Chemistry Dissertations

Permanent URI for this collection

Browse

Recent Submissions

  • Item
    The Spectrochemical Characterization of Novel Vis-NIR Fluorescence Dyes and Developing a Laser Induced Fluorescence Capillary Zone Electrophoresis (LIF-CZE) Technique to Study Alkanesulfonate Monooxygenase
    (2014-08-12) Beckford, Garfield; Dr. Gabor Patonay

    A new Laser Induced Fluorescence Capillary Zone Electrophoresis (LIF-CZE) bioassay to detect and study the catalytic activity of the sulfur assimilating enzyme commonly found in E. coli species; alkanesulfonate monooxygenase (EC 1.14.14.5) is described for the first time. This technique enables the possibility for direct injection onto a capillary for detection without the need for pre-concentration of sample and with minimal sample preparative steps prior to analysis. In this bioassay, a group of Fischer based cyanine dyes and two Oxazine (Nile red) derivatives were designed for further optimization as key Vis-NIR fluorescent substrate. In developing this technique, the test dyes were first assessed for their photophysical properties, based on four criteria; (1) photostable (2) solvatochromism (3) binding affinity towards both the monooxygenase active site and serum albumin and (4) chemical stability in strong electric field strength. Applying key dye characterization procedures including; molar absorptivity determination, quantum yield determination, photostability, solvatochromism and protein interaction studies it was determined that the Fischer indolium cyanine dyes were most suitable for the method development. The data revealed that under the test conditions, reduced flavin, the oxidative monooxygenase catalytically specifically converts the alkylsulfonate substituted cyanine dyes to the corresponding aldehyde. This new bioassay has proven to be quick, portable, sensitive, reliable and the exhibit the possibility of ‘on-the-spot’ detection; advantages not readily realized with other commonly applied techniques such as PCR, SPR, ELISA and GC used to study bacterial sulfur assimilation processes. In addition, recent literature results proposed by other research groups developing similar techniques showed strong reliance on GC analyses. Those assays involve the use of low molecular weight straight chain non-emissive alkanesulfonate substrates. Once enzyme catalysis occurs the aldehyde is formed becomes rather volatile and requires complex and tedious headspace sampling for GC analyses. This feature limits the in vitro applicability and eliminated the possibility in vivo development. Our goal is to further develop, optimize and present this CZE based bioassay as a suitable alternative to the current trends in the field while creating a more robust and sensitive in vitro monooxygenase detection method with the possibilities of in vivo application.

  • Item
    "Coarse Grained" Bead Modeling of Macromolecules Transport in Free Solution and in a Gel
    (2014-08-12) Wu, Hengfu; Dr. Stuart A. Allison; Dr. Donald Hamelberg; Dr. Jenny J. Yang

    The modeling of transport behavior of charged particles carried out in our laboratory is based on classical continuum electro kinetic theory. It is applied to a variety of systems from small electrolyte ions to macromolecules including peptides, DNA and nanoparticles. Systems range from weakly charged particles to highly charged ones. Transport properties studied include conductance, electrophoresis, and diffusion. In this dissertation, the conductance of polyvalent electrolytes ions is studied both by a “small ion” model [R.M. Fuoss, L. Onsager, J. Phys. Chem. 61 (1957) 668] and “large ion” model [R.W. O’Brien, L.R. White, J. Chem. Soc. Faraday Trans. 2 (74) (1978) 1607)]. Also, the coarse-grained continuum primitive model is developed and used to characterize the titration and electrical conductance behavior of aqueous solutions of fullerene hexa-malonic acid, which is a highly charged electrolyte with an absolute valence charge as high as 12. Free solution electrophoresis is closely related to conductance and a coarse-grained bead modeling methodology, BMM, developed in the Allison’s laboratory starting in 2006, is generalized to characterize peptide systems with respect to the charge, conformation, and possibly specific interactions with components of the BGE. For weakly charged peptides, the electrostatic potential is treated at the level of linear Poisson-Boltzmann equation, which predicts the electrophoretic mobility with considerable accuracy [S. Allison, H. Pei, U. Twahir, H. Wu, J. Sep. Sci., 2010, 33(16):2430-2438], but fails for highly charged systems. A new nonlinear Poisson-Boltzmann, NLPB-BM procedure is developed and applied to the free solution electrophoretic mobility of low molecular mass oligolysines. The difficulty of highly charged systems is twofold: more complex handeling of electrostatics and accounting for the relaxation effect. Both issues are addressed in this dissertation. A related problem we investigated deals with the retarding influence of a gel on the rotational motion of a macromolecule. This is investigated within the framework of the Effective Medium (EM) model and is applied to examine the electric birefringence decay of a 622 base pair DNA fragment in an agarose gel. Modeling is also compared with experiment.

  • Item
    “COARSE GRAINED" BEAD MODELING OF MACROMOLECULES TRANSPORT IN FREE SOLUTION AND IN A GEL
    (2014-08-12) Wu, Hengfu; Dr. Stuart A. Allison; Dr. Donald Hamelberg; Dr. Jenny J. Yang

    The modeling of transport behavior of charged particles carried out in our laboratory is based on classical continuum electro kinetic theory. It is applied to a variety of systems from small electrolyte ions to macromolecules including peptides, DNA and nanoparticles. Systems range from weakly charged particles to highly charged ones. Transport properties studied include conductance, electrophoresis, and diffusion. In this dissertation, the conductance of polyvalent electrolytes ions is studied both by a “small ion” model [R.M. Fuoss, L. Onsager, J. Phys. Chem. 61 (1957) 668] and “large ion” model [R.W. O’Brien, L.R. White, J. Chem. Soc. Faraday Trans. 2 (74) (1978) 1607)]. Also, the coarse-grained continuum primitive model is developed and used to characterize the titration and electrical conductance behavior of aqueous solutions of fullerene hexa-malonic acid, which is a highly charged electrolyte with an absolute valence charge as high as 12. Free solution electrophoresis is closely related to conductance and a coarse-grained bead modeling methodology, BMM, developed in the Allison’s laboratory starting in 2006, is generalized to characterize peptide systems with respect to the charge, conformation, and possibly specific interactions with components of the BGE. For weakly charged peptides, the electrostatic potential is treated at the level of linear Poisson-Boltzmann equation, which predicts the electrophoretic mobility with considerable accuracy [S. Allison, H. Pei, U. Twahir, H. Wu, J. Sep. Sci., 2010, 33(16):2430-2438], but fails for highly charged systems. A new nonlinear Poisson-Boltzmann, NLPB-BM procedure is developed and applied to the free solution electrophoretic mobility of low molecular mass oligolysines. The difficulty of highly charged systems is twofold: more complex handeling of electrostatics and accounting for the relaxation effect. Both issues are addressed in this dissertation. A related problem we investigated deals with the retarding influence of a gel on the rotational motion of a macromolecule. This is investigated within the framework of the Effective Medium (EM) model and is applied to examine the electric birefringence decay of a 622 base pair DNA fragment in an agarose gel. Modeling is also compared with experiment.

  • Item
    From "Click" to "Click and Release", Using Inverse Electron Demand Diels-Alder Reaction for Chemical and Medicinal Applications
    (2014-08-12) Wang, Danzhu; Dr. Binghe Wang; Dr. W. David Wilson; Dr. Jun Yin; Chemistry Department, Georgia State University

    Substituted tetrazines have been found to undergo facile inversed electron demand Diels-Alder reactions with “tunable” reaction rates. By varying the substituents on tetrazine, cycloaddition rate variations of over 200 fold have been achieved with the same dienophile. Coupled with the availability of different dienophiles, such as norbornene, the reaction rate difference can be over 14,000 folds. These substituted tetrazines can be very useful for selective labeling under different conditions. This finding paves the way to utilize tetrazine conjugation reactions for not only DNA but also stage labeling work.

    Carbon monoxide (CO) belongs to the gasotransmitter family of signalling molecules in the mammalian systems with importance on par with that of NO and H2S. Studies have shown that endogenous production of CO has anti-inflammatory, anti-proliferative, and anti-apoptotic effects in mammalian system. Besides of the conventional metal-based carbon monoxide releasing molecules (CORMs) to deliver CO for therapeutic purposes, organic CO prodrugs represent a new direction. Here we report the “click and release” approached to release CO. Unlike the metal-based CORMs, our system does not contain transition metal and liberates CO with controllable manner and possesses potential tunable releasing rate property under physiological conditions.

  • Item
    Cleavage of Lipids and DNA by Metal Ions and Complexes
    (2014-08-12) Williams, Dominique; Dr. Kathryn B. Grant; Dr. Dabney Dixon; Dr. Gangli Wang

    Metal ions and complexes utilized as cleavage agents have influenced many synthetic approaches of scientists to assist in the cleavage and transformation of biomolecules. These metal-based synthetic cleavage agents have potential applications in biotechnology or as molecular therapeutic agents. Herein, we have examined Ce(IV) metal ion and complexes as acidic hydrolytic agents in lipid hydrolysis reactions (Chapter 2 and 3), and a copper(II) complex that photo-oxidizes DNA upon exposure to ultraviolet light (Chapter 4). In Chapter 2 we examined the hydrolysis of sphingomyelin vesicles by Ce(NH4)2(NO3)6 (Ce(IV)) and compared the results to twelve d- and f-block metal salts, hydrolysis of mixed lipid vesicles and mixed micelles of sphingomyelin by Ce(IV), and hydrolysis of phosphatidylcholine vesicles by Ce(IV), using either MALDI-TOF mass spectrometry or colorimetric assays. In Chapter 3, we described the study of a Ce(IV) complex based on 1,3-bis[tris(hydroxymethyl)methylamino]propane as a potential acidic hydrolytic agent of phospholipids using colorimetric assays and NMR spectroscopy. The hydrolytic agent provided markedly enhance hydrolysis at lysosomal pH (~ 4.8), but suppress hydrolysis when pH was raised to near-neutral pH (~ 7.2). This was due to the pKa values of the donor atoms of the ligand, in which the metal’s electrophilicity was reduced to a greater extent at ~ pH 7.2 compared to ~ pH 4.8. Chapter 4 describes the synthesis and study of a Cu(II) complex based on a hexaazatriphenylene derivative for photo-assisted cleavage of double-helical DNA. Scavenger and chemical assays suggested the formation of DNA damaging reactive oxygen species, hydroxyl and superoxide radicals, and hydrogen peroxide, in the photocleavage reactions. Thermal denaturation and UV-vis absorption studies suggested that the Cu(II) complex binds in a non-intercalative fashion to duplex DNA.

  • Item
    One DNA minor groove, many possibilities: from sequence recognition to transcription factor inhibition
    (2014-08-12) Wang, Shuo; W. David Wilson; Stuart A. Allison; Kathryn B. Grant

    Natural and synthetic heterocyclic cations that bind to the DNA minor groove have demonstrated effectiveness as therapeutic agents for cancer, parasitic and viral diseases, as well as powerful probes for use to extend our fundamental understanding of DNA molecular recognition. Crystal and NMR structures with a variety of minor groove binding compounds have shed light on the structural varieties of these systems, the important solvent molecules in the complexes, and the induced fit effects for binding of both DNA and the bound small molecule. Topics of specific importance in DNA recognition are the development of a greater variety of cell-permeable minor groove agents that have increased DNA binding sequence selectivity.

    In this dissertation, the structural and energetic basis of the interaction between DNA and minor groove binders has been systematically investigated. A set of powerful and complementary biophysical methods have been used: gel electrophoresis with ligation ladder assay, circular dichroism, mass spectrometry, surface plasmon resonance and isothermal titration calorimetry have been applied to determine the binding stoichiometry, binding affinity, kinetics and thermodynamics, and also the structural influence that minor groove binders can have on DNA. The results of several minor groove complexes clearly show that based on DNA sequences, minor groove binders can have multiple binding modes and consequently affect the geometry of DNA minor groove and the overall DNA curvature in distinct manners. In addition, the binding enthalpy of a minor groove binder is essentially salt concentration and binding mode independent.

    Besides the investigation of DNA-minor groove binder complex, the binding and inhibition of transcription factor PU.1 has also been studied. The highly positive charged PU.1 targets DNA by inserting an α-helix in the major groove of the 5’-GGAA-3’ site, and displays a strong salt concentration dependency. A set of minor groove binders have been rationally designed based on the high-affinity DNA sequence for PU.1 to target the flanking sequences of the 5’-GGAA-3’ site. They display a structure-related PU.1 inhibition efficacy. This work demonstrates that minor groove binders are capable of modulating PU.1 by targeting the opposite groove and supports future efforts to develop agents for other transcription factors.

  • Item
    Mechanistic Enzymology of Flavin-dependent Catalysis in Bacterial D-Arginine Dehydrogenase and Choline Oxidase
    (2014-08-12) Gannavaram, Swathi; Dr. Giovanni Gadda

    D-Arginine dehydrogenase (DADH) catalyzes the oxidation of D-arginine to imino arginine using FAD as the cofactor. The enzyme is part of a recently discovered two-enzyme complex from Pseudomonas aeruginosa involved in arginine utilization. Function of the enzyme within the organism is unknown. Work on this enzyme has been undertaken to understand the structure as well as its reaction mechanism so as to eventually assign a function to the enzyme within the physiological context. In the reductive half-reaction 2 e- and 1 H+ are transferred from the amino acid substrate to FAD cofactor. In the oxidative half-reaction the reducing equivalents from the FAD cofactor are passed to an electron acceptor that is yet to be discovered. The enzyme has been established to have no reactivity with O2. Choline oxidase (CHO) from Arthrobacter globiformis is a well characterized member of Glucose-Methanol-Choline Superfamily that reacts with molecular O2. It catalyzes the oxidation of choline to glycine betaine mediated by betaine aldehyde intermediate using FAD as the cofactor and O2 as the oxidant to regenerate oxidized FAD for further reaction. Glycine betaine, the product of the reaction is an important osmolyte that regulates nutrients for plants under stressful conditions. Therefore it is of commercial interest to genetically engineer crops that do not typically possess competent pathways for glycine betaine synthesis.

    In this dissertation molecular details concerning the reductive half-eaction of DADH and oxidative half-reaction of CHO have been studied using a combination of steady state kinetics, rapid kinetics, pH, multiple substrates, mutagenesis, substrate deuterium and solvent isotope effects, viscosity effects or computational approaches.

    In DADH, the oxidation of amino acid substrate by FAD has been shown to most likely proceed via hydride transfer mechanism in the reductive half-reaction with Glu87, Tyr53, Tyr249 and His48 emerging as key players in substrate binding, catalysis or for up keeping the integrity of the FAD cofactor. In CHO, the oxidative half-reaction proceeds without stabilization of any reaction intermediates with H atom from reduced FAD and H+ from solvent or solvent exchangeable site occurring in the same kinetic step.

  • Item
    Novel Selenium-modified Nucleic Acids For Structural and Functional Studies
    (2014-05-10) Jiang, Sibo; Zhen Huang; Binghe Wang; Donald Hamelberg; Georgia State University

    Nucleic acids, as one of the most important macromolecules in living systems, play critical roles in storing, transferring, regulating genetic information, directing proteins synthesis, and catalysis. Understanding the structure of nucleic acid can bring us valuable information for mechanistic study and for drug discovery as well. Among all experimental methods, X-ray crystallography is the most powerful tool in structural biology study to reveal the 3D structure of macromolecules, which has provided over 80% of the highly detailed structural information to date. However, this great technology comes with two disturbing features, crystallization and phasing. The covalent selenium modification of nucleic acids has been proven to be a powerful tool to address both issues in nucleic acid crystallography. First part of this dissertation focuses on the development of novel selenium-modified nucleic acids (SeNA) for crystallization and phasing of B-form DNA containing structures. The novel 2’-SeMeANA modification is the first and currently the only selenium modification, which is fully compatible with X-ray crystallographic study of B-form DNA. Since selenium derivatization at 2’-arabino position dose not affect the B-type 2’-endo sugar conformation, this strategy is suitable for incorporating selenium into DNA for structural studies of B-DNA, DNA-protein complexes, and DNA-drug complexes.

    Specific base pairing is essential to many biological processes, including replication, transcription, and translation. It is crucial to NA (nucleic acid) sequence-based diagnostic and therapeutic applications as well. By utilizing the unique steric and electronic property of selenium, we designed, synthesized the novel 2-Se-U RNA modification, and demonstrated its highly specific base-pairing property by both biophysical and crystallographic methods. Our studies of 2-Se-U-containing RNAs suggest that this single-atom replacement can largely improve base pairing fidelity against U/G wobble pair, without significant impact on U/A pair.

  • Item
    Integration Of Extracellular And Intracellular Signals Via The Calcium Sensing Receptor (CASR)
    (2014-05-10) Zhang, Chen; Dr. Jenny J. Yang

    The Ca2+-sensing receptor (CaSR) regulates the calcium homeostasis in the human body via sensing fluctuations in the extracellular Ca2+ concentration. Naturally occurring mutations in the CaSR could result in Ca2+ regulation disorders. In the present study, we use several complementary approaches including imaging [Ca2+]i response in living cells at the cellular level and using molecular dynamic (MD) simulations at the atomic level to provide important insights into the behavior of the receptor in both normal and disease statuses. We demonstrated that the molecular connectivity between [Ca2+]o–binding sites is responsible for the functional positive homotropic cooperativity in the CaSR’s response to [Ca2+]o. Naturallyoccurring disease mutations near Site 1 disrupted the cooperativity. We further identified an L-Phe-binding pocket adjacent to Ca2+-binding Site 1, which is essential for functional positive heterotropic cooperativity by having a global impact on all five of the predicted Ca2+-binding sites in the ECD with regards to [Ca2+]o-evoked [Ca2+]i signaling. Furthermore, the CaSR’s ECDs have been expressed using both bacteria and mammalian systems and were characterized using the fluorescence titration spectroscopy, circular dichroism technique as well as the NMR spectroscopy. Our studies show calcium and Phe directly bind to the ECD domain directly and interactively. Moreover, we also demonstrated that intracellular trafficking of the CaSR is a complex process, which involves modulation by calmodulin and can possibly be affected by different CaSR isoforms when expressing in various cell lines. The studies on the isolated proteins will pave the way for future protein crystallization and related structural research.

  • Item
    Modeling Assemblies and Interactions at the Replication Fork: Sliding Clamps and Clamp Interacting Enzymes
    (2014-05-10) Xu, Xiaojun; Ivaylo Ivanov; Georgia State University

    DNA sliding clamps are structurally conservative toroid-shape proteins that encircle and slide along DNA, serving as scaffold for other functional enzymes to act on DNA and ensuring the replication proccessivity, thereby, of fundamental biological significance across domains of life. Mechanistic details and related functional implications concerning clamp opening, interaction between clamp and clamp-interactive proteins, post-translational modification of sliding clamp remain largely elusive due to technical difficulties in single molecule level manipulations and structural studies on large biological complex.

    Toward the end of providing a unified molecular-level description on clamp loading that would account for all available experimental observations, we calculated the interface binding energy and depicted the residue pair contributions using MM/PBSA and MM/GBSA calculations to compare the different interfaces of sliding clamps, and dissolved the uncertainty in comparative stability of different sliding clamp interfaces. The possible interface breaking pathways were investigated by sampling the opening state of interfaces using SMD simulations.

    Functioning as a polymerase accessory factor, sliding clamp associates with the dual enzymatic functional polymerase B (PolB) as DNA replication occurs. The massive conformational switch of PolB between replicating and editing mode is recognized for its functional significance but little is understood in the context of the PCNA/PolB/DNA complex. We integrated the structural informations from individual and binary crystal structures, as well as low-resolution structural information and other functional assay results, to build the complex atomistic models in both modes and refine them through atomistic simulations. The transition process was probed using TMD and ENM to reveal the structural characteristics and determinants of the transition. Sliding clamp is also a master coordinator of cellular responses to DNA damage. Efforts with the same methodology were made on human PCNA/FEN1/DNA ternary complex to investigate the reversible associations of FEN1 to PCNA and the conformational switching leading to exchange of repair intermediates.

    In the third thrust, we modeled the ubiquitin-modified and SUMO-modified PCNA using protein-protein docking and atomic simulation. Alongside with the SAXS data, our results revealed the structural basis for the distinct functional outcomes upon different posttranslational modification of PCNA.

  • Item
    Molecular Dynamics Simulations Towards The Understanding of the Cis-Trans Isomerization of Proline As A Conformational Switch For The Regulation of Biological Processes
    (2014-05-10) Velazquez, Hector; Dr. Donald Hamelberg; Dr. Ivaylo Ivanov; Dr. Aimin Liu

    Pin1 is an enzyme central to cell signaling pathways because it catalyzes the cistrans isomerization of the peptide ω-bond in phosphorylated serine/threonine-proline motifs in many proteins. This regulatory function makes Pin1 a drug target in the treatment of various diseases. The effects of phosphorylation on Pin1 substrates and the basis for Pin1 recognition are not well understood. The conformational consequences of phosphorylation on Pin1 substrate analogues and the mechanism of recognition by the catalytic domain of Pin1 were determined using molecular dynamics simulations. Phosphorylation perturbs the backbone conformational space of Pin1 substrate analogues. It is also shown that Pin1 recognizes specific conformations of its substrate by conformational selection. Dynamical correlated motions in the free Pin1 enzyme are present in the enzyme of the enzyme–substrate complex when the substrate is in the transition state configuration. This suggests that these motions play a significant role during catalysis. These results provide a detailed mechanistic understanding of Pin1 substrate recognition that can be exploited for drug design purposes and further our understanding of the subtleties of post-translational phosphorylation and cistrans isomerization.

    Results from accelerated molecular dynamics simulations indicate that catalysis occurs along a restricted path of the backbone configuration of the substrate, selecting specific subpopulations of the conformational space of the substrate in the active site of Pin1. The simulations show that the enzyme–substrate interactions are coupled to the state of the prolyl peptide bond during catalysis. The transition-state configuration of the substrate binds better than the cis and trans states to the catalytic domain of Pin1. This suggests that Pin1 catalyzes its substrate by noncovalently stabilizing the transition state. These results suggest an atomistic detail understanding of the catalytic mechanism of Pin1 that is necessary for the design of novel inhibitors and the treatment of several diseases. Additionally, a set of constant force biased molecular dynamics simulations are presented to explore the kinetic properties of a Pin1 substrate and its unphosphorylated analogue. The simulations indicate that the phosphorylated Pin1 substrate isomerizes slower than the unphosphorylated analogue. This is due to the lower diffusion constant for the phosphorylated Pin1 substrate.

  • Item
    Synthesis of Boronic Acid Based Sensors for Glucose and Sialic Acid and Synthesis of Novel and Selective PDE4 Enzyme Inhibitors
    (2006-12-04) Kaur, Gurpreet; Binghe Wang - Chair; David Boykin; Shahab Shamsi

    The boronic acid functional group is known to bind compounds with the diol group tightly and reversibly in aqueous environment and has been used as a recognition moiety for the design of carbohydrate sensors. The first chapter of the dissertation studies the synthesis and substitution effect on the affinity and selectivity of a known boronic acid-based glucose sensor. In such a sensor design effort, the availability of a signaling event, whether it is fluorescence or UV, is crucial. The second chapter studies the detailed mechanism on how a well-known fluorescent boronic acid compound changes fluorescent properties upon binding. A new mechanism has been established which corrected a decade old mistake. In the third chapter, a series of boronic acid-based sensors were designed and synthesized for sialic acid, which is part of tetrasaccharide found on many cell surface carbohydrates. Such sialic acid sensors could be very useful for the development of new type of anti-influenza therapy. The fourth is on the design and synthesis novel and selective inhibitors for phosphodiesterase 4 (PDE4), which are potential anti-asthma agents.

  • Item
    Using Molecular Dynamics to Elucidate the Mechanism of Cyclophilin
    (2014-05-09) McGowan, Lauren; Dr. Donald Hamelberg; Dr. David Wilson; Dr. Stuart Allison; Dr. Giovanni Gadda

    Cyclophilins are ubiquitous enzymes that are involved in protein folding, signal transduction, viral proliferation, oncogenesis, and regulation of the immune system. Cyclophilin A is the prototype of the cyclophilin family. We use molecular dynamics to describe the catalytic mechanism of cyclophilin A in full atomistic detail by sampling critical points along the reaction coordinate, and use accelerated molecular dynamics to sample cis-trans interconversions. At these critical points, we analyze the conformational space sampled by the active site, flexibility of the enzyme backbone, and modulation of binding interactions.We use Kramer’s rate theory to determine how diffusion and free energy contribute to lowering the activation energy of prolyl isomerization. We also find preferential binding modes of several cyclophiln A inhibitors, and compare the conformational space sampled by inhibited cyclophilin A to the conformational space sampled during wild-type interactions. We also analyze the mechanism of the next family member cyclophilin B in order to probe differences in enzyme dynamics and intermolecular interactions that could possibly be exploited in isoform-specific drug design. Our results indicate that cyclophilin proceeds by a conformational selection binding mechanism that manipulates substrate sterics, electrostatic interactions, and multiple reaction timescales in order to speed up reaction rate. Conformational space sampled by cyclophilin when inhibited and when undergoing wild-type interactions share significant similarity. Cyclophilins A and B do have notable differences in enzyme dynamics, due to variation in intramolecular interactions that arise from variation in primary structures. This work demonstrates how computational methods can be used to clarify catalytic mechanisms.

  • Item
    Detection and inhibition of influenza using synthetic sialosidesc
    (2014-05-16) He, Yun; Suri S. Iyer

    Influenza infection remains constant threat to human health and results in huge financial loss every year. Rapid and accurate detection of influenza can help governments and health organizations monitor influenza activity and take measurements when necessary. In addition, influenza detection in a timingly manner can help doctors make diagnosis and provide effective treatment. On the other hand, novel inhibitors of influenza virus are in high demand because circulating strains have started to develop resistance to currently available anti-viral drugs.

    Influenza virus has two surface glycoproteins: hemagglutinin (HA) and neuraminidase (NA), which play important roles in the influenza infection. The binding of HA to sialic acid-containing carbohydrates on cell surface initiates virus internalization, while cleavage of terminal sialic acid by NA facilitates viral particle release. In this dissertation, we focus on the development of glycan microarray that is comprised of a panel of NA resistant sialosides, and demonstrate the application of microarray to capture influenza virus at ambient temperature without the addition of NA inhibitors. We also describe a novel electrochemical biosensor for the detection of influenza virus. In addition, we have developed a new class of bivalent NA inhibitors that show promising inhibitory activities against influenza viruses.

  • Item
    The Structure and Function Study of Three Metalloenzymes That Utilize Three Histidines as Metal Ligands
    (2013-11-19) Chen, Yan; Dr. Aimin Liu

    The function of the metalloenzymes is mainly determined by four structural features: the metal core, the metal binding motif, the second sphere residues in the active site and the electronic statistics. Cysteamine dioxygenase (ADO) and cysteine dioxygenase (CDO) are the only known enzymes that oxidize free thiol containing molecules in mammals by inserting of a dioxygen molecue. Both ADO and CDO are known as non-heme iron dependent enzymes with 3-His metal binding motif. However, the mechanistic understanding of both enzymes is obscure. The understanding of the mechanistic features of the two thiol dioxygenases is approached through spectroscopic and metal substitution in this dissertation. Another focus of the dissertation is the understanding of the function of a second sphere residue His228 in a 3-His-1-carboxyl zinc binding decarboxylase α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD). ACMSD catalyzes the decarboxylation through a hydrolase-like mechanism that is initialized by the deprotonation of metal bounded water molecule. Our study reveled that the second sphere residue His228 is responsible for the water deprotonation through hydrogen bonding. The spectroscopic and crystallographic data showed the H228Y mutation binds ferric iron instead of native zinc metal and the active site water is replaced by the Tyr228 residue ligation. Thus, we concluded that, H228Y not only plays a role of stabilizing and deprotonating the active site water but also is an essential residue on metal selectivity.

  • Item
    Molecular Probe Designs For Nucleic Acid Based Detection
    (2013-12-18) Kaur, Manindar; Dr. Zhen Huang; Dr. Binghe Wang; Dr. Markus Germann; Georgia State University

    Nucleosides and nucleotides are powerful building units for creating functional molecules with novel properties. The structural and functional variations of these biomolecules have caused a renaissance of nucleic acid chemistry and biology, and paved the way for fresh avenues in nucleic acid research, including therapeutics, nucleic acid biology, structure-function studies, catalytic and mechanistic analysis, and material science and nanotechnology.

    Modified nucleic acids are instrumental in discovering functional oligonucleotides as signif-icant biochemical and therapeutic agents. A variety of synthetic strategies have been developed to design novel analogs with tunable physico-chemical properties, such as enhanced duplex stability, binding affinity, nuclease resistance, bioavailability, and base-pair fidelity. These engineered nucleic acids are useful structural, functional, and mechanistic probes for disease detection, molecular sensing, and fundamental understanding of the structures and biological functions of nucleic acids (DNA and RNA).

    The structural, functional and spectroscopic repertoire of the nucleic acids can be further enhanced by strategic substitution of the oxygen atoms with selenium atoms. Selenium derivatiza-tion of nucleic acids generates modified biopolymers with unique structural and functional features that make them strong contenders for biochemical and biophysical research. The substitution of oxygen with selenium in the nucleobases permits a search for novel aspects of nucleic acid base-pairing and stacking interactions at the atomic level. Huang and co-workers have demonstrated that the single-atom modified (SAM) nucleosides and nucleic acids, where a single oxygen atom is strategically replaced with a selenium atom, are yellow colored and have over a 100 nm red-shift in the absorption maximum. With minimal structural perturbation, SAM nucleosides and nucleo-tides could be of immense significance in the detection and visualization of nucleic acids. Selenium-derivatized nucleic acids (SeNAs) could also serve as imperative tools in the structural, functional and mechanistic studies of nucleic acids and their complexes with proteins, small molecules, and/or metal ions.

  • Item
    Modulating Calcium Signaling by Protein Design and Analysis of Calcium Binding Proteins
    (2013-12-18) Zhuo, You; Jenny J. Yang; Aimin Liu; Donald Hamelberg; Georgia State University

    Transient change of cytosolic calcium level leads to physiological actions, which are modulated by the intracellular calcium stores, and gated by membrane calcium channels/pumps. To closely monitor calcium dynamics there is a pressing need to develop calcium sensors that are targeted to high calcium environment such as the ER/SR with relatively low binding affinity and fast kinetic properties to complement the current calcium indicator toolkits. In this dissertation, the development of fast red florescent calcium binding protein using the protein design is reported. The results show the calcium dependent fluorescence increase of mCherry mutant MCD1 (RapidER) and MCD15 (RapidER’) is able to monitor the ER calcium release in several cell lines responding to perturbations of extracellular calcium signaling. The specific targeting to the ER membrane was achieved by fusing the ryanodine receptor 1 transmembrane domains for the spatio-temporal calcium imaging.

    To understand the underlying mechanism of calcium binding induced fluorescence increase in the designed calcium sensor CatchER, the fluorescence lifetime of CatchER was determined in calcium free and bound forms using time resolved florescence spectroscopy. The results suggest that calcium binding inhibits the geminate quenching, resulting in a longer lifetime when the anionic form is indirectly excited at 395 nm. It is believed that such unique calcium-induced lifetime change can be applied to monitor calcium signaling in cell imaging.

    NMR spectroscopy was used to investigate the protein-protein/ligand interaction in this dissertation. The residual dipolar coupling and T1, T2, NOE dynamic study were carried out to understand the binding mode of CaM and the N-terminal intracellular loop of connexin 43. The results show that both N and C terminal domains of Ca2+-CaM contact with the peptide, leading to a partially unwound and bending central helix of CaM. The ligand binding induced conformational change was demonstrated by selectively labeled proteins including extracellular domain of calcium sensing receptor and the bacterial membrane protein SecA fragments C34 and N68.

  • Item
    Crystallographic Study of HIV Protease Drug Resistant Variants and Green Fluorescent Protein Based Calcium Sensor CatchER
    (2013-12-18) Zhang, Ying; Dr. Irene T. Weber; Dr. Jenny J. Yang; Dr. Robert W. Harrison; Dr. Stuart A. Allison

    HIV-1 protease is an important enzyme for the maturation of infectious virions and has been an effective drug target for HIV/AIDS. Protease inhibitors were successfully designed based on the structural data for AIDS therapy. Nonetheless, the drug resistant PR variants are selected rapidly during therapy. Mutation L76V is associated with drug resistance and shows opposite effects on different protease inhibitors. Kinetics and stability of PRL76V were studied and high-resolution crystal structures of PRL76V with inhibitors were solved to identify structural changes. HIV-1 PRP51 variant is a multiple mutant selected for resistance to darunavir in the laboratory in vitro and it is useful to investigate the mechanisms of HIV-1 resistance to darunavir. The crystal structures of an inactive form of PRP51 have been determined: a darunavir bound structure and a ligand free structure. The kinetics and crystal structures of these drug resistant mutants provide the information to understand drug resistance mechanisms and hints to design novel inhibitors.

    Ca2+ is a ubiquitous signaling molecule in regulating numerous biological functions. Calcium biosensor CatchER was designed by site-directed mutagenesis in the fluorescent sensitive location of chromophore. Crystal structures of CatchER in the absence of Ca2+, complexed with Ca2+ and also with Gd3+ were determined to investigate the calcium binding site and mechanisms of chromophore in response to Ca2+. Metal ions were identified in the designed calcium-binding site and structures showed the metal ion induced changes related to changes in optical properties. The structural information can be useful for the optimization and design of biosensors.

  • Item
    DNA Interactions and Photocleavage by Anthracene, Acridine, and Carbocyanine-Based Chromophores
    (2013-09-23) Mapp, Carla; Dr. Kathryn B. Grant

    The interaction of small molecules with DNA has been extensively studied and has produced a large catalogue of molecules that non-covalently bind to DNA though groove binding, intercalation, electrostatics, or a combination of these binding modes. Anthracene, acridine, and carbocyanine-based chromophores have been examined for their DNA binding properties and photo-reactivities. Their planar aromatic structures make them ideal chromophores that can be used to probe DNA structural interactions and binding patterns. We have studied DNA binding and photocleavgage properties of a bisacridine chromophore joined by a 2,6-bis(aminomethyl)pyridine copper-binding linker (Chapter II), a series of 9-aminomethyl anthracene chromophores (Chapters III and IV), both under conditions of high and low ionic strength, as well as a series of pentamethine linked symmetrical carbocyanine dyes (Chapter V). In Chapter II we present data showing that high ionic strength efficiently increases copper(II)-dependent photocleavage of plasmid DNA by the bisacridine based chromophore (419 nm, pH 7.0). In Chapters III and IV, using an pyridine N-substituted 9-(aminomethyl)anthracene (Chapter III), a bis-9-(aminomethyl)anthracene, and its mono 9-(aminomethyl)anthracene analogue (Chapter IV), pUC19 plasmid DNA was photo-converted to highly diffuse DNA fragments (350 nm, pH 7.0) in the presence of 150 mM NaCl and 260 mM KCl. Spectroscopic analyses suggest that the combination of salts promotes a change in DNA helical structure that initiate a switch in anthracene binding mode from intercalation to an external or groove binding interactions. The alteration in DNA structure and binding mode leads to an increase in the anthracene-sensitized production of DNA damaging reactive oxygen species. Finally, in Chapter V, pUC19 plasmid DNA is converted to its nicked circular and linear forms following irradiation of a series of pentamethine linked symmetrical carbocyanines (red light, pH 7.0). The data suggest that the relative levels of photocleavage arise from the different substituents on the nitrogen alkyl side chain and the pentamethine linker.

  • Item
    Enzymatic Mechanisms and Chemical Probes of the Myst Family of Histone Acetyltransferases
    (2013-08-01) Yang, Chao; Y. George Zheng; Georgia State University

    As an important posttranslational modification, protein acetylation plays critical roles in many biological processes such as gene transcription, DNA damage repair, apoptosis and metabolism. The acetylation occurs on the ε-amino group of specific lysine residues, and is catalyzed by histone acetyltransferases (HATs). In cellular contexts, HATs are found to target hundreds and thousands of substrates including histone and nonhistone proteins. Lysine acetylation changes the microenvironment of protein and may potentially alter protein activity and protein-protein interaction. The goal of this dissertation project is to investigate the impact of lysine acetylation on the catalysis of MYST HATs, and to establish the strategy for labeling substrates of the MYST HATs at cellular level. To understand the regulatory mechanism of MYST HATs, a detailed study was carried out to investigate the active site lysine acetylation of two MYST HATs (MOF and Tip60). Autoradiography and immunoblotting data shows that mutation of active site lysine differentially affects the enzyme autoacetylation activity and the cognate substrate acetylation activity. In addition, deacetylated MOF and Tip60 were prepared by using the nonspecific lysine deacetylase Sirt1. Kinetic study demonstrated that the acetylation of the active site lysine on MYST HATs marginally modulates the HAT catalysis. This work provides new insights into the regulatory mechanism of MYST catalysis. In the second part of my work, we designed and synthesized a series of Ac-CoA analogs conjugated with alkynyl or azido functional groups. Meanwhile, the active site of the MOF was engineered to expand the cofactor binding capability. Fluorescence screening was carried out to characterize the enzyme activity to Ac-CoA analogs. MOF-I317A with all analogs and MOF-I317A/H273A–5HYCoA were identified and further applied in the labeling of the cognate histone H4 protein and HAT substrates in 293T cell lysate. Visualizing of the labeled substrate was achieved using the alkynyl or azido-tagged fluorescent reporters through the copper-catalyzed azide−alkyne cycloaddition. As expected, the histone H4 protein was successfully labeled by the active enzyme-cofactor pairs. More intriguingly, multiple protein bands in cell lysate were labeled and observed. This work provides a new versatile strategy in exploring the substrates of MYST HATs at the proteomic level.