting non-principal

ideals. What is lost in higher dimensions is the ease of calculation of the extremal rays of the

cones of the fan, and also the natural ordering of the cones C0, . . . , Cn that we had previously.

First, we define a more general fan algebra, without requiring that the fan be fan-ordered

(since no analogue exists in higher dimensions). However, as before, we still require that the

fan of cones must fill all of the positive orthant of the space it inhabits.

Definition 2.3.6. Let Σ be a fan of cones in Nm, let R be a domain with ideals I1, . . . , In,

and f1(r), . . . , fn(r) be fan-linear functions on Σ from Nm → N. Additionally, let u denote
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indeterminates u1, . . . , um. Then we define

B(Σ, f) =
⊕
r≥0

I
f1(r)
1 · · · Ifn(r)

n ur

to be the fan algebra of f on Σ, where f = (f1, . . . , fn).

Theorem 2.3.7. The fan algebra B(Σ, f) is finitely generated.

Proof. The subadditivity of the functions fi guarantees that B is a subalgebra ofR[u1, . . . , um]

with the natural grading. Since B has a natural Nm-grading, it is enough to consider only

homogeneous monomials b ∈ B with deg(b) = (r1, . . . , rm) = r. Then r ∈ Qi = Ci ∩ Zm for

some Ci ∈ Σ. Since Qi is a pointed rational cone, it has a Hilbert basis

HQi
= {ri1, . . . , rini

} with rij ∈ Zm.

So we can write

r =

ni∑
j=1

mjrij.

Then, since each fk is nonnegative and linear on Qi, we have

fk(r) =

ni∑
j=1

mjfk(rij) for each k = 1, . . . , n.

Since R is Noetherian, for each i, there exists a finite set Λi,j,k ⊂ R such that

I
fk(rij)
k = (x|x ∈ Λi,j,k).
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So

b ∈ Br = I
f1(r)
1 · · · Ifn(r)

n ur

= I
∑ni

j=1mjf1(r)

1 · · · I
∑ni

j=1 mjfn(r)
n u

∑ni
j=1mjrij

= I
m1f1(ri1)
1 · · · Imnif1(rini

)

1 · · · Im1fn(ri1)
n · · · Imnifn(rini

)
n um1ri1 · · ·umnirini

=
(
I
f1(ri1)
1 · · · Ifn(ri1)

n uri1
)m1

· · ·
(
I
f1(rini

)

1 · · · Ifn(rini
)

n urini

)mni

.

So B is generated as an algebra over R by the set

{x1 · · ·xnurij |rij ∈ HQi
, xk ∈ Λi,j,k}.

2.3.2 Fan Algebras with Functional Exponents

Another generalization of the fan algebra comes from allowing the exponents of the

dummy variables to be fan-linear functions.

Definition 2.3.8. Let Σ be a fan of cones that fills the positive orthant of Np, let R be a

domain with ideals I1, . . . , In, with fan-linear functions

f1(r1, . . . , rp), . . . , fn(r1, . . . , rp)

and linear functions

g1(r1, . . . , rp), . . . , gm(r1, . . . , rp)

on Σ from Rp → R. Then we define

B(Σ, f, g) =
⊕

r1,...,rp≥0

I
f1(r1,...,rp)
1 · · · Ifn(r1,...,rp)

n u
g1(r1,...,rp)
1 · · ·ugm(r1,...,rp)

m
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to be the fan algebra of f and g on Σ, where f = (f1, . . . , fn), g = (g1, . . . , gm).

Theorem 2.3.9. The algebra B = B(Σ, f, g) is finitely generated.

Proof. The subadditivity of the functions fi, gi guarantees that B is a subalgebra of

R[u1, . . . , um] with the natural grading. Since B has a natural Np-grading, it is enough

to consider only homogeneous monomials b ∈ B with deg(b) = (r1, . . . , rp) = r. Then

r ∈ Qi = Ci ∩Zp for some Ci ∈ Σ. Since Qi is a pointed rational cone, it has a Hilbert basis

HQi
= {ri1, . . . , rini

} with rij ∈ Zp.

So we can write

r =

ni∑
j=1

mjrij.

Then, since each fk is nonnegative and linear on Qi, we have

fk(r) =

ni∑
j=1

mjfk(rij) for each k = 1, . . . , n,

and

gk(r) =

ni∑
j=1

mjfk(rij) for each k = 1, . . . ,m.

Since R is Noetherian, for each i, there exists a finite set Λi,j,k ⊂ R such that

I
fk(rij)
k = (x|x ∈ Λi,j,k).

So

b ∈ Br = I
f1(r)
1 · · · Ifn(r)

n u
g1(r)
1 · · ·ugm(r)

m

= I
∑ni

j=1 mjf1(r)

1 · · · I
∑ni

j=1mjfn(r)
n u

∑ni
j=1mjg1(rij)

1 u
∑ni

j=1 mjgm(rij)
m

=
(
I
f1(ri1)
1 · · · Ifn(ri1)

n u
g1(ri1)
1 · · ·ugm(ri1)

m

)m1

· · ·(
I
f1(rini

)

1 · · · Ifn(rini
)

n u
g1(rini

)

1 · · ·ugm(rini
)

m

)mni

.
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So B is generated as an algebra over R by the set

{x1 · · ·xnu
g1(rij)
1 · · ·ugn(rij)

n |rij ∈ HQi
, xk ∈ Λi,j,k}.
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CHAPTER 3

THE POLYNOMIAL RING CASE

3.1 The General Theorem

In this section, we will show that in the special case where R is a polynomial ring in

finitely many variables over a field, then the intersection algebra of two principal monomial

ideals is a semigroup ring whose generators can be algorithmically computed.

Let k be a field and Q a semigroup. Recall that k[Q] is a semigroup ring, namely the

k-algebra with k-basis {ta|a ∈ Q} and multiplication defined by ta · tb = ta+b. Also recall our

notation: when x is a homogeneous element in a semigroup ring, log(x) denotes its exponent

vector, and if X is a collection of homogeneous elements, log(X) refers to the set of exponent

vectors of all the monomials in X.

Theorem 3.1.1. If R is a polynomial ring in n variables over k, and I and J are ideals

generated by monomials (i.e. monic products of variables) in R, then B is a semigroup ring.

Proof. Since I and J are monomial ideals, Ir ∩ Js is as well for all r and s. So each (r, s)

component of B is generated by monomials, therefore B is a subring of k[x1, . . . , xn, u, v]

generated over k by a list of monomials {bi|i ∈ Λ}. Let Q be the semigroup generated by

{log(bi)|i ∈ Λ}. Then B = k[Q], and B is a semigroup ring over k.

Since a polynomial ring R = k[x1, . . . , xn] is a UFD, we will use the result of the pre-

vious chapter to show that intersection algebras of principal ideals in polynomial rings are

finitely generated over R. Then, since R is generated over k by the variables x1, . . . , xn,

adding those variables to our list of generators will provide a generating set for B over k.
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Theorem 3.1.2. Let I = (xa1
1 · · ·xann ) and J = (xb11 · · ·xbnn ) be principal ideals in R =

k[x1, . . . , xn], and let Σa,b be the fan associated to a = (a1, . . . , an) and b = (b1, . . . , bn). Let

Qi = Ci ∩ Z2 for every Ci ∈ Σa,b

and HQi
be its Hilbert basis of cardinality ni for all i = 0, . . . , n. Further, let Q be the

subsemigroup in N2 generated by

{(a1rij, . . . , airij, bi+1sij, . . . , bnsij, rij, sij)|i = 0, . . . , n, j = 1, . . . , ni} ∪ log(x1, . . . , xn),

where (rij, sij) ∈ HQi
for every i = 0, . . . n, j = 1, . . . , ni. Then B = k[Q].

Proof. Since R is a UFD, by Theorem 2.1.6, B is generated over R by

{xa1rij
1 · · ·xairiji x

bi+1sij
i+1 · · ·xbnsijn urijvsij |i = 0, . . . , n, j = 1, . . . , ni}.

Then, since R is generated as an algebra over k by x1, . . . , xn, it follows that B ⊂

k[x1, . . . , xn, u, v] is generated as an algebra over k by the set

P = {x1, . . . , xn, x
a1rij
1 · · · xairiji x

bi+1sij
i+1 · · ·xbnsijn urijvsij |i = 0, . . . , n, j = 1, . . . , ni}.

This is a set of monomials in k[x1, . . . , xn, u, v]. Now note that therefore

log(P ) ={(a1rij, . . . , airij, bi+1sij, . . . , bnsij, rij, sij)|i = 0, . . . , n, j = 1, . . . , ni}

∪ log(x1, . . . , xn).

In conclusion, log(P ) = Q and hence B = k[Q].

Example 3.1.3. Let I = (x5y2) and J = (x2y3). Then a1 = 5, a2 = 2 and b1 = 2, b2 = 3,
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and 5/2 ≥ 2/3. Then we have the following cones:

C0 = {λ1(0, 1) + λ2(2, 5)|λi ∈ R≥0}

C1 = {λ1(2, 5) + λ2(3, 2)|λi ∈ R≥0}

C2 = {λ1(3, 2) + λ2(1, 0)|λi ∈ R≥0}

C0 is the wedge of the first quadrant between the y-axis and the vector (2, 5), C1 is the

wedge between (2, 5) and (3, 2), and C3 is the wedge between (3, 2) and (1, 0). It is easy to

see that this fan fills the entire first quadrant. Intersecting these cones with Z2 is equivalent

to only considering the integer lattice points in these cones.

The Hilbert Basis of Q0 = C0 ∩ Z2 is {(0, 1), (1, 3), (2, 5)}, and their corresponding

monomials in B are given by the generators of Br,s for each (r, s):

(0, 1) : (I0 ∩ J1)u = (x2y3)v − generator is x2y3v

(1, 3) : (I1 ∩ J3)uv3 = ((x5y2) ∩ (x6y9))uv3 = (x6y9)uv3 − generator is x6y9uv3

(2, 5) : (I2 ∩ J5)u2v5 = ((x10y4) ∩ (x10y15))u2v5 = (x10y15)u2v5 − generator is x10y15u2v5.

Notice that all the generator monomials are of the form xb1syb2survs, with b1 = 2, b2 = 3,

and (r, s) is a Hilbert Basis element, as shown earlier.

The Hilbert Basis of Q1 is {(1, 1), (1, 2), (3, 2), (2, 5)}. In the same way as above, their

monomials are x5y3uv, x5y6uv2, x15y6u3v2, x10y15u2v5, all of which have the form xa1ryb2survs

with a1 = 5, b2 = 3 and (r, s) a basis element.

Lastly, the Hilbert Basis of Q2 is {(1, 0), (2, 1), (3, 2)}, which gives rise to generators

x5y2u, x10y4u2, x15y6u3v2, all of which look like xa1rya2rurvs with a1 = 5, a2 = 2.

Notice there are a few redundant generators in this list: those arise from lattice points

that lie on the boundaries of the cones. So B is generated over R by

{x5y2u, x10y4u2, x15y6u3v2, x5y3uv, x5y6uv2, x2y3v, x6y9uv3, x10y15u2v5}.
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Then, since R is generated over k by x and y, B is generated over k by

{x, y, x5y2u, x10y4u2, x15y6u3v2, x5y3uv, x5y6uv2, x2y3v, x6y9uv3, x10y15u2v5}.

Using this technique, we have written a program in Macaulay2 that will provide the

list of generators of B for any I and J . First it fan orders the exponent vectors, then finds

the Hilbert Basis for each cone that arises from those vectors. Finally, it computes the

corresponding monomial for each basis element. The code is below:

loadPackage "Polyhedra"

--function to get a list of exponent vectors from an ideal I

expList=(I) ->(

flatten exponents first flatten entries gens I

)

algGens=(I,J)->(

B:=(expList(J))_(positions(expList(J),i->i!=0));

A:=(expList(I))_(positions(expList(J),i->i!=0));

L:=sort apply(A,B,(i,j)->i/j);

C:=flatten {0,apply(L,i->numerator i),1};

D:=flatten {1, apply(L,i->denominator i),0};

M:=matrix{C,D};

G:=unique flatten apply (#C-1, i-> hilbertBasis

(posHull submatrix(M,{i,i+1})));

S:=ring I[u,v];

flatten apply(#G,i->((first flatten entries gens

intersect(I^(G#i_(1,0)),J^(G#i_(0,0)))))*u^(G#i_(1,0))*v^(G#i_(0,0)))

)
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3.2 Presentation Ideals of B

Next we compute the presentation of B. In some cases this can be done by hand,

but more complicated examples require the use of semigroup ring theory. The presentation

of this first example can be shown directly, and connects this intersection algebra with

determinantal rings. We credit Yongwei Yao with the proof.

Theorem 3.2.1. Let R = k[x] and a ∈ N, a > 0. Then

B((xa), (x)) ∼=
k[x1, . . . , ka+3]

I2(M)
,

where I2(M) is the ideal generated by the 2× 2 minors of the matrix

M =

 x1 x3 x4 · · · xa+2

x2 x4 x5 · · · xa+3

 .

Proof. By Example 2.1.3 in the previous chapter, our algorithm shows that

B = B((xa), (x)) ∼= k[x, xv, xau, xauv, xauv2, . . . , xauva].

Construct the map

ϕ : k[x1, . . . , xa+3]→ k[x, xv, xau, xauv, xauv2, . . . , xauva]

by sending x1 to x, x2 to xv, and so on. We claim that kerϕ = I2(M).

It is easy to see that I2(M) ⊆ kerϕ. For the other inclusion, we will proceed by induction

on a. Assume that kerϕ ( I2(M), and let f(x) ∈ kerϕ \ I2(M). Choose a representative

g(x) ∈ f(x) + I2(M) such that the total degree of g(x) with respect to xa+3 is minimal and

positive. Then g(x) can be written as g1(x1, . . . , xa+2) +g2(x) for some g1 and g2 where xa+3

divides g2(x).

Since xa+3|g2(x), we can use the relations in I2(M) to rewrite g2(x) in terms of only the
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variables x2, xa+2, and xa+3, and g2(x2, xa+2, xa+3) 6= 0.

Then apply ϕ to g, so

ϕ(g) = ϕ(g1 + g2) = g1(y) + g2(xv, xauva−1, xauva) = 0.

Let z be a monomial in ϕ(g1), and w be a monomial in ϕ(g2). Then

z = xα1(xv)α2(xau)α3 · · · (xauva−1)αa+2

w = (xv)β1(xauva−1)β2(xauva)β3 ,
(3.1)

and note that β3 > 0. We will show that z 6= w.

Assume not. Then, by matching degrees in (3.1), we have the following equations:

α1 + α2 + a(α3 + · · ·+ αa+2) = β1 + aβ2 + aβ3 (3.2)

α3 + α4 + . . .+ αa+2 = β2 + β3 (3.3)

α2 + α4 + 2α5 + . . .+ (a− 1)αa+2 = β1 + (a− 1)β2 + aβ3. (3.4)

Combining (3.2) and (3.3), we obtain

α1 + α2 = β1. (3.5)

Then, by (3.4) and (3.5), and because β3 > 0:

β1 + (a− 1)β2 + aβ3 = β1 + (a− 1)(β2 + β3) + β3

= β1 + β3 + (a− 1)(α3 + . . .+ αa+2

≥ β1 + β3 + α4 + · · ·+ (a− 1)αa+2

= α1 + α2 + β3 + α4 + · · ·+ (a− 1)αa+2

> α2 + α4 + · · ·+ (a− 1)αa+2

which contradicts (3.4). So no monomials in g1 and g2 will cancel after taking their images
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under ϕ.

In addition, no two monomials within g2 will cancel after applying ϕ. Choose two

distinct monomials in g2 whose images are equal. Then we have

xβ1

2 x
β2

a+2x
β3

a+3 6= x
β′1
2 x

β′2
a+2x

β′3
a+3

and

(xv)β1(xauva−1)β2(xauva)β3 = (xv)β
′
1(xauva−1)β′2(xauva)β

′
3 .

But this is impossible, since the monomials’ exponent vectors (1, 0, 1), (a, 1, a −

1), (a, 1, a) are all linearly independent.

So since ϕ(g) = ϕ(g1 + g2) = ϕ(g1) + ϕ(g2) = 0, we see that ϕ(g1) = ϕ(g2) = 0, and

also g2 = 0. Thus f = g1, which does not involve the variable xa+3. So by the induction

hypothesis, g1 ∈ I2(M).

In this case, we can apply the language of determinantal rings to obtain another de-

scription of B. Let

X =

 x11 x12 x13 · · · x1(a+1)

x21 x22 x23 · · · x2(a+1)


and let T = k[X]/I2(X). Then

B ∼=
T

(x22 − x13, x23 − x14, . . . , x2a − x1(a+1))
.

Using the results from [4] reproduced in Section 1.4, we have a more algorithmic way

of producing a presentation of B.

Example 3.2.2. The following example shows the process of constructing a presentation

for the intersection algebra of B = B((xn), (xn+1)). We will prove towards the end of this
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section in Example 3.3.8 that the R-algebra generating set of B is

{xn+1v, xnu, xn+1uv, x2nu2v, x3nu3v2, . . . , x(n+1)nun+1vn}.

We form our matrix by using the exponent vectors of the generators as column vectors,

together with (1, 0, 0)ᵀ, which is the exponent vector of x. This matrix is

M =


n+ 1 n n+ 1 2n 3n · · · n2 n(n+ 1) 1

0 1 1 2 3 · · · n n+ 1 0

1 0 1 1 2 · · · n− 1 n 0

 .

Next, we compute the matrix of the nullspace vectors of M . This can easily be shown

to be the (n+ 4)× (n+ 1) matrix

L =



−1 n n− 1 · · · 2 1

−1 0 −1 · · · −(n− 2) −(n− 1)

1 −n(n+ 1) −(n− 1)(n+ 1) · · · −2(n+ 1) −(n+ 1)

0 0 0 · · · 0 n

0 0 0 · · · n 0

...
...

...
. . .

...
...

0 0 n · · · 0 0

0 n 0 · · · 0 0

n 0 0 · · · 0 0



.

.

Next we form the ideal IL by forming binomials from each column of L. Therefore

IL =(xnn+4x3 − x1x2, x
n
1x

n
n+3 − x

n(n+1)
3 , xn−1

1 xnn+2 − x2x
(n−1)(n+1)
3 ,

xn−2
1 xnn+1 − x2

2x
(n−2)(n+1)
3 , · · · , x2

1x
2
5 − xn−2

2 x
2(n+1)
3 , x1x

n
4 − x

(n−1)
2 x

(n+1)
3 ).

Finally, we take the saturation of this ideal with respect to the product of all the
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variables to obtain the lattice ideal. Our computations in Macaulay 2 [11] show that the

following statement is very likely to be true.

Conjecture 3.2.3.

IL = IL : (x1 · · ·xn+3)∞ = IL + I2(M) where

M =

 xn2 xnn+4 xn4 xn5 · · · xnn+1 xnn+2

xn4 xn3 xn5 xn6 · · · xnn+2 xnn+3

 .

3.3 Two Principal Ideals in One Variable

3.3.1 Constructing a Hilbert Basis

The case of the intersection algebra when I = (xa) and J = (xb) and a and b are

relatively prime is surprisingly much more complicated. In two dimensions, finding the

Hilbert Basis of a cone is equivalent to finding a particular continued fraction decomposition.

The following result is due to Van Der Corput, and it expresses the same idea in terms of

finding a minimal basis of the integer points satisfying a system of two Diophantine equations.

This proof relies on two other results, also due to van der Corput. The following

exposition follows his original papers [12, 13], included for the convenience of the reader.

In these theorems, x = (x(1), x(2), . . . , x(m)) is a lattice point in the m-dimensional space,

meaning each x(i) ∈ Z, and S is a system of l equations and r inequalities

fλ(x) = 0, λ = 1, . . . , l; gl(x) ≥ 0, l = 1, . . . r,

where l and r are both ≥ 0, fλ(x) are all linear forms, and gl(x) denote integer linear forms

in x1, x2, . . . , xm. Let S0 be the system of equations

fλ(x) = 0, λ = 1, . . . , l; gl(x) = 0, l = 1, . . . , r.
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Definition 3.3.1. The integer solutions x1, . . . , xs form a basis of S if each integer solution

x of S can be written as

x = p1x1 + p2x2 + · · ·+ psxs

with integer non-negative coefficients pi.

A basis of S with the property that there is no basis for S with fewer elements is called

a minimal basis of S. A minimal basis of S is the zero element if and only if coordinate

origin is the only integer solution of S.

Theorem 3.3.2. Let r = 0, so that S is a system of l linear homogeneous equations

S : fλ(x) = 0 for λ = 1, 2 . . . , l.

Assume that S has at least one nontrivial solution, so that the integer solutions x of S form

a free abelian group N . Assume that rkN = n ≥ 1, and say that N is generated by the lattice

points a1, . . . , an. Define the n+ 1 points x1, . . . , xn+1 to be

xi = qi,1a1 + qi,2a2 + · · ·+ qi,nan, i = 1, . . . , n+ 1. (3.6)

Then the following are true:

1. The size of the minimal basis of S is n+ 1.

2. The points x1, . . . , xn+1 form a minimum basis of S if and only if the n+1 determinants

Di =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qi+1,1 · · · qi+1,n

... · · · ...

qn+1,1 · · · qn+1,n

q1,1 · · · q1,n

... · · · ...

qi−1,1 · · · qi−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, i = 1, . . . , n+ 1
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are all relatively prime, and are either all positive or all negative.

Proof. Note that this theorem implies that the n+1 points −(a1 +a2 +· · ·+an), a1, a2, . . . , an

form a minimal basis of S, since for these points, the determinants Di = 1 for all i.

In this proof, we will omit commas between subscripts in the matrix entries when the

meaning is clear.

1. Assume the determinants Di are all relatively prime, and assume that they are either

all positive or all be negative.

Let N ′ be the free abelian group generated by x1, . . . , xn+1. Since each xi ∈ N , N ′ ⊆ N .

We will show N ′ = N .

Let v1 = 0 and vi, i = 2, . . . , n+ 1 be equal to cofactor associated to the qi,1 minor of

the determinant

D1 =

∣∣∣∣∣∣∣∣∣
q2,1 · · · q2,n

... · · · ...

qn+1,1 · · · qn+1,n

∣∣∣∣∣∣∣∣∣ .
Then since the cofactor expansion for D1 along the first column is

D1 =
n+1∑
i=2

viqi1,

and also that
∑n+1

i=2 viqij = 0 for j 6= 1, we have that

n+1∑
i=2

vixi =
n+1∑
i=2

vi

n∑
j=1

qijaj by (3.6)

=
n∑
j=1

aj

n+1∑
i=2

viqij = a1D1.

.
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So a1D1 ∈ N ′. Similarly, N ′ also contains the points a1D2, . . . , a1Dn+1, and since

D1, . . . Dn+1 are all relatively prime, a1 ∈ N ′. The same procedure with ai instead of

a1 shows that the points a1, . . . , an all belong to N ′, so N = N ′.

So each point x ∈ N may be written in the form

x = v1x1 + v2x2 + · · ·+ vn+1xn+1, vi ∈ Z.

Then, since
n+1∑
i=1

Dixi =
n+1∑
i=1

Di

n∑
j=1

qijaj by (3.6)

=
n∑
j=1

aj

n+1∑
j=1

Diqij = 0,

we also have that for every integer a, a
∑n+1

i=1 Dixi = 0. So

x = (v1 + aD1)x1 + (v2 + aD2)x2 + · · ·+ (vn+1 + aDn+1)xn+1. (3.7)

Since the determinants D1, . . . , Dn+1 are either all positive or all negative, one can

determine an integer a such that the n + 1 coefficients (vi + aDi) i = 1, . . . , n + 1 are

all positive, and from (3.7) it is clear that the numbers x1, . . . , xn+1 form a basis of S.

To show that they form a minimal basis of S, we will prove that n integer solutions

X1, . . . , Xn of S can never form a basis for S. Assume not. Then, for each point x of

N , we can find V1, . . . , Vn ∈ N with

x = V1X1 + · · ·+ VnXn.

Since the rank of N is n, these equations are linearly independent, therefore, the

coefficients V1, . . . , Vn for a given x are uniquely determined. Let x = −X1. Then the
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only solution is

V1 = −1, V2 = V3 = · · · = Vn = 0,

which is a contradiction.

Hence we have shown that the points x1, . . . , xn+1 form a minimal basis.

2. Let the numbers x1, . . . , xn+1 form a basis of S, and assume the n + 1 determinants

D1, . . . , Dn+1 are all divisible by the same prime number p. Recall the definition of Di:

Di =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qi+1,1 · · · qi+1,n

... · · · ...

qn+1,1 · · · qn+1,n

q1,1 · · · q1,n

... · · · ...

qi−1,1 · · · qi−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, i = 1, . . . , n+ 1,

and note that the cofactor expansion of Di across the first row is

Di =
n∑
j=1

qi+1,jC1,j,

where C1,j denotes the cofactor associated to the minor of qi+1,j.

So since p divides every Di, there exist n integers c1, . . . , cn, not all of which are divisible

by p, with the property that p is a divisor of the n+ 1 numbers

n∑
j=1

cjqij, i = 1, . . . , n+ 1.

Assume without loss of generality that cj is not divisible by p. Since the integers

x1, . . . , xn+1 form a basis of S, for each point a1, . . . an there exist n + 1 integers
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w1, . . . , wn+1 with

aω = w1x1 + · · ·+ wn+1xn+1

=
n+1∑
i=1

wi

n∑
j=1

qijaj by (3.6)

=
n∑
j=1

aj

n+1∑
i=1

ωiqij.

Therefore if j 6= ω,
∑n+1

i=1 wiqiω = 0, and if j = ω,
∑n+1

i=1 wiqiω = 1. It follows that

cω =
n∑
j=1

cj

n+1∑
i=1

wiqij =
n+1∑
i=1

wi

n∑
j=1

cjqij,

which is a contradiction, as the right side is divisible by p, but not the left. Therefore,

the n + 1 determinants D1, . . . , Dn+1 have a greatest common divisor of 1, and in

particular do not all vanish simultaneously.

We conclude by demonstrating that the determinants D1, . . . , Dn+1 are either all pos-

itive or all negative. Assume not. Then we can select a lattice point (v1, . . . , vn) such

that, for every a, the set

{vi + aDi|i = 1, . . . , n+ 1}

contains at least one negative number. The point

x = v1x1 + · · ·+ vn+1xn+1

is then an integer solution of S, and for any collection of coefficients (p1, . . . , pn+1) with

x = p1x1 + · · ·+ pn+1xn+1,

we have that pi = vi + aDi for every i = 1, . . . , n + 1 by (3.7). Thus any collection

of coefficients contains at least one negative number. This contradicts the assumption

that the numbers x1, . . . , xn+1 form a basis of S, thus the determinants D1, . . . , Dn+1
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are either all positive or all negative.

Definition 3.3.3. Let r ≥ 1, and denote by K(S) the set of lattice points u = (u1, . . . , ur) 6=

0 with ui ≥ 0, where there is a lattice point x

fλ(x) = 0, λ = 1, . . . , l; gl(x) = ul, l = 1, . . . , r

such that for every lattice point ξ with

fλ(ξ) = 0, λ = 1, . . . , l; 0 ≤ gl(ξ) ≤ ul, l = 1, . . . , r

either

gl(ξ) = 0 for all l = 1, . . . , r or gl(ξ) = ul for all l = 1, . . . , r.

Theorem 3.3.4. Let r ≥ 1, and let the integer solutions of the system

S0 : fλ(x) = 0, λ = 1, . . . , l; gl(x) = 0, l = 1, . . . , r

form a rank n free abelian group.

Let B(S0) be a basis of S0, B(S) a basis of S, and let M(S),M(S0) denote minimal

bases of S and S0, respectively. Each point u = (u1, . . . ur) ∈ K(S) is the image of a point x

via the gl’s, i.e.

fλ(x) = 0, λ = 1, . . . , l; gl(x) = ul, l = 1, . . . , r. (3.8)

Denote this collection of lattice points x satisfying (3.8) for some u ∈ K(S) by B(S).

Also let M(S) ⊂ B(S) be a collection of lattice points x such that each u ∈ K(S) is the

image of a unique x via (3.8).

Then the following are true:

1. The set B(S0) + B(S) is a basis of S.
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2. The points of the basis B(S) of S that satisfy the system S0 form a basis of S0.

3. Any point u ∈ K(S) is the image of an x ∈ B(S) via the gl’s (note that since every

u ∈ K(S) is nonzero, this corresponding point x does not satisfy the system S0).

4. M(S0) + M(S) is a minimal basis of S.

5. Each minimum basis M(S) of S contains exactly 0 (respectively n + 1) points that

satisfy the system S0, depending on whether n = 0 or n ≥ 1, and these points form a

minimum basis of S0.

6. If M(S) is any minimal basis of S, then any point x of M(S) which does not satisfy

the system S0 can be unambiguously associated to a point u of K(S) via (3.8).

Proof. Note that Theorems 3.3.2 and 3.3.4 show that every system S of linear homogeneous

equations and inequalities, where the inequalities are integer linear forms, has a finite basis.

Let k = |K(S)|.

1. Let x1, . . . , xk be points of B(S) with the property that each point u = (u1, . . . , ut) of

K(S) can be associated with a point xi for some i = 1, . . . , k via

gl(xi) = ul, l = 1, . . . , r.

LetB(S0) = {X1, . . . , Xs}, and assume that B(S0) + B(S) is not a basis for S. Then

we can select an integer solution x of S that is not of the form

x =
s∑
j=1

PjXj +
k∑
i=1

pixi (3.9)

with non-negative integer coefficients, and also has the property that

r∑
l=1

gl(x)
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is as small as possible. Consequently, x does not satisfy S0, for every integer solution

x of S0 has the form

x =
s∑
j=1

PjXj

with non-negative integer coefficients, as B(S0) is a basis of S0. The point with the r

coordinates gl(x) for all l = 1, . . . , r does not belong to the set K(S); otherwise, for a

suitably chosen i, 1 ≤ i ≤ k,

gl(x) = gl(xi), l = 1, . . . , r,

and then x− xi would be a point of S0, so

x− xi =
s∑
j=1

PjXj, and therefore x = xi +
s∑
j=1

PjXj

with suitably chosen non-negative integer coefficients, contradicting the assumption

that x cannot be written as a combination of basis elements.

Since the point (g1(x), . . . , gr(x)) does not belong to the set K(S), it follows from the

definition of this set that one lattice point ξ exists with

fλ(ξ) = 0, λ = 1, . . . , l; 0 ≤ gl(ξ) ≤ gl(x), l = 1, . . . , r

and

0 <
r∑
l=1

gl(ξ) <
r∑
l=1

gl(x).

Then
r∑
l=1

gl(ξ) <
r∑
l=1

gl(x) and
r∑
l=1

gl(x− ξ) <
r∑
l=1

gl(x).

The points x and x − ξ are integer solutions of S, and since x was chosen to be the

integer solution of S not satisfying (3.9) such that
∑r

l=1 gl(x) is minimal, we have that
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both ξ and x can be written as sums of basis elements as

ξ =
s∑
j=1

QjXj +
k∑
i=1

qixi and x− ξ =
s∑
j=1

WjXj +
k∑
i=1

wixi

with non-negative integer coefficients. Hence it follows that

x = ξ + x− ξ =
s∑
j=1

(Qj + wj)Xj +
k∑
i=1

(qi + wi)xi

so x can be written in the form of (3.9) with

Pj = Qj + wj ≥ 0, j = 1, . . . , s; pi = qi + wi ≥ 0, i = 1, . . . , k

which is a contradiction.

2. Let X1, . . . , Xs denote the points of the basis B(S) satisfying the system S0, and let

x1, . . . xt denote the points of B(S) which do not satisfy S0, so any integer solution x

of S, also, a fortiori, any integer solution x of S0 can be written as

x =
s∑
j=1

PjXj +
t∑
i=1

pixi (3.10)

with non-negative integer coefficients. Since xi is not a solution of the system S0 then

r∑
l=1

gl(xi) > 0, i = 1, . . . , t.

It follows that all coefficients pi in (3.10) vanish, otherwise

0 =
r∑
l=1

gl(x) =
s∑
j=1

Pj

r∑
l=1

gl(Xj) +
t∑
i=1

pi

r∑
l=1

gl(xi)

=
t∑
i=1

pi

r∑
l=1

gl(xi) > 0.
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Therefore by (3.10), any integer solution x of S0 has the form

x =
s∑
j=1

PjXj

with integer non-negative coefficients, so the points X1, . . . , Xs form a basis of S0.

3. Let X1, . . . , Xs be the points of the basis B(S) that satisfy the system S0, and x1, . . . , xt

be the points of B(S) that do not satisfy S0. Also, assume by way of contradiction

that there is a u = (u1, . . . , ur) ∈ K(S) such that u is not the image of any of the xi

under the gl’s. In other words, that there exists no h, 1 ≤ h ≤ t such that

gl(xh) = ul, l = 1, . . . , r. (3.11)

Now there exists an integer solution x of S with

gl(x) = ul, l = 1, . . . , r. (3.12)

As B(S) is a basis of S, by (3.10) we have

x =
s∑
j=1

PjXj +
t∑
i=1

pixi

for some Pj, pi ∈ N, and since u ∈ K(S), u is nonzero. So x is nonzero, and there

exists at least one i, i = 1, . . . , t, such that pi ≥ 1.

Since each Xj is a solution of S0,

gl(x) =
s∑
j=1

PjXj +
t∑
i=1

pixi =
t∑
i=1

pixi, l = 1, . . . , r.

So ul = gl(x) ≥ gl(xi) ≥ 0 for all l = 1, . . . , r, and since u ∈ K(S), either gl(xi) = 0 or

gl(xi) = ul. But this is a contradiction, since xi is not a solution of S0, and u is not an
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image of one of the xi’s.

4. That M(S0) + M(S) is a basis of S follows from the first claim. First assume n, the

free rank of the group of solutions of S0, is 0. Then by assertions 2 and 3, every basis

B(S) of S consists of at least k = |K(S)| points, none of which satisfy the system S0.

Then assume n ≥ 1. Then again by assertions 2 and 3, along with Theorem 3.3.2,

B(S) contains at least n + 1 + k points, at least n + 1 of which satisfy S0, and the

remaining k do not.

Since the set M(S0) + M(S) contains either k or n + k + 1 elements, depending on

whether n = 0 or n > 1, this set must be a minimal basis of S0.

(5)–(6) After the fourth assertion, the minimal basis M(S) consists of k (respectively n+k+1)

points, depending on whether n = 0 or n > 1. From the second assertion, it follows

that M(S) contains at least 0 (respectively n+1) integer solutions of S0, and the third

assertion shows that M(S) has at least k points that do not satisfy the system S0.

Therefore M(S) contains exactly 0 (respectively n + 1) solutions of S0, which form

a basis of S0 by the second assertion, so that by Theorem 3.3.2, those solutions are

a minimal basis of S0. Also M(S) contains exactly k points that do not satisfy the

system S0, and by the third assertion, one can unambiguously assign to each of these

points a point u of K(S) by (3.8).

Theorem 3.3.5. If 0 is the only integer solution of S0, then the minimal basis M(S) of S

is the set of the integral solutions x = (x(1), . . . , x(m)) 6= 0 of S, with the property that no

lattice point ξ = (ξ(1), . . . , ξ(m)) 6= 0 and 6= x exists satisfying the following relations

fλ(ξ) = 0 λ = 1, . . . , l; 0 ≤ gl(ξ) ≤ gl(x) l = 1, . . . , r. (3.13)

Proof. If r = 0, then S and S0 are same systems, so that 0 is the only integer solution of S,
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and the minimal basis M(S) of S is empty. Then no lattice point ξ = (ξ(1), . . . , ξ(m)) 6= 0 of

the system S exists, and also there is no lattice point ξ 6= 0 satisfying (3.13). So the proof

is clear in the special case with r = 0.

So we may assume r ≥ 1. Recall that n is the rank of the free abelian group formed

by the integer solutions of S0. Since the origin is the only integer solution of S0, n = 0.

By the fifth assertion of Theorem (3.3.4), M(S) does not contain any points that satisfy S0.

Therefore, the minimal basis M(S) also does not contain 0.

If x is any lattice point with

fλ(x) = 0, λ = 1, . . . , l,

and where

gl(x) = ul, l = 1, . . . , r,

then not only is u = (u1, . . . , ur) uniquely determined by x, but also x is uniquely determined

by u; because if there were a second lattice point X with

fλ(X) = 0, λ = 1, . . . , l and gl(X) = ul, l = 1, . . . , r,

then X − x would be a nonzero integer solution of S0.

By the sixth assertion of Theorem 3.3.4, each x ∈ M(S) can be uniquely associated to

a u ∈ K(S). So the integer solutions x of S belongs to the minimal basis M(S) of S if and

only if, for each lattice point ξ with

fλ(ξ) = 0, λ = 1, . . . , l; 0 ≤ gl(ξ) ≤ ul, l = 1, . . . , r,
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either the relations

fλ(ξ) = 0, λ = 1, . . . , l; gl(ξ) = 0, l = 1, . . . , r (3.14)

or the relations

fλ(ξ) = 0, λ = 1, . . . , l; gl(ξ) = ul, l = 1, . . . , r (3.15)

are satisfied. The relations (3.14) are satisfied if and only if ξ = 0, and the relations (3.15)

are only satisfied if and only ξ = x. Therefore, from the sixth assertion of Theorem 3.3.4, it

is clear that an integer solution x 6= 0 of S belongs to the minimal basis M(S) of S if and

only if each lattice point ξ satisfying (3.13) is either zero or x.

Theorem 3.3.6. If 0 is the only integer solution of S0, and S undergoes an integral uni-

modular transformation

x(µ) =
m∑
τ=1

cµτξ
(τ), µ = 1, . . . ,m (3.16)

into a system

Σ : ϕλ(ξ) = 0, λ = 1, . . . , l; χp(ξ) ≥ 0, l = 1, . . . , r

then the minimal basis M(S) of S is turned into the minimal basis M(Σ) of Σ via this same

transformation.

Proof. If the minimal basis M(Σ) of Σ is empty, then the origin is the only integer solution

of Σ, and consequently of S, so that then the minimal basis M(S) is empty. So assume

that M(Σ) is not empty. Let ξ1, . . . , ξs denote the points of M(Σ), and define the points

x1, . . . , xs via the equations

x
(µ)
j =

m∑
τ=1

cµτξ
(τ)
j . (3.17)

Then we claim the points x1, . . . , xs form a basis for S.

To see this, let x be any integer solution of S. By 3.16, the lattice point ξ satisfies the
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system Σ and can be written in the form

ξ =
s∑
j=1

pjξj (3.18)

with integer coefficients pj ≥ 0. It follows from (3.16), (3.17) and (3.18) that

x =
s∑
j=1

pjxj,

so that the points x1, . . . , xs are in fact a basis of S. They even provide a minimal basis of

S: otherwise, there exists a minimal basis of S with s′ elements, where s′ < s. Exchanging

S and Σ above, one would find a basis of Σ with s′ elements, and this is impossible, as the

minimum basis of S would have to contain exactly s, but also more than s′, elements. So

the points x1, . . . , xs form a minimal basis of S.

We are now ready to prove the main result of van der Corput, which will produce our

Hilbert basis elements for B((xa), (xb)), when a and b are relatively prime.

Theorem 3.3.7. Let a, b, c, d ∈ Z with ad− bc 6= 0 where a and b are relatively prime, and c

and d are relatively prime, and let u and v be two integers with av − bu = 1 Set q = ad− bc

and p = ud− vc, and decompose p/q into a continued fraction as follows:

p

q
= g1 −

1|
|g2

− · · · − 1|
|gk−1

if q > 0

p

q
= g1 +

1|
|g2

− · · · − 1|
|gk−1

if q < 0

where g1, . . . , gk−1 ∈ Z and g2, g3, . . . , gk−1 are all ≥ 2, so the continued fraction expansion

for p and q is unique.

Let Px/Qx, (x = 1, 2, . . . , k − 1) be the convergents of p/q, so that

P1 = g1, Q1 = 1, P2 = g1g2 ∓ 1, Q2 = g2, · · ·

Pk−1 = p,Qk−1 = q for all q > 0, Pk−1 = −p,Qk−1 = −q for all q < 0
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and where

Q0 = 0 and P0 = 1 when q > 0, P0 = −1 when q < 0.

Then the minimal basis of lattice points satisfying the system of equations S:

ax+ by ≥ 0, cx+ dy ≥ 0

is the set of k points

{(−bPx + vQx, aPx − uQx)|x = 0, . . . , k − 1, px ∈ N.} (3.19)

Moreover, each integer solution (x, y) of S is of the form

x =
k−1∑
x=0

px(−bPx + vQx), y =
k−1∑
x=0

px(aPx − uQx)

may be written with non-negative integer coefficients px. These coefficients px need not be

uniquely determined for a given (x, y). However, we will show that every integer solution

(x, y) of S has a unique expression

x = A(−bPx + vQx) +B(−bPx+1 + vQx+1) (3.20)

y = A(aPx − uQx) +B(aPx+1 − uQx+1) (3.21)

where 0 ≤ x ≤ k − 2, and A,B ∈ N.

Proof. By the unimodular integer transformation

x = vξ − bη, y = −uξ + aη

i.e. by the transformation

ξ = ax+ by, η = ux+ vy
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S transforms into the system of equations Σ:

ξ ≥ 0, −pξ + qη ≥ 0,

and the k points mentioned in (3.19) become just (Qx, Px), x = 0, ...k − 1.

To show that the points mentioned in (3.19) belong to the minimal basis M(S) of S,

it suffices by Theorem 3.3.6 to show that the points (Qx, Px) belong to the minimal basis

M(Σ) of Σ.

If q > 0, then the points (Qx, Px), x = 0, ..., k − 1 belong to the minimal basis M(Σ) of

Σ.

The point (0, 1) satisfies the system Σ because it is nonzero, q > 0, and additionally

(0, 1) satisfies (3.13): specifically, at each integer lattice point (ξ, η) with

0 ≤ ξ ≤ 0, 0 ≤ −pξ + qη ≤ q,

either ξ = 0, η = 0 or ξ = 0, η = 1. So by Theorem 3.3.5, the point (Q0, P0) = (0, 1) belongs

to the minimum basis M(Σ).

Any other point (Qx, Px) with 1 ≤ x ≤ k− 1 satisfies the system Σ because Qx > 0 and

−pQx + qPx = qQx

(
Px
Qx

− p

q

)
> 0.

Also the point (Qx, Px) is nonzero. To show that (Qx, Px), 1 ≤ x ≤ k− 1 belongs to the

minimal basis M(Σ), by Theorem 3.3.5 it suffices to show that any integer solution (ξ, η)

from Σ with

0 ≤ ξ ≤ Qx, 0 ≤ −pξ + qη ≤ −pQx + qPx (3.22)

equals either 0 or (Qx, Px). There are two different cases:

1. Let

ξPx − ηQx ≥ 0 : (3.23)
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If ξ = 0, it follows from (3.22) that η ≥ 0, but by (3.23) η ≤ 0, so η = 0. Therefore

(ξ, η) is 0.

If η > 0, then because of (3.22) and (3.23)

p

q
≤ η

ξ
≤ Px
Qx

.

It is a property of convergents of continued fractions that any convergent is closer to the

continued fraction than any other fraction whose denominator is less than that of the

convergent. In other words, since Px/Qx is a convergent of p/q, either (ξ, η) = (Qx, Px)

or ξ > Qx; ξ > Qx is impossible by (3.22), so (ξ, η) = (Qx, Px).

2. If

ξPx − ηQx < 0 (3.24)

then

ξ(η − Px)− η(ξ −Qx) > 0.

By (3.22)

0 ≤ Qx − ξ ≤ Qx, 0 ≤ −p(Qx − ξ) + q(Px − η) ≤ −pQx + qPx.

In this case, the relations (3.22) and (3.23) are satisfied with Qx − ξ instead of ξ and

with Px − η instead of η, so that by Theorem 3.23, the point (Qx − ξ, Px − η) is either

the origin or (Qx, Px), so that either (ξ, η) = (0, 0) or (ξ, η) = (Qx, Px).

First assume q > 0. We claim that each integer solution (ξ, η) of Σ can be written uniquely

as

ξ = AQx +BQx+1, η = APx +BPx+1 (3.25)

where 0 ≤ x ≤ k − 2, and A,B ∈ N.
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Proof of claim: If ξ = 0, then, since (ξ, η) is a solution of Σ, η ≥ 0, so since Q0 = 0 and

P0 = 1 when q > 0,

ξ = 0 = ηQ0 and η = ηP0

so then (3.25) holds with x = 0, A = η, B = 0 and ξ = 0. Then, since Q1, . . . , Qk−1 are

positive, the expression defined in (3.25) must be unique.

Now let ξ > 0, so since (η, ξ) is a solution to Σ, η/ξ ≥ p/q. Since Px/Qx are the

convergents of p/q, we have

p

q
=
Pk−1

Qk−1

<
Pk−2

Qk−2

< · · · < P1

Q1

<
P0

Q0

,

so that with a suitably selected x, 0 ≤ x ≤ k − 2,

Px+1

Qx+1

≤ η

ξ
<
Px
Qx

.

Since Px/Qx and Px+1/Qx+1 are two successive convergents, (3.25) will be satisfied with

suitably selected non-negative integer coefficients A and B.

To prove the uniqueness of the expression given in (3.25), assume that in addition

ξ = CQτ +DQτ+1, η = CPτ +DPτ+1, (3.26)

where 0 ≤ τ ≤ k − 2, and C and D are non-negative integers.

If η/ξ is equal to one of the convergents P/Q of p/q, then it follows that

from (3.25):B = 0, Qx = Q,Px = P or A = 0, Qx+1 = Q,Px+1 = Px

from (3.26):D = 0, Qτ = Q,Pτ = P or C = 0, Qτ+1 = Q,Pτ+1 = P,

so that by both (3.25) and (3.26),

ξ = KQ and η = KP
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and the writing of (η, ξ) is unique.

If η/ξ is not equal to one of the convergents of p/q, then it follows from (3.25) and

(3.26) that

Px+1

Qx+1

<
η

ξ
<
Px
Qx

and
Pτ+1

Qτ+1

<
η

ξ
<
Pτ
Qτ

.

So τ = x, and (3.26) becomes

η = CQx +DQx+1, η = CPx +DPx+1

and because QxPx+1 − Qx+1Px 6= 0, it follows from (3.25) that A = C and B = D, so the

expression in (3.25) is unique.

So if q > 0, the previous claim allows us to express (ξ, η) uniquely in the form (3.25).

Applying the transformation

x = vξ − bη, y = −uξ + aη

results in a unique expression of (x, y) in the form (3.20) as well.

To conclude, let q < 0, and apply the unimodular integral transformation x = x′,

y = −y′ to obtain the system

S ′ : ax′ − by′ ≥ 0, cx′ − dy′ ≥ 0.

The conditions of this theorem now fulfilled when S, b, d, u, q, g1, and Px are replaced by

S ′,−b,−d,−u,−q,−g1, and −Px, and now −q > 0. By what we have already done (with

−q instead of q), the points

(−bPx + vQx,−aPx + uQx)x = 0, . . . , k − 1

form the minimal basis of S ′, so that by Theorem 3.3.6, the points referred to in (3.19) form
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a minimum basis of S. As in the q < 0 case, applying the transformation

x = vξ − bη, y = −uξ + aη

again with −q instead of q, shows that each integer solution (x,−y) of S ′ has the desired

unique expression.

x =A(−bPx + vQx) +B(−bPx+1 + vQx+1)

−y =A(−aPx + uQx) +B(−aPx+1 + UQx+1)

where 0 ≤ x ≤ k − 2, and A and B denote integer coefficients. Therefore the proof is

completed for q < 0.

Now we can apply this result to our problem. Let R = k[x] and I = (xa), J = (xb),

with a and b relatively prime. We need to find a Hilbert basis for each of the two cones Q0,

defined by the equations −ar+ bs ≥ 0 and r ≥ 0, and Q1, defined by ar− bs ≥ 0 and s ≥ 0.

Since these cones are pointed and rational, the minimal bases referred to above is the same

as the unique Hilbert basis.

The cone Q0: In the language of the theorem, where S is the system

ax+ by ≥ 0, cx+ dy ≥ 0,

we have that

x = r, y = s, a = −a, b = b, c = 1, d = 0.

So let u and v be two integers with −av−bu = 1. Then by the theorem, q = −b and p = −v.

Since q < 0, and the Hilbert basis elements for Q0 are determined by the continued fraction

decomposition

p

q
=
−v
−b

=
v

b
= g1 +

1|
|g2

− · · · − 1|
|gk−1
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as outlined in the theorem.

The cone Q1: For this cone, we have

x = r, y = s, a = a, b = −b, c = 0, d = 1.

Let u and v be two integers with av + bu = 1. By the theorem, q = a and p = u. Since

q > 0, and the Hilbert basis elements for Q1 are determined by the terms in the continued

fraction decomposition

p

q
=
u

a
= g1 −

1|
|g2

− · · · − 1|
|gk−1

.

Below is one example of a case where the Hilbert basis elements are easy to compute.

Example 3.3.8. The intersection algebra B of I = (xn), J = (xn+1):

Q0 consists of the lattice points satisfying −nr+(n+1)s ≥ 0 and r ≥ 0. So a = −n, b = n+

1, c = 1, d = 0. Then u = −1, v = 1 work to satisfy−nv−(n+1)u = 1, so q = ad−bc = −n−1

and p = ud − vc = −1. Then p/q = 0 + 1/(n + 1), with q < 0, and we have g1 = 0 and

g2 = n+ 1. So the set of 3 points in {−bPx + vQx, aPx − uQx)|x = 0, . . . , 2} are

P0 = −1, Q0 = 0 → (−(n+ 1)(−1), (−n)(−1)) = (n+ 1, n)

P1 = 0, Q1 = 1 → (−(n+ 1) · 0 + 1 · 1,−n · 0− (−1) · 1) = (1, 1)

P2 = −1, Q2 = −n− 1 → (−(n+ 1)(−1) + 1(−n− 1), (−n(−1)− (−1)(−n− 1)) = (0, 1).

Q1 is the set of lattice points satisfying nr − (n + 1)s ≥ 0 and s ≥ 0. So a = n, b =

−(n+ 1), c = 0, d = 1, and we can choose u = 1 and v = −1 to satisfy nv − (−n− 1)u = 1.

Then

p

q
=

1

n
= 1− n− 1

n
= 1− 1|

|2
− · · · − 1|

|2
,

where there are n − 1 copies of 2 in the fraction decomposition. Therefore the convergents
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and their corresponding set of points are

P0 = 1, Q0 = 0 → ((n+ 1) · 1− 1 · 0, n · 1− 1 · 0) = (n+ 1, n)

P1 = 1, Q1 = 1 → ((n+ 1) · 1− 1 · 1, n · 1− 1 · 1) = (n, n− 1)

P2 = 1, Q2 = 2 → ((n+ 1) · 1− 1 · 2, n · 1− 1 · 2) = (n− 1, n− 2)

P3 = 1, Q3 = 3 → ((n+ 1) · 1− 1 · 3, n · 1− 1 · 3) = (n− 2, n− 3)

...
...

...

Pn = 1, Qn = n → ((n+ 1) · 1− 1 · n, n · 1− 1 · n) = (1, 0)

So the Hilbert basis corresponding to the fan associated to B consists of the points

{(0, 1), (1, 1), (n+ 1, n), (n, n− 1), (n− 1, n− 2), . . . , (2, 1), (1, 0)}.

3.3.2 Approach via Linear Diophantine Equations with Integer Coefficients

We give another approach to constructing B. First, recall some facts from semigroup

rings associated to linear diophantine equations with integer coefficients from Chapter I,

Section 3 of [14].

Definition 3.3.9. Let Φ be an r × n Z-matrix, r ≤ n, and rank Φ = r. Define

EΦ := {β ∈ Nn|Φβ = 0}.

Then EΦ is clearly a submonoid of Nn.

Let RΦ := kEΦ, the monoid algebra of EΦ over k. We identify β ∈ EΦ with xβ =

xβ1

1 x
β2

2 · · ·xβnn , so that RΦ ⊆ k[x1, . . . , xn] as a subalgebra graded by monomials.

To translate our problem into this language, we must describe all monomials in B as

having exponents that are solutions to a system of equations. Since any monomial must

have the form xmurvs, with m ≥ max(ar, bs), there exists an h, k ∈ N such that the log of

any monomial must satisfy

m = ar + h = bs+ k,
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so

Φ = Φa,b =

 a 0 1 0 −1

0 b 0 1 −1

 .

Then EΦ = EΦa,b
= {β ∈ Nn|Φβ = 0}.

Then EΦ is a subsemigroup in N5, and to recover our semigroup Q where B = k[Q], we

project EΦ onto N3 by sending h and k to zero. In fact, Q and EΦ are isomorphic, and so B

and RΦ are as well.

Reformulating B in terms of this matrix allows us to easily prove some more properties

of this algebra. This requires a few more results from [14].

Definition 3.3.10. β ∈ EΦ is fundamental if β = γ + δ, γ, δ ∈ EΦ implies γ = β or δ = β.

FUNDΦ := set of fundamental elements of Φ.

It is clear that FUNDΦ generates EΦ and that any set which generates EΦ contains

FUNDΦ. In particular, |FUNDΦ| <∞ and

RΦ = k[xδ|δ ∈ FUNDΦ].

Definition 3.3.11. β ∈ EΦ is completely fundamental if whenever n > 0 and nβ = γ + δ

for γ, δ ∈ EΦ, then γ = n1β for some 0 ≤ n1 ≤ n.

CFΦ := set of completely fundamental elements of EΦ.

Since any generating set for EΦ contains FUNDΦ, and we already know a generating

set for Q = EΦ, FUNDΦ must be among the points that we get from our generators. We

claim that the two sets are in fact equal.

First, recall a few facts about the construction of B((xa), (xb)). Its generating set is
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built from two cones

C0 = {λ1(0, 1) + λ2(b, a)|λi ∈ R+}

C1 = {λ1(b, a) + λ2(1, 0)|λi ∈ R+}

and, when intersected with Z, they form two semigroups, Q0 and Q1, each with a correspond-

ing Hilbert basis HQ0 and HQ1 . Each basis element has a corresponding algebra generator

depending on which cone it comes from, either

{xmurvs|(r, s) ∈ HQ0 ,m = bs} or {(r, s,m)|(r, s) ∈ HQ1 ,m = ar}, (3.27)

where Q0 is the cone where bs ≥ ar and Q1 is the cone where ar ≥ bs. These monomials,

together with x, generate B over k. Note that for the rest of this section, we will assume a

and b are relatively prime. The general case follows.

Theorem 3.3.12. Let a, b ∈ N, and Φ = Φa,b. Then the set of fundamental elements of EΦ

is

FUNDΦ ={(r, s, bs− ar, 0, bs)|(r, s) ∈ HQ0}

∪ {(r, s, 0, ar − bs, ar)|(r, s) ∈ HQ1} ∪ {(0, 0, 1, 1, 1)}.

Proof. First, we translate each algebra generator into elements of EΦ. Recall that m =

ar+ h = bs+ k for every β = (r, s, h, k,m) ∈ EΦ. So the three sets in equation 3.27 become

{(r, s, bs− ar, 0, bs)|(r, s) ∈ HQ0} and {(r, s, 0, ar − bs, ar)|(r, s) ∈ HQ1},

and x corresponds to the vector (0, 0, 1, 1, 1).

Let β = (r, s, bs− ar, 0, bs) ∈ EΦ with (r, s) ∈ HQ0 , and say that β = γ + δ. Then

γ = (r′, s′, h′, 0,m′) and δ = (r
′′
, s
′′
, h
′′
, 0,m

′′
),

where

ar′ + h′ = bs′ = m′ and ar
′′

+ h
′′

= bs′′ = m
′′
,



67

which implies that bs′ ≥ ar′ and bs
′′ ≥ ar

′′
, so both (r′, s′) and (r

′′
, s
′′
) are in Q0. But

r = r′ + r
′′

and s = s′ + s
′′
, and (r, s) is a Hilbert basis element. So either (r, s) = (r′, s′) or

(r, s) = (r
′′
, s
′′
), and thus either β = δ or β = γ, and so the fundamental elements are the

same as the ones that arise from the Hilbert basis algorithm.

Now, CFΦ ⊆ FUNDΦ, so to determine the completely fundamental elements, we need

only discard those fundamental elements which do not fit the definition.

Theorem 3.3.13. Let a, b ∈ N and Φ = Φa,b. Then the completely fundamental elements of

EΦ are

CFΦ = {(1, 0, 0, a, a), (0, 1, b, 0, b), (b, a, 0, 0, ab), (0, 0, 1, 1, 1)}.

Proof. First, it is clear from the positions of the zeros in each of the above points that they

are completely fundamental. Let β ∈ FUNDΦ that is not one of the above four, and say

without loss of generality that

β = (r, s, bs− ar, 0, bs).

Then since

(r, s) ∈ Q0 = C0 ∩ Z, where C0 = {λ1(0, 1) + λ2(b, a)|λi ∈ R+},

(r, s) = λ1(0, 1) + λ2(b, a) for some λ1, λ2 ∈ R+. So r = λ2b and s = λ1 + λ2a, and since

(r, s) ∈ N2, λ1, λ2 ∈ Q. Clearing denominators then shows that there exists an n > 0 such

that

n(r, s) = λ′1(0, 1) + λ′2(b, a).



68

To conclude, note that

λ′1(0, 1, b, 0, b) + λ′2(b, a, 0, 0, ab) =(λ′2b, λ
′
1 + λ′2a, λ

′
1, 0, λ

′
1b+ λ′2ab)

=(nr, ns, nbs− nar, 0, nbs)

=n(r, s, bs− ar, 0, bs),

since nbs − nar = b(λ′1 + λ′2a) − a(λ′2b) = λ′1. So β is not in CFΦ, and similarly with any

element of the form (r, s, 0, ar − bs, ar) that is not in the list in the theorem. So those four

are the only completely fundamental elements.

If we define CΦ to be the polyhedral cone of R+-solutions β to Φβ = 0, it is known that

CFΦ are the integer points nearest 0 on each extreme ray of CΦ. Notice that this is also the

case with CFΦ for our Φ.

The completely fundamental elements can be used to obtain information about the

Hilbert series of the intersection algebra. The necessary results from [14] are excerpted

below.

Theorem 3.3.14. (Corollary 3.8 in [14])The Hilbert series of RΦ is F (RΦ, λ) =
∑

β∈EΦ
λβ.

When it is written in lowest terms, the denominator is Πβ∈CFΦ
(1− λβ).

Corollary 3.3.15. Let a, b ∈ N and Φ = Φa,b. The Hilbert series of B((xa) ∩ (xb)) is

∑
β∈EΦ

λβ,

where λ = (λ1, λ2, λ3, λ4, λ5). When it is written in lowest terms, the denominator is

(1− λ1λ
a
4λ

a
5)(1− λ2λ

b
3λ

b
5)(1− λb1λa2λab5 )(1− λ3λ4λ5)

3.3.3 A Regular Sequence in B((xa), (xb))

Another fact from [14] allows us to find a regular sequence in B((xa), (xb)).
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Theorem 3.3.16. (Theorem 3.7 in [14]) Let δ1, . . . , δt ∈ EΦ, and S = k[xδ1 , . . . , xδt ] ⊆ RΦ].

Then RΦ is a finitely generated S-module (equivalently: integral over S) if and only if for

every β ∈ CFΦ there are 1 ≤ i ≤ t and j > 0 such that δi = jβ.

Corollary 3.3.17. Let a, b ∈ N be relatively prime, and Φ = Φa,b. Then B is integral over

k[x, xau, xbv, xa+bubva].

Proof. Since CFΦ = (0, 0, 1, 1, 1), (1, 0, 0, a, a), (0, 1, b, 0, b), (b, a, 0, 0, a + b), choosing the δi

to be the fundamental elements completes the proof.

Lemma 3.3.18. Let a, b and B be as above. Then

dim
B

(x, xa+bubva, xau+ xbv)
= 0

Proof. Define the following map

D =
k[x, y, z, w]

(xaby − zbwa)
ϕ−−→ k[x, xabubva, xau, xbv] = C

by sending x to x, y to xabubva, z to xau, and w to xbv. Then since ϕ(xaby − zbwa) = 0, ϕ

is surjective. Then

D

(x, y, z + w)
=

k[z, w]

(zbwa, z + w)
=

k[x]

(wa+b)
,

which is a dimension 0 ring.

Then we have the following maps:

C

(x, xa+bubva, xau+ xbv)

i−−→ C

(x, xa+bubva, xau+ xbv)B ∩ C
j−−→ B

(x, xa+bubva, xau+ xbv)
.

By the above corollary, B is integral over C, and the map i is surjective. So dim B
(x,xa+bubva,xau+xbv)

=

0.

Theorem 3.3.19. Given the assumptions of the previous lemma, a regular sequence for

B((xa), (xb)) is x, xa+bubva, xau+ xbv.
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Proof. Since B is a domain, x is obviously a nonzerodivisor in B. Next, xa+bubva is a

nonzerodivisor in B/xB, since if

rxabubva = 0 ∈ B/(x)B for some r ∈ B

⇒ rxabubva = sx for some s ∈ B

⇒ rxab−1ubva = s.

We claim this implies r ∈ (x)B.

Since r, s ∈ B, s = xmurvs and r = xm
′
ur
′
vs
′
, where m ≥ max(ar, bs) and m′ ≥

max(ar′, bs′). So

xm
′+ab−1ur

′+bvs
′+a = xmurvs

and so r′ + b = r and s′ + a = s, and thus

max(ar, bs) = max(a(r′ + b), b(s′ + a)) = max(ar′ + ab, bs′ + ab) = max(ar′, bs′) + ab.

So m′ = m− ab+ 1 ≥ max(ar′, bs′) + 1, and therefore

r = x(xm
′−1ur

′
vs
′
) with m′ ≥ max(ar′, bs′)

so r ∈ xB.

It remains to show that xau+ xbv is a nonzerodivisor in B/(x, xabubva)B. Assume not.

Then since B is Cohen-Macaulay, B/(x, xabubva)B is too. So by the unmixedness property

of Cohen-Macaulay rings, there exists a prime ideal P ∈ Ass(P ) such that htP = 2, and

(x, xa+bubva, xau+ xbv) ⊆ P . Then

B
(x, xa+bubva, xau+ xbv)

�
B
P
,

so by the above lemma, dim B
P

= 0. But dimB = 3, and htP = 2, which is a contradiction.
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So xau + xbv is a nonzerodivisor in B/(x, xabubva)B, and x, xa+bubva, xau + xbv is a

regular sequence on B.

Definition 3.3.20. We say β ∈ EΦ is positive, denoted β > 0, if each coordinate of β is

positive. A positive β ∈ EΦ is called minimal if for any γ > 0, γ ∈ EΦ, then γ − β ≥ 0

We are moving towards describing the canonical ideal of B((xa), (xb)). The following

result provides this description.

Theorem 3.3.21. (Corollary 13.1 in [14]) Denote the canonical ideal of RΦ by Ω(RΦ). Then

Ω(RΦ) = k{xβ|β ∈ EΦ, β > 0}.

Since any element in the canonical ideal is a linear combination of positive monomials,

it is easy to see that the set of minimal positive elements provides a generating set for this

ideal.

We will construct this set of minimal positive elements from EΦ for our Φ, and obtain

a generating set for the canonical module of Ω(B).

Theorem 3.3.22. Let A be the set

{γ + (0, 0, 1, 1, 1)|γ ∈ FUNDΦ different from (0, 0, 1, 1, 1), (1, 0, 0, a, a), (0, 1, b, 0, b)}.

Then the set of minimal positive β ∈ EΦ is equal to A.

Proof. Recall that any element of FUNDΦ (other than (0, 0, 1, 1, 1)) looks like either

{(r, s, bs− ar, 0, bs)|(r, s) ∈ HQ0} or {(r, s, 0, ar − bs, ar)|(r, s) ∈ HQ1}.

So A is the collection

{(r, s, bs− ar + 1, 1, bs+ 1)|(r, s) ∈ HQ0} ∪ {(r, s, 1, ar − bs+ 1, ar + 1)|(r, s) ∈ HQ1}.
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First, we show that any minimal positive element of EΦ is in A. Let (r, s, h, k,m) be a

minimal positive element of EΦ, and assume without loss of generality that ar ≥ bs. Then

ar + h = m = bs + k, and we can decompose (r, s) into a sum of Hilbert basis elements∑
h lh(rh, sh). Then

(r, s, h, k, n) =

(∑
h

lhrh,
∑
h

lhsh,m− a
∑
h

lhrh,m− b
∑
h

lhsh,m

)

so we claim there exists an h′ such that

(r, s, h, k,m) ≥ (rh′ , sh′ , 1, arh′ − bsh′ + 1, arh′ + 1).

This inequality is obviously satisfied for the first three components. Since h, k ≥ 1, and

ar ≥ bs, m ≥ ar + 1, so m ≥ arh′ + 1.

Lastly, since k = m− bs and m ≥ ar,

k ≥ ar − bs =
∑
h

lh′(arh′ − bsh′),

so (r, s, h, k,m) is greater than an element of A. But (r, s, h, k,m) is minimal, so it must be

equal to an element of A.

Next, we show that any element from A is minimal. First, note that any two elements

of A are incomparable: let β ∈ A of the form

(r, s, bs− ar + 1, 1, bs+ 1) for some (r, s) ∈ HQ0 ,

and let

β′ = (r′, s′, bs′ − ar′ + 1, 1, bs′ + 1) for another (r′, s′) ∈ HQ0 , with (r′, s′) > (r, s).
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Note that, since (r, s) and (r′, s′) are both in Q0,

b

a
≥ r

s
and

b

a
≥ r′

s′
.

We claim bs′ − ar′ + 1 < bs− ar + 1, since this is equivalent to

b(s′ − s) < a(r′ − r)

⇔ b

a
<
r′ − r
s′ − s

.

Assume this last inequality does not hold. Then

r′ − r
s′ − s

∈ Q1,

thus

(r, s) + (r′ − r, s′ − s) = (r′, s′).

But (r′, s′) is in HQ1 , and by definition cannot be a sum of two elements in Q1. So

bs′ − ar′ + 1 < bs − ar + 1 while (r′, s′) > (r, s), and therefore β and γ are incompara-

ble.

Lastly, let β ∈ A not minimal in EΦ. Therefore there is an element γ < β. And, by the

first half of this proof, γ is larger than some element β′ ∈ A. So β > γ > β′, which contradicts

that all elements of A are incomparable. Therefore any element of A is minimal.

Corollary 3.3.23. Let a, b ∈ N, B = B((xa), (xb)), and Φ = Φa,b. Then the canonical

module of B is

Ω(B) ∼= k{xβ|β ∈ EΦ, β > 0}.

Corollary 3.3.24. Let a, b and B be as above. Then the number of minimal elements, and

thus the number of generators of the ideal Ω(B) is |Q0|+ |Q1| − 3.

Proof. There is one fundamental element for each Hilbert basis element in Q0 and Q1, plus
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one for the monomial x. However, one is double-counted, since (b, a) ∈ HQ0 ∩ HQ1 . So

|FUNDΦ| = |HQ0| + |HQ1 |. Then, since |CFΦ| = |FUNDΦ| − 3 by Theorem 3.3.22, the

corollary is proved.

Stanley’s methods allow us to easily determine whether B is Gorenstein.

Theorem 3.3.25. (Corollary 13.2 in [14]) RΦ is Gorenstein if and only if there exists a

unique minimal β > 0 in EΦ (i.e. if γ > 0, γ ∈ EΦ, then γ − β ≥ 0).

Corollary 3.3.26. B is Gorenstein if and only if there exists a unique minimal β > 0 in

EΦ.

There are very few Gorenstein intersection algebras of principal monomial ideals. In

fact, if we stay within the assumption that a and b are relatively prime, there is only one

such algebra.

Corollary 3.3.27. Let B = B(I, J) be the intersection algebra of two principal monomial

ideals I and J in R = k[x] that is Gorenstein. Then I = J = (x).

Proof. Let I = (xa) and J = (xb), where a, b ∈ N are relatively prime. First, note that if

either a or b are zero, then B =
⊕

Irurvs or B =
⊕

Jsurvs respectively, neither of which

are Gorenstein. So assume, by way of contradiction, that both a > 1 and b > 1.

The number of minimal elements of B is equal to |HQ0 | + |HQ1| − 3, and since B is

Gorenstein, |HQ0| + |HQ1| = 4. Recall that both Hilbert bases must contain at least two

elements, namely the generators of their cones. So (0, 1), (b, a) ∈ HQ0 and (1, 0), (b, a) ∈ HQ1 ,

and since there are only four in total (including repetitions), these must be the only Hilbert

basis elements.

Since (a, b) > (1, 1), the point (1, 1) must lie in one of the cones, say Q0. Since (1, 1)

cannot be a Hilbert basis element by assumption, there exists n1, n2 ∈ N such that

(1, 1) = n1(0, 1) + n2(b, a)
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which implies that n2b = 1 and n1 + n2a = 1. But a, b, n1, n2 ∈ N, so n2 = b = 1, and

therefore a = 1 as well, contradicting our assumption that both a and b are different from

1.

One can approach the general case by replacing a and b by their quotients when divided

by the greatest common divisor of a and b, and see that any Gorenstein intersection algebra

of principal monomial ideals in one variable is of the form B((xa), (xa)) for some a ∈ N,

a ≥ 1.

Lastly, examining these minimal positive elements led us to an upper bound on the

number of Hilbert basis elements for a fan of two cones in the plane.

Theorem 3.3.28. Let R, a, b and Φ be as before, and assume without loss of generality that

a > b. Set a = bq + l, with 1 ≤ l ≤ b − 1. Then the number of minimal elements of RΦ is

bounded above by a− l + 1.

Proof. First, note that the case a = b is covered above, and the number of minimal elements

is determined.

Let (r, s, h, k,m) be an element of EΦ and recall that ar + h = m = bs + k. Define

µ = ar − bs = k − h, with µ > 0. So we may write our element as (r, s, k, k + µ, ar + k).

Notice that the condition µ > 0 is equivalent to ar − bs > 0, which is the same as

considering all the points (r, s) ∈ Q1. Then (1, 1) is a minimal positive element in this cone:

for this pair, µ = a − b > 0, and there is no other point with smaller positive coordinates.

The smallest element in EΦ corresponding to (1, 1) must have k > 0, so the smallest such

element is (1, 1, 1, µ+ 1, a+ 1). So, if µ > a− b,

(r, s, k, µ+ k, ar + k) ≥ (r, s, 1, µ+ 1, ar + 1)

≥ (1, 1, 1, 1 + µ, a+ 1)

≥ (1, 1, 1, 1 + a− b, a+ 1).

If µ < a − b, we claim that for each such µ, there exists a unique smallest rµ, sµ such

that µ = arµ − bsµ: since ar − bs = µ determines a line in the (r, s) plane, let (rµ, sµ) be
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the point with smallest integer coordinates on that line. Obviously, (r, s) ≥ (rµ, sµ), and

the smallest element in EΦ corresponding to (rµ, sµ) is (rµ, sµ, 1, 1 + µ, arµ + 1). Then for

µ ≤ a− b,
(r, s, k, k + µ, ar + k) ≥ (r, s, 1, µ+ 1, ar + 1)

≥ (rµ, sµ, 1, 1 + µ, arµ + 1).

If µ = 0, then ar = bs, and, since a and b are relatively prime (because l > 0),

(r, s, 1, µ+ 1, ar + 1) = (r, s, 1, 1, ar + 1)

≥ (b, a, 1, 1, ab+ 1).

So, for µ > 0, i.e. Q1, the number of minimal elements no more than a − b + 1: a − b − 1

elements for each 0 < µ ≤ a− b, one for µ > a− b, and one for µ = 0.

Now consider the points of EΦ that correspond to pairs (r, s) ∈ Q0, i.e. where bs−ar =

η > 0. Then η = k − h, so we can write the full element of EΦ as (r, s, h+ η, h, bs+ h).

Since a = bq + l, we claim that the smallest (r, s) where bs − ar > 0 (i.e. the smallest

pair (r, s) ∈ Q1), is (1, q+1). This pair is certainly in Q1, since η = b(q+1)−a = bq+b−a =

b− l > 0. Also, s > q, because

s =
ar + η

b
> q ⇔ r(bq + l) + η > bq ⇔ bqr + lr + η > bq,

which is true since r > 0 and η > 0. Since s ∈ N, s ≥ q + 1. So, if η ≥ b− l,

(r, s, h+ η, h, bs+ h) ≥ (r, s, 1 + η, 1, bs+ 1)

≥ (1, q + 1, 1 + η, 1, b(q + 1) + 1)

≥ (1, q + 1, 1 + b− l, 1, b(q + 1) + 1).

If 0 < η < b − l, we will minimize for every η as we did for every µ before. The same

logic applies, and for every (r, s) with η < b − l, there is a unique smallest (rη, sη) ≤ (r, s).
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Then

(r, s, h+ η, h, bs+ h) ≥ (r, s, 1 + η, 1, bs+ 1)

≥ (rη, sη, 1, 1 + η, bsη + 1).

So for η > 0, we have at most 1 + b− l − 1 = b− l minimal elements, giving a total of

a− b+ 1 + b− l = a− l + 1 at most minimal elements for EΦ.

Notice that this bound is much sharper than the one provided by Remark 3.3.28.

3.4 Properties of Fan Algebras over Polynomial Rings

As mentioned in the introduction, fan algebras have two important properties, namely

that they are both normal and Cohen-Macaulay.

One notable property of fan algebras coming from ideals in a polynomial ring is that

they are all normal.

Theorem 3.4.1. Let R be the n-dimensional polynomial ring over a field, and I1 =

(x1), . . . , In = (xn) be principal monomial ideals of R. Also, let Σa,b be a fan of cones

in N2, with fan-linear functions f = f1, . . . , fn. Then B(Σa,b, f) is normal.

Proof. Since B is a fan-algebra of principal monomial ideals over a polynomial ring, B is a

semigroup ring. So B = k[Q] for the semigroup Q which consists of all the exponent vec-

tors of all the elements of B. Let z = (z1, . . . , zn, r, s), m ∈ N and mz =∈ Q. We claim z ∈ B.

Since Q is the semigroup that defines B as a semigroup ring,

Q = {(a1, . . . , an, r, s)|aj ≥ fj(r, s) for all j = 1, . . . n, (r, s) ∈ N2}.
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And since mz ∈ Q, (mr,ms) ∈ Qi for some i. Then we have the following:

mz1 ≥ f1(mr,ms)

...
...

mzn ≥ fn(mr,ms).

But each of the functions fk are fan-linear, so on Qi, fk(mr,ms) = mfk(r, s). So we have

mzk ≥ mfk(r, s) for all k = 1, . . . , n

and so

zk ≥ fk(r, s) for all k = 1, . . . , n,

hence z = (z1, . . . , zn, r, s) ∈ Q.

Therefore Q is normal, hence B = k[Q] is normal.

As mentioned in the introduction, all normal semigroup rings are Cohen-Macaulay.

Corollary 3.4.2. Let B(Σa,b, f) be as defined in Theorem 3.4.1. Then B is Cohen-Macaulay.
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CHAPTER 4

SEMIGROUP RINGS COMING FROM CONES

We can use an extension of these ideas to find generating sets of more general kinds of

semigroup rings, which will allow us to study non-principal ideals as well.

Theorem 4.0.3. Let C =
⋃
Ci be a fan of pointed rational cones that fills the entire first

orthant of Rn, and let Qi = Ci∩Zn and Q =
⋃
Qi. Let HQi

be the Hilbert basis of Qi. Then

k[Q] is finitely generated by the set

{xqj |qj ∈ HQi
for all i, j}.

Proof. It is enough to show that each homogeneous element of k[Q] is finitely generated. Let

cxq be a homogeneous element of k[Q], with c ∈ k and q ∈ Q. Then Since q ∈ Q, q ∈ Qi

for some i, q can be expressed as a sum of Hilbert basis elements

q =
∑
j

ajqj, aj ∈ N,qj ∈ HQi
.

Therefore

cxq = c
∏
j

(xqj)aj

and

k[Q] = k[xqj |qj ∈ HQi
for all i, j].

One application of this idea is intersections of monomial ideals.

Corollary 4.0.4. A particular case of the above is the intersection algebra of non-principal
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monomial ideals. Let R = k[x], x = (x1, . . . , xn), and let

I = (xa1 ,xa2 , . . . ,xam), J = (xb1 ,xb2 , . . . ,xbp)

where ai = (ai1, . . . , ain), bi = (bi1, . . . , bin) ∈ Nn for all i. Then there exists a finite fan of

cones Ci that fill all of Nm+p+2 such that

B = B(I, J) = k[Q], where Q =
⋃
i

(Ci ∩ Nm+p+2),

and B is finitely generated by the set

{xqj |qj ∈ HQi
for all i, j}

Proof. Let z ∈ B(r,s). Then

z ∈ Ir ∩ Jsurvs = (xa1 ,xa2 , . . . ,xam)r ∩ (xb1 ,xb2 , . . . ,xbp)survs

Since

Ir =〈(xa1)i1(xa2)i2 · · · (xam)im|(i1, . . . , im) ∈ Nm with
m∑
k=1

ik = r〉

=〈x
∑

k ikak |(i1, . . . , im) ∈ Nm with
m∑
k=1

ik = r〉

and

Js =〈(xb1)j1(xb2)j2 · · · (xbp)jp |(j1, . . . , jp) ∈ Np with

p∑
k=1

jk = s〉

=〈x
∑

k jkbk |(j1, . . . , jp) ∈ Np with

p∑
k=1

jk = s〉
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we have

Ir ∩ Js =〈xq|q = max

(∑
k

ikak,
∑
k

jkbk

)
,

(i1, . . . , im) ∈ Nm with
∑
k

ik = r, (j1, . . . , jp) ∈ Np with
∑
k

jk = s〉,

where q = (q1, . . . , qn) = max (
∑

k ikak,
∑

k jkbk) is defined componentwise, i.e.

qi = max

(
m∑
k=1

ikaki,

p∑
k=1

jkbki

)
for all i = 1, . . . , n.

We will show that these vectors (q, r, s) come from cones as described. Define the fan

Σ = {Cc|c ∈ [2]n}

where Cc, c = (c1, . . . , cn) denotes the cone

(q1, . . . , qn) ∈ Zn
∣∣∣∣∣qi = max

(
m∑
k=1

ikaki,

p∑
k=1

jkbki

)
=


∑m

k=1 ikaki if ci = 1∑p
k=1 jkbki if ci = 2


In other words, if ci = 1, the exponent on xi in that cone comes from the sum in the

exponent Ir, and if ci = 2, the exponent on xi comes from Js.

Then each cone Cc consists of all points satisfying a linear homogeneous system of n

inequalities
m∑
k=1

ikaki ≥
p∑

k=1

jkbki for all i where ci = 1

p∑
k=1

jkbki ≥
m∑
k=1

ikaki for all i where ci = 2.

(4.1)

These inequalities, together with

ik ≥ 0 for every k = 1, . . . ,m

jk ≥ 0 for every k = 1, . . . , p
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and
m∑
k=1

ik = r ≥ 0,
m∑
k=1

ik = r ≤ 0

p∑
k=1

jk = s ≥ 0,

p∑
k=1

jk = s ≤ 0

form a system in m+ p+ 2 variables that completely describes the exponent vectors in Cc.

Since any (i1, . . . , im, j1, . . . , jp, r, s) will satisfy at least one of the above systems of

inequalities (since we have written all possible combinations of inequalities), that point will

therefore land in at least one cone. So it is clear that
⋃

cCc fills all of Nm+p+2. Also, these

cones can only intersect on their faces: if there is a point (q1, . . . , qn) ∈ Cc ∩ Cc′ , where

c = (c1, . . . , cn) and c′ = (c′1, . . . , c
′
n), then

qi = max

(
m∑
k=1

ikaki,

p∑
k=1

jkbki

)
=


∑m

k=1 ikaki if ci = 1∑p
k=1 jkbki if ci = 2

and

qi = max

(
m∑
k=1

ikaki,

p∑
k=1

jkbki

)
=


∑m

k=1 ikaki if c′i = 1∑p
k=1 jkbki if c′i = 2

.

Therefore for any indices i where ci 6= c′i, one of the following equations hold:

qi =
m∑
k=1

ikaki =

p∑
k=1

jkbki if ci = 1, c′i = 2

qi =

p∑
k=1

jkbki =
m∑
k=1

ikaki if ci = 2, c′i = 1.

therefore (q1, . . . , qn) lies on the face that separates Cc and Cc′ .

so by the previous theorem,

B = k[Q] = k[xqj |qj ∈ HQi
for all i, j].
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In order to construct these generating sets, we must develop some methods of computing

the boundary rays of a cone defined by a homogeneous system of inequalities. In N2, these

boundaries are obvious, but in higher dimensions, more work must be done. The following

comes from [16].

Consider the system of inequalities

a11x1 + b12x2 + · · ·+ a1nxn ≥ 0

... ≥ ...

am1x1 + am2x2 + · · ·+ amnxn ≥ 0

(4.2)

and the corresponding system of equations

a11x1 + b12x2 + · · ·+ a1nxn = 0

... =
...

am1x1 + am2x2 + · · ·+ amnxn = 0

(4.3)

We denote the solution domain of the system 4.2 by C, and the solutions to 4.3 by L.

Each of the equations in 4.2 defines some half-space. Therefore the region determined

by the given system can be represented as the intersection of m half-spaces, each of which

contains the origin. So C is a pointed polyhedral cone with its vertex at the origin.

Since any pointed polyhedral cone is finitely generated, C can also be represented as a

C = {t1B1 + t2B2 + . . .+ tqBq|ti ∈ R+},

where B1, B2, . . . Bq are a set of points, one selected from each edge of the cone C. We can

find such points by proceeding as follows: each point Bi belongs to C, that is, satisfies the

system 4.2, and also belongs to the intersection of n−1 distinct hyperplanes – that is satisfies

n− 1 independent equations from the system 4.3.

If the only point satisfying both conditions is the origin, then C reduces to the origin.
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Example 4.0.5. Let R = k[x, y] and I = (xy4, x3y2, x5y), J = (x2y3). Then Ir is generated

by all monomials

(xy4)i(x3y2)j(x5y)k where i+ j + k = r,

or, equivalently, all monomials

xi+3j+5ky4i+2j+k where i+ j + k = r.

Therefore, any degree (r, s) piece of B = B(I, J) must satisfy one of the following four

case for some i, j, k ∈ N with i+ j + k = r, each of which determines a polyhedral cone

C(1,1) :i+ 3j + 5k ≥ 2s

4i+ 2j + k ≥ 3s

C(1,2) :i+ 3j + 5k ≥ 2s

4i+ 2j + k ≤ 3s

C(2,1) :i+ 3j + 5k ≤ 2s

4i+ 2j + k ≥ 3s

C(2,2) :i+ 3j + 5k ≤ 2s

4i+ 2j + k ≤ 3s

As before, the Hilbert bases for these cones determine the R-algebra generators. The

first step is to find the extremal rays of each cone.
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The full system of inequalities for first cone, C(1,1), is as follows:

i+ 3j + 5k − 2s ≥ 0

4i+ 2j + k − 3s ≥ 0

i+ j + k − r ≥ 0

−i− j − k + r ≥ 0

i ≥ 0

j ≥ 0

k ≥ 0

r ≥ 0

s ≥ 0.

Note that this system can be simplified somewhat by directly substituting i + j + k

for r, and some of these equations may be redundant, but we will keep the full system for

the sake of clarity. Since this is a system of inequalities in 5 variables, we must solve every

possible system (i, j, k, r, s) of 4 equations from the following list:

i+ 3j + 5k − 2s = 0 (1)

4i+ 2j + k − 3s = 0 (2)

i+ j + k − r = 0 (3)

i = 0 (4)

j = 0 (5)

k = 0 (6)

r = 0 (7)

s = 0. (8)
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• Equations (1,2,3,4): i = 0, so r = j + k, 2j + k = 3s, 3j + 5k = 2s

So

s = 2/3j + 1/3k = 3/2j + 5/2k ⇒ 4j + 2k = 9j + 15k ⇒ −5j = 13k

which gives a solution of (0, 13,−5, 8, 7), which is discarded because it doesn’t satisfy

k ≥ 0.

• (1,2,3,5): j = 0, so r = i+ k, i+ 5k = 2s, 4i+ k = 3s

So

s = 1/2(i+ 5k) = 1/3(4i+ k)⇒ 3i+ 15k = 8i+ 2k ⇒ 13k = 5i

which gives a solution of (13, 5, 0, 18, 19), which satisfies all inequalities.

• (1,2,3,6): k = 0, so r = i+ j, i+ 3j = 2s, 4i+ 2j = 3s

So

s = 1/2(i+ 3j) = 1/3(4i+ 2j)⇒ 3i+ 9j = 9i+ 4j ⇒ 5j = 5i⇒ j = i

which gives a solution of (1, 1, 0, 2, 2), which satisfies all inequalities.

• (1,2,3,7): i+ 3j + 5k = 2s, 4i+ 2j + k = 3s, i+ j + k = 0.

So

−2i− j = i+ 1/3j ⇒ −6i = 3j = 3i+ j ⇒ −4j = 9i

which gives a solution of (−4, 9,−5, 0,−2), which fails i ≥ 0.

• (1,2,3,8): i+ 3j + 5k = 0, 4i+ 2j + k = 0, i+ j + k = r

So

1/5(i+ 3j) = 4i+ 2j ⇒ i+ 3j = 20i+ 10j ⇒ −19i = 7j

which gives a solution of (−7, 19,−10, 2, 0), which fails i ≥ 0.

For the remainder, only rays that satisfy all inequalities are shown:

• (1,3,5,6): (2, 0, 0, 2, 1)
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• (2,3,4,5): (0, 0, 3, 3, 1)

• (2,3,4,6): (0, 3, 0, 3, 2)

• (3,4,5,8): (0, 0, 1, 1, 0)

• (3,4,6,8): (0, 1, 0, 1, 0)

• (3,5,6,8): (1, 0, 0, 1, 0)

So C(1,1) is defined by the extremal rays

{(13, 0, 5, 18, 19), (1, 1, 0, 2, 2), (2, 0, 0, 2, 1), (0, 0, 3, 3, 1), (0, 3, 0, 3, 2),

(0, 0, 1, 1, 0), (0, 1, 0, 1, 0), (1, 0, 0, 1, 0)}.

The polyhedra package for Macaulay2 [11] can be used to compute the Hilbert basis, H(1,1),

which is

{(0, 1, 0, 1, 0), (0, 0, 1, 1, 0), (1, 0, 0, 1, 0), (2, 0, 0, 2, 1), (1, 1, 0, 2, 2),

(1, 1, 0, 2, 1), (2, 0, 1, 3, 3), (3, 0, 1, 4, 4), (0, 2, 0, 2, 1), (1, 0, 1, 2, 1),

(2, 0, 1, 3, 2), (0, 1, 1, 2, 1), (0, 3, 0, 3, 2), (1, 0, 2, 3, 2), (0, 0, 3, 3, 1),

(13, 0, 5, 18, 19)}

and each Hilbert basis element (i, j, k, r, s) gives rise to an R-algebra generator

(xy4)i(x3y2)j(x5y)kurvs = xi+3j+5xy4i+2j+kurvs.

Therefore, the R-algebra generators coming from semigroup elements in C(1,1) are

{xy4u, x3y2u, x5yu, x2y8u2v, x4y6u2v2,

x4y6u2v, x7y9u3v3, x8y13u4v4, x6y4u2v, x6y5u2v,

x7y9u3v2, x8y3u2v, x9y6u3v2 x11y6u3v2, x10y3u3v,

x38y55u18v19}.
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The computations for the R-algebra generators for the next three cones are similar, so we

will neglect them.

Via the same process, C(1,2) is defined by the extremal rays

{(13, 0, 5, 18, 19), (1, 1, 0, 2, 2), (0, 0, 2, 2, 5), (0, 2, 0, 2, 3), (0, 0, 3, 3, 1), (0, 3, 0, 3, 2)}

and H(1,2) is

{(0, 1, 0, 1, 1), (0, 0, 1, 1, 1), (0, 1, 1, 2, 1), (1, 1, 0, 2, 2), (0, 0, 2, 2, 1),

(1, 0, 1, 2, 2), (0, 3, 0, 3, 2), (0, 0, 3, 3, 1), (1, 0, 2, 3, 2), (2, 0, 1, 3, 3),

(1, 0, 1, 2, 3), (0, 0, 1, 1, 2), (0, 2, 0, 2, 3), (4, 0, 2, 6, 7), (0, 1, 1, 2, 4),

(7, 0, 3, 10, 11), (0, 0, 2, 2, 5), (10, 0, 4, 14, 15), (13, 0, 5, 18, 19)}.

C(2,1) is defined by the extremal rays

{(13, 0, 5, 18, 19), (1, 1, 0, 2, 2), (2, 0, 0, 2, 1), (3, 0, 0, 3, 4)},

H(2,1) is

{(1, 1, 0, 2, 2), (3, 0, 1, 4, 4), (1, 0, 0, 1, 1), (2, 0, 0, 2, 1), (11, 0, 4, 15, 16),

(9, 0, 3, 12, 13), (7, 0, 2, 9, 10), (5, 0, 1, 6, 7), (3, 0, 0, 3, 4), (13, 0, 5, 18, 19)}.

Finally, C(2,2) is defined by the extremal rays

{(13, 0, 5, 18, 19), (1, 1, 0, 2, 2), (0, 0, 2, 2, 5), (0, 2, 0, 2, 3), (3, 0, 0, 3, 4), (0, 0, 0, 0, 1)}
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and H(1,1) is

{13, 0, 5, 18, 19), (1, 1, 0, 2, 2), (0, 0, 2, 2, 5), (0, 2, 0, 2, 3), (3, 0, 0, 3, 4),

(0, 0, 0, 0, 1), (1, 0, 0, 1, 2), (2, 0, 0, 2, 3), (0, 1, 0, 1, 2), (1, 0, 1, 2, 3),

(2, 0, 1, 3, 4), (3, 0, 1, 4, 5), (4, 0, 1, 5, 6), (5, 0, 1, 6, 7), (0, 2, 0, 2, 3),

(0, 0, 1, 1, 3), (4, 0, 2, 6, 7), (5, 0, 2, 7, 8), (6, 0, 2, 8, 9), (7, 0, 2, 9, 10),

(0, 1, 1, 2, 4), (7, 0, 3, 10, 11), (8, 0, 3, 11, 12), (0, 0, 2, 2, 5), (10, 0, 4, 14, 15),

(11, 0, 4, 15, 16)}.
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