Date of Award

8-11-2015

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Computer Information Systems

First Advisor

William Robinson

Second Advisor

Balasubramaniam Ramesh

Third Advisor

Mark Keil

Fourth Advisor

Kalle Lyytinen

Abstract

The increasing popularity and success of Open Source Software (OSS) development projects has drawn significant attention of academics and open source participants over the last two decades. As one of the key areas in OSS research, assessing and predicting OSS performance is of great value to both OSS communities and organizations who are interested in investing in OSS projects. Most existing research, however, has considered OSS project performance as the outcome of static cross-sectional factors such as number of developers, project activity level, and license choice. While variance studies can identify some predictors of project outcomes, they tend to neglect the actual process of development. Without a closer examination of how events occur, an understanding of OSS projects is incomplete. This dissertation aims to combine both process and variance strategy, to investigate how OSS projects change over time through their development processes; and to explore how these changes affect project performance. I design, instantiate, and evaluate a framework and an artifact, EventMiner, to analyze OSS projects’ evolution through development activities. This framework integrates concepts from various theories such as distributed cognition (DCog) and complexity theory, applying data mining techniques such as decision trees, motif analysis, and hidden Markov modeling to automatically analyze and interpret the trace data of 103 OSS projects from an open source repository. The results support the construction of process theories on OSS development. The study contributes to literature in DCog, design routines, OSS development, and OSS performance. The resulting framework allows OSS researchers who are interested in OSS development processes to share and reuse data and data analysis processes in an open-source manner.

DOI

https://doi.org/10.57709/7401465

Share

COinS