Physics and Astronomy Dissertations

Permanent URI for this collection

Browse

Recent Submissions

  • Item
    Ultrafast Processes in 2d Materials
    (2017-12-14) Oliaei Motlagh, Seyyedeh Azar; Dr. Mark I. Stockman

    In this dissertation, we study theoretically ultrafast processes accessible via the interaction of the ultrafast and intense laser pulses with 2D materials. The ultrafast and strong laser pulse has a duration of a few femtoseconds, and the amplitude of the electric field is about several V/˚A. We investigate the ultrafast electron dynamics in graphene, on a surface of a 3D topological insulator, and on a surface of a 3D crystalline topological insulator. Due to the gapless structure of graphene, surface states of the 3D topological insulator, and a 3D crystalline topological insulator, the electron dynamics is highly irreversible. The irreversibility of the electron dynamics is characterized by nonzero conduction band population in the reciprocal space after the pulse ends. Unlike graphene, electron dynamics on the surface of the 3D topological insulator is chiral in the presence of a single cycle of a circularly polarized pulse. We define the chirality of electron dynamics using the distribution of the residual conduction band population in the reciprocal space. The chirality of the electron dynamics of a 3D topological insulator is due to a cubic term known as a hexagonal warping term in the low energy Hamiltonian. This warping term breaks down the full rotational symmetry of the crystal to the threefold symmetry. Unlike graphene which has a linear energy dispersion at valleys in its Brillouin zone, the crystalline topological insulator has a quadratic energy dispersion at the M point in its (001) crystal face. The ultrafast electron dynamics on the surface of the crystalline topological insulator is anisotropic, i.e., the distribution of the residual conduction band population changes with the angle of the polarization of the applied linearly polarized pulse. For all different 2D materials studied in this work, applied ultrafast laser pulses generate ultrafast charge currents. The generated ultrafast currents follow the vector potentials of the pulse’s electric fields. The asymmetric profile of the ultrafast electric current produces a nonzero transferred charge which also determines the final polarization of the materials.

  • Item
    Cosmic Ray Shower Simulation Study at a Global Scale and Associated Applications
    (2017-08-08) Sarajlic, Olesya; Xiaochun He; Megan Connors; Murad Sarsour; Doug Gies

    Galactic cosmic rays are the high-energy particles that stream into our solar system from distant corners of our Galaxy. The Earth's atmosphere serves as an ideal detector for the high energy cosmic rays which interact with the air molecule nuclei causing propagation of extensive air showers. The primary cosmic ray particles interact with the molecules in the atmosphere and produce showers of secondary particles (mainly pions) at about 15 km altitude. These pions decay into muons which are the dominant particles of radiation (about 80%) at the surface of the Earth.

    In recent years, there are growing interests in the applications of the cosmic ray measurements such as space/earth weather monitoring, homeland security activities based on the cosmic ray muon tomography, radiation effects on health via air travel, etc.

    A simulation program (based on the Geant4 software package developed at CERN) has been developed at Georgia State University for studying cosmic ray showers in the atmosphere. The results of this simulation study will provide unprecedented knowledge of geo-position-dependent cosmic ray shower profiles and will significantly advance cosmic ray applications. Simulation results are critically important for determining the temperature coefficients in every pressure layer in the atmosphere in order to calculate the temperature variations using the cosmic ray data. Using a single particle shower simulation, the weighted particle altitude distributions on a global scale are calculated with geomagnetic field implementation. The results of the simulation can aid the computation of the effective temperature in stratosphere.

  • Item
    Near-Field Nanoscale Spectroscopy and Imaging of Enveloped Virus Particles and Layered Materials
    (2017-08-08) Gamage, Don Sampath; Yohannes Abate; A. G. Unil Perera; Ramesh Mani; Vadym Apalkov; Misty Bentz

    Deeper understanding and technological progress in materials physics demand exploration of soft and hard matter at their relevant length scales. This research focuses on the nanometer length scale investigation of structural changes required for membrane fusion in virus nanoparticles and nano-spectroscopic investigation of layered material surfaces implementing scattering type scanning near-field optical microscopy (s-SNOM).

    Spectroscopy and imaging experiments were deployed to investigate the chemical and structural modifications of the viral protein and lipid bilayer under various environmental pH variations. It has been shown that breakage of viral membrane could occur even without the presence of a targeting membrane, if the environment pH is lowered. This is in contrary to the current viral fusion model, which requires virus binding to a host cell membrane for forming the fusion pore to release the viral genome. The fusion inhibitor compound 136 can effectively prevent the membrane breakage induced by low pH.

    The chemical surface stability and degradation of black phosphorus (BP) under ambient conditions have been studied using s-SNOM. We found that the degraded area and volume on the surface of black phosphorus increase with time slowly at the start of degradation and enlarge rapidly (roughly exponentially) afterward and reach saturation growth following S-shaped growth curve (sigmoid growth curve). The theoretical model presented suggests that the degraded sites in the adjacent surrounding causes the experimentally observed exponential growth of degraded area at the initial stage. By studying the BP surfaces coated by Al2O3, boron nitride (BN) and hybrid BN/Al2O3 layers through the period up to 6 months, it has been concluded that ~5 nm thin hybrid layer of BN/Al2O3 helps the surface passivation of BP flakes of thickness ~30 nm. This is supported by the electrical characterization results of BP field effect transistor coated with a BN/Al2O3 layer.

    We have performed infrared nano-spectroscopy on muscovite mica exfoliated on silicon and silicon dioxide substrates. We show that the near-field profile in s-SNOM can penetrate down to several hundreds of nanometers and enable spectroscopy of buried structures. We found spectral broadening of mica as its thickness increases revealing clearly the effect of size on the absorption response.

  • Item
    Magneto-transport Study of 3D Topological Insulator Bi2Te3 And GaAs/AlGaAs 2D Electron System
    (2017-08-08) Wang, Zhuo; Ramesh G. Mani

    Magneto-transport study on high mobility electron systems in both 2D- and 3D- case has attracted intense attention in past decades. This thesis focuses on the magnetoresistance behavior in 3D topological insulator Bi2Te3 and GaAs/AlGaAs 2D electron system at low magnetic field range 0.4T the first drop at T~3.4K to tndium superconductor and considered the second drop at lower temperature as the proximity effect that occurred near the interface between these two materials. On the other hand, GaAs/AlGaAs heterostructure, as a III-V semiconductor family, has been extensively studied for exploring many interesting phenomena due to the extremely high electron mobility up to 10^7 cm^2/Vs. In this thesis, two interesting phenomena are present and discussed in a GaAs/AlGaAs system, which are the electron heating induced tunable giant magnetoresistance study and phase inversion in Shubnikov-de Haas oscillation study, respectively. By applying elevated supplementary dc current bias, we found a tunable giant magnetoresistance phenomenon which is progressively changed from positive to giant negative magnetoresistance. The observed giant magnetoresistance is successfully simulated with a two-term Drude model at all different dc biases, I_{dc}, and temperature, T. In addition, as increasing the dc current bias, a phase inversion behavior was observed in Shubnikov-de Haas oscillation, which was further demonstrated by the simulation with an exponential damped cosine function. This thesis also presents an ongoing project, which is the observation and fabrication of 2D layered materials. The studied 2D layered materials includes graphene, biron nitride, Molybdenum disulfide, etc. At the end, a future work about fabrication of the 2D layered materials devices as well as the suggestion about the measurement are discussed.

  • Item
    De Ilii Coloribus: A Photometric Study of the Largest Jupiter Trojan Asteroids
    (2017-08-08) Chatelain, Joseph; Todd J. Henry; David E. Trilling; Linda M. French

    The Jupiter Trojan asteroids are minor bodies that orbit 60 degrees before and 60 degrees behind Jupiter. Because these orbits are stable over the lifetime of the Solar System, the properties of these objects may inform us about the conditions under which the Solar System formed. We present BVRI photometry for 110 of the intrinsically brightest and presumably largest members of the L4 and L5 Jupiter Trojans. We use a new principal color component derived by Chatelain et al. (2016) that is indicative of taxonomic types relevant to the Jupiter Trojan asteroids. We find that 83% of the largest Jupiter Trojans are consistent with a D-type classification, while 17% show shallower slopes more consistent with X-type and C-type classifications. We show the L4 and L5 populations to be taxonomically indistinguishable at large sizes, as well as include findings about certain objects that have resulted from these data. Specifically, multi-filter light curves for twelve objects show signs of V-I color variation in as many as two thirds of these objects, and our richest datasets allow for the determination of phase curves and shapes for some asteroids including a new shape model and pole solution for (1173) Anchises. Our goal is to use this study to shed light on these fascinating objects and to place the Trojans in context in the larger Solar System.

  • Item
    Determining the Mass of the Supermassive Black Hole in NGC 6814
    (2017-05-10) Manne-Nicholas, Emily Rachel; Misty C. Bentz; D. Michael Crenshaw; Rachel Kuzio de Naray; Vadym Apalkov; Christopher Onken; Georgia State University

    Supermassive black holes (SMBH) are now thought to exist at the center nearly all massive galaxies. Not only are they thought to be ubiquitous, but it was also discovered nearly two decades ago that the mass of these SMBHs correlate strongly with properties of their host galaxies including bulge stellar velocity dispersion (MBH-sigma) and bulge luminosity (MBH-Lbulge). This correlation was not expected due to the tiny size of the SMBH gravitational sphere of influence compared to the size of the host galaxy, and imply a connection between the two, but this connection is still not well-understood. One step toward understanding this connection is to accurately measure the masses of these black holes. Two of the most common direct SMBH mass measurement techniques are stellar dynamical modeling (SDM), which generally only applies to quiescent galaxies, and reverberation mapping (RM), which can only be applied to active galactic nuclei (AGN) that exhibit broadened emission lines. Due to the unknown geometry of the region that produces these broad lines, the whole RM sample of black hole masses generally needs to be multiplied by a constant called the f-factor to bring it into agreement with the SDM sample on the MBH-sigma relation. It is unknown how well this f-factor, being a population average, applies to individual RM masses. It would therefore be useful to measure an SMBH mass with both methods simultaneously to test whether they produce the same black hole mass. However, because the RM and SDM techniques usually apply to galaxies that are not possible for both, this has only been attempted twice before (NGC 3227 and NGC 4151).

    The purpose of this dissertation is to apply SDM to the SMBH at the center of NGC 6814 for which there already exists an RM mass. This makes it only the third broad-lined AGN for which an SDM mass has been derived. In order to perform SDM accurately, the distance to the galaxy needs to be well-constrained as the error in the SDM mass scales linearly with distance. Because no adequate distance measurements already exist, the first half of this dissertation is devoted to deriving a Cepheid distance to NGC 6814 from V- and I-band HST WFC3 time series photometry. We measure the distance to NGC 6814 to be 17.54 +1.44/-1.33 Mpc. In the second half, we incorporate that distance measurement into our stellar dynamical modeling on Gemini NIFS+Altair IFU data of NGC 6814's central 1.55''x1.55''. We derive a mass of 1.19 +37.57/-1.17 x108 solar masses, and best fit mass-to-light ratio of 0.948 +0.032/-0.208 in solar units. This mass is nearly an order of magnitude larger than the RM mass but has a 3-sigma range spanning nearly three orders of magnitude. We describe possible reasons for our larger-than-expected mass value, such as the existence of a bar, which would not be well-modeled by an axisymmetric dynamical code. Finally, we describe future steps that may be taken to better constrain the mass, such as creating more models to further explore parameter space.

  • Item
    Ultrafast Laser-Induced Kinetics in Two-Dimensional Materials
    (2017-05-10) Koochaki Kelardeh, Hamed; Mark Stockman; Georgia State University

    In this dissertation, we theorize the fundamentals of an ultrafast and ultrastrong optical field interacting with graphene and graphene-like nanocrystals as a prototype of two-dimensional class of materials. Graphene exhibits dramatically different characteristics from both insulators and metals. Field- induced, Zener-type electron transfer from the valence band to the conduction band is deeply irreversible (nonadiabatic) in graphene. Correspondingly, an ultrashort electronic current can be induced on a femtosecond timescale. The ultrafast optically-induced current and charge transfer in graphene may provide a fundamental basis for detection and calibration of ultrashort intense laser pulses and are promising for petahertz information processing. We further studied and proposed techniques to manifest the topological properties of graphene using the few-cycle circularly polarized pulse. Our findings hold application in spectroscopy, imaging, laser technology, transmitting and processing information with speed and accuracy far beyond the capabilities of conventional optics and electronics.

  • Item
    Fundamental Properties, Activity, and Planet-Hosting Potential of Young Suns Near Earth
    (2017-05-10) Cabrera Salazar, Nicole E.; Russel White; Xavier Delfosse; Georgia State University

    In this dissertation, we conduct a census and assessment of the nearest young Sun-like stars and investigate the potential for finding giant planets orbiting spotted stars using the radial velocity (RV) method at optical and near-infrared wavelengths. Based in part on new spectroscopic measurements conducted here, we have assembled a complete list of 129 young (<150 >Myr), nearby Sun-like stars and their fundamental parameters, including rotational and multiplicity information. We also provide a statistical analysis of their stellar parameters, including projected rotational velocity and inclination. Sixteen of these stars have no close companions and have low projected rotational velocities (vsini/s) that are ideal for precision RV planet searches. Seven of these rotate nearly edge-on and are ideal targets for upcoming transiting planet searches, assuming low obliquity.

    We conduct precision RV planet search of 7 young Sun-like stars using the TRES spectrograph, mounted on the 1.5-m Tillinghast Reflector at the Fred L. Whipple Observatory, and with the SOPHIE spectrograph, mounted on the 1.93-m Telescope at the Observatoire de Haute Provence; we achieve a precision of 10 m/s for both. Four stars are identified as having larger RV variations that are periodic, possibly caused by an orbiting companion. However, the RV variations are correlated with asymmetries in the spectral absorption features, which instead suggests that the variations are caused by spots. Nevertheless our observations provide new independent measures of the rotation periods of these stars. Through this analysis we tentatively confirm the planetary companion around BD+20 1790 in the presence of activity. We additionally investigate the use of comparing red orders of the optical spectrum to the blue orders in order to distinguish spots from planets; we find that this method can be effective for observations that span the full wavelength range of the optical. We also investigate our detection limits at optical wavelengths and find that we are sensitive to over 90% of short period giant planets. Next, we assemble the stellar jitter measurements of our stars with previous studies of all Sun-like stars younger than 1 Gyr to investigate how stellar jitter declines with stellar age. We find that stellar jitter decreases with stellar age as t^(0.53±0.13), similar to the relationship between stellar rotation period and stellar age. The implication is that it will be diffcult to find planets orbiting stars younger than 100 Myr without using techniques that mitigate star spot noise.

    Furthermore, we present a near-infrared RV search for giant planets orbiting 8 stars observed with CSHELL at the NASA Infrared Telescope Facility (IRTF). Because of the limited wavelength coverage (29 ̊A) and older (1980s) detector technology, the achieved precision of 200 m/s inhibits finding the majority of exoplanets, but is nevertheless sufficient to identify short-period brown dwarfs for these stars. We also analyze our detection limits at IR wavelengths and find that we are only sensitive to roughly 50% of short period giant planets. Finally, we present a new orbital solution for V835 Her, a spectroscopic binary with a 3 day orbital period.

  • Item
    Fundamental Parameters of Eclipsing Binaries in the Kepler Field of View
    (2016-12-15) Matson, Rachel A.; Douglas R. Gies; Todd J. Henry; Harold A. McAlister; Guillermo Torres; Russel J. White; Joshua S. Von Korff

    Accurate knowledge of stellar parameters such as mass, radius, effective temperature, and composition inform our understanding of stellar evolution and constrain theoretical models. Binaries and, in particular, eclipsing binaries make it possible to measure directly these parameters without reliance on models or scaling relations. In this dissertation we derive fundamental parameters of stars in close binary systems with and without (detected) tertiary companions to test and inform theories of stellar and binary evolution. A subsample of 41 detached and semi-detached short-period eclipsing binaries observed by NASA’s Kepler mission and analyzed for eclipse timing variations form the basis of our sample. Radial velocities and spectroscopic orbits for these systems are derived from moderate resolution optical spectra and used to determine individual masses for 34 double-lined spectroscopic binaries, five of which have detected tertiaries. The resulting mass ratio M2/M1 distribution is bimodal, dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. A more detailed analysis of KIC 5738698, a detached binary consisting of two F-type main sequence stars with an orbital period of 4.8 days, uses the derived radial velocities to reconstruct the primary and secondary component spectra via Doppler tomography and derive atmospheric parameters for both stars. These parameters are then combined with Kepler photometry to obtain accurate masses and radii through light curve and radial velocity fitting with the binary modeling software ELC. A similar analysis is performed for KOI-81, a rapidly-rotating B-type star orbited by a low-mass white dwarf, using UV spectroscopy to identify the hot companion and determine masses and temperatures of both components. Well defined stellar parameters for KOI-81 and the other close binary systems examined in this dissertation enable detailed analyses of the physical attributes of systems in different evolutionary stages, providing important constraints for the formation and evolution of close binary systems.

  • Item
    Polarization Rotation Study of Microwave Induced Magnetoresistance Oscillations in the GaAs/AlGaAs 2D System
    (2016-12-15) Liu, Han-Chun; Ramesh Mani; Vadym Apalkov; Zhigang Jiang; Alexander Kozhanov; Unil Perera

    Previous studies have demonstrated the sensitivity of the amplitude of the microwave radiation-induced magnetoresistance oscillations to the microwave polarization. These studies have also shown that there exists a phase shift in the linear polarization angle dependence. But the physical origin of this phase shift is still unclear. Therefore, the first part of this dissertation analyzes the phase shift by averaging over other small contributions, when those contributions are smaller than experimental uncertainties. The analysis indicates nontrivial frequency dependence of the phase shift. The second part of the dissertation continues the study of the phase shift and the results suggest that the specimen exhibits only one preferred radiation orientation for different Hall-bar sections. The third part of the dissertation summarizes our study of the Hall and longitudinal resistance oscillations induced by microwave frequency and dc bias at low filling factors. Here, the phase of these resistance oscillations depends on the contact pair on the device, and the period of oscillations appears to be inversely proportional to radiation frequency.

  • Item
    Modeling the Power Evolution of Classical Double Radio Galaxies over Cosmological Scales
    (2006-08-03) Barai, Paramita; Paul J. Wiita - Chair; Vadym Apalkov; D. Michael Crenshaw; Douglas R. Gies; H. Richard Miller

    During the quasar era (redshifts between 1 and 3) Radio Galaxies (RGs) have been claimed to have substantially influenced the growth and evolution of large scale structures in the universe. In this dissertation I test the robustness of these exciting claims. In order to probe the impacts in more detail, good theoretical models for such RG systems are required. With this motivation, I seek to develop an essentially analytical model for the evolution of Fanaroff-Riley Class II radio galaxies both as they age individually and as their numbers vary with cosmological epoch. To do so, I first compare three sophisticated semi-analytical models for the dynamical and radio lobe power evolution of FR II galaxies, those given by Kaiser, Dennett-Thorpe & Alexander (1997, KDA), Blundell, Rawlings, & Willott (1999, BRW) and Manolakou & Kirk (2002, MK). I perform multi-dimensional Monte Carlo simulations leading to virtual radio surveys. The predictions of each model for redshift, radio power (at 151 MHz), linear size and spectral index are then compared with data. The observational samples are the low frequency radio surveys, 3CRR, 6CE and 7CRS, which are flux-limited and redshift complete. I next perform extensive statistical tests to compare the distributions of model radio source parameters and those of the observational samples. The statistics used are the 1-Dimensional and 2-Dimensional Kolmogorov-Smirnov (K-S) tests and the 4-variable Spearman partial rank correlation coefficient. I search for and describe the "best" parameters for each model. I then produced modifications to each of the three original models, and extensively compare the original and the modified model performances in fitting the data. The key result of my dissertation is that using the Radio Luminosity Function of Willott et al. (2001) as the redshift birth function of radio sources, the KDA and MK models perform better than the BRW models in fitting the 3CRR, 6CE and 7CRS survey data when using K-S based statistical tests, and the KDA model provides the best fits to the correlation coefficients. However, no pre-existing or modified model can provide adequate fits for the spectral indices. I also calculate the volume fraction of the relevant universe filled by the generations of radio galaxies over the quasar era. This volume filling factor is not as large as estimated earlier. Nonetheless, the allowed ranges of various model parameters produce a rather wide range of astrophysically interesting relevant volume fraction values. I conclude that the expanding RGs born during the quasar era may still play significant roles in the cosmological history of the universe.

  • Item
    Optoelectronic and Structural Properties of Group III-Nitride Semiconductors Grown by High Pressure MOCVD and Migration Enhanced Plasma Assisted MOCVD
    (2016-12-15) Matara Kankanamge, Indika; Nikolaus Dietz; Vadym Apalkov; Michael Williams; Yohannes Abate; Georgia State University

    The objective of this dissertation is to understand the structural and optoelectronic properties of group III-nitride materials grown by High-Pressure Metal Organic Chemical Vapor Deposition (HP-MOCVD) and Migration Enhanced Plasma Assisted MOCVD by FTIR reflectance spectroscopy, Raman spectroscopy, X-ray diffraction, and Atomic Force Microscopy.

    The influence of the substrates/templates (Sapphire, AlN, Ga-polar GaN, N-polar GaN, n-GaN, and p-GaN) on the free carrier concentration, carrier mobility, short-range crystalline ordering, and surface morphology of the InN layers grown on HP-MOCVD were investigated using those techniques. The lowest carrier concentration of 7.1×1018 cm-3 with mobility of 660 cm2V-1s-1 was found in the InN film on AlN template, by FTIR reflectance spectra analysis. Furthermore, in addition to the bulk layer, an intermediate InN layers with different optoelectronic properties were identified in these samples. The best local crystalline order was observed in the InN/AlN/Sapphire by the Raman E2 high analysis. The smoothest InN surface was observed on the InN film on p-GaN template.

    The influence of reactor pressures (2.5–18.5 bar) on the long-range crystalline order, in plane structural quality, local crystalline order, free carrier concentration, and carrier mobility of the InN epilayers deposited on GaN/sapphire by HP-MOCVD has also been studied using those methods. Within the studied process parameter space, the best material properties were achieved at a reactor pressure of 12.5 bar and a group-V/III ratio of 2500 with a free carrier concentration of 1.5x1018 cm-3, a mobility in the bulk InN layer of 270 cm2 V-1s-1 and the Raman (E2 high) FWHM of 10.3 cm-1. The crystalline properties, probed by XRD 2θ–ω scans have shown an improvement with the increasing reactor pressure.

    The effect of an AlN buffer layer on the free carrier concentration, carrier mobility, local crystalline order, and surface morphology of InN layers grown by Migration-Enhanced Plasma Assisted MOCVD were also investigated. Here, the AlN nucleation layer was varied to assess the physical properties of the InN layers. This study was focused on optimization of the AlN nucleation layer (e.g. temporal precursor exposure, nitrogen plasma exposure, and plasma power) and its effect on the InN layer properties.

  • Item
    Infrared Diagnostics on Micro and Nano Scale Structures
    (2016-12-15) Titus, Jitto; A.G. Unil Perera; Julia Hilliard; Didier Merlin; Yiping Zhao; Vadym Apalkov; Alexander Kozhanov; Fabien Baron

    Fourier Transform Infrared spectroscopy is used as a diagnostic tool in biological and physical sciences by characterizing the samples based on infrared light-matter interaction. In the case of biological samples, Activation of Jurkat T-cells in culture following treatment with anti-CD3 (Cluster of Differentiation 3) antibody is detectable by interrogating the treated T-cells using the Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) Spectroscopy technique. Cell activation was detected within 75 minutes after the cells encountered specific immunoglobulin molecules. Spectral markers noted following ligation of the CD3 receptor with anti CD3 antibody provides proof-of-concept that ATR-FTIR spectroscopy is a sensitive measure of molecular events subsequent to cells interacting with anti-CD3 Immunoglobulin G (IgG). ATR-FTIR spectroscopy is also used to screen for Colitis in chronic (Interleukin 10 knockout) and acute (Dextran Sodium Sulphate-induced) models. Arthritis (Collagen Antibody Induced Arthritis) and metabolic syndrome (Toll like receptor 5 knockout) models are also tested as controls. The marker identified as mannose uniquely screens and distinguishes the colitic from the non-colitic samples and the controls. The reference or the baseline spectrum could be the pooled and averaged spectra of non-colitic samples or the subject’s previous sample spectrum. The circular dichroism of titanium-doped silver chiral nanorod arrays grown using the glancing angle deposition (GLAD) method is investigated in the visible and near infrared ranges using transmission ellipsometry and spectroscopy. The characteristics of these circular polarization effects are strongly influenced by the morphology of the deposited arrays. Studies of optical phonon modes in nearly defect-free GaN nanowires embedded with intrinsic InGaN quantum dots by using oblique angle transmission infrared spectroscopy is described here. These phonon modes are dependent on the nanowire fill-factor, doping densities of the nanowires and the presence of InGaN dots. These factors can be applied for potential phonon based photodetectors whose spectral responses can be tailored by varying a combination of these three parameters. The optical anisotropy along the growth (c-) axis of the GaN nanowire contributes to the polarization agility of such potential photodetectors.

  • Item
    Asteroseismology in Binary Stars with Applications of Bayesian Inference Tools
    (2016-12-14) Guo, Zhao; Douglas R. Gies; Richard H. D. Townsend; Fabien Baron; Russel J. White; Harold A. McAlister; Vadym Apalkov; Georgia State University

    Space missions like Kepler have revolutionized asteroseismology, the science that infers the stellar interiors by studying oscillation frequency spectra of pulsating stars.

    Great advancements have been made in understanding solar-like oscillators. However, this is not the case for variable stars of intermediate masses, such asScutiand Doradus variables. By studying these stars in eclipsing binaries (EBs), model independent funda- mental parameters such as mass and radius can be inferred. On one hand, this synergy constrains the parameter space and facilitates the asteroseismic modeling, and this is shown for the Scuti type pulsating EB KIC 9851944. On the other hand, studies of binary stars must address the complexities such as mass transfer. KIC 8262223 is such an example, which

    consists of a mass-gaining Scuti primary and a pre-He white dwarf secondary. Some of the eccentric binary systems, the ‘heartbeat’ stars, show tidally excited oscillations. After briefly reviewing the linear theory of tidally forced stellar oscillations, we study the tidal pulsating binary KIC 3230227 and demonstrate that both amplitude and phase can be used to identify the tidally excited pulsation modes. We also discuss the variability of a Slowly Pulsating B-star KOI-81 and a Cataclysmic variable KIC 9406652.

    In the second part of this dissertation, we apply Bayesian statistics to some problems in binaries and asteroseismology with the help of packages BUGS and JAGS. Special attention is paid to the inverse problems (tomography) encountered in studying the double-line spectroscopic binaries.

  • Item
    The Ages of A-Stars
    (2016-08-12) Jones, Jeremy W; Russel J. White; Fabien Baron; Douglas Gies; Harold McAlister; Inseok Song

    Stars with spectral type `A' (also called A-type stars or just A-stars) are bright intermediate mass stars (∼1.5-2.5 M) that make up ∼1% of stars within 25 parsecs, and ∼20% of the brightest stars in the night sky (V < 3 mag). Most A-stars rotate rapidly with rotational velocities that range from ∼100 to ∼200 km/s in most cases, but can exceed 300 km/s. Such rapid rotation not only causes a star's observed properties (flux, temperature, and radius) to be inclination dependent, but also changes how the star evolves both chemically and structurally.

    Herein we conduct an interferometric survey of nearby A-stars using the CHARA Array. The long baselines of this optical/infrared interferometer enable us to measure the angular sizes of stars as small as ∼0.2 mas, and directly map the oblate shapes of rotationally distorted stars. This in turn allows us to more accurately determine their photospheric properties and estimate their ages and masses by comparing to evolution models that account for rotation. To facilitate this survey, we construct a census of all 232 A-stars within 50 parsecs (the 50PASS) and from that construct a sample of A-stars (the OSESNA) that lend themselves to interferometric observations with the CHARA Array (i.e., are in the northern hemisphere and have no known, bright, and nearby companions - 108 stars in total). The observations are interpreted by constructing a physical model of a rapidly rotating star from which we generate both photometric and interferometric model observations for comparison with actual observations. The stellar properties of the best fitting model are then compared to the MESA evolution models to estimate an age and a mass.

    To validate this physical model and the adopted MESA code, we first determine the ages of seven members of the Ursa Major moving group, which are expected to be coeval. With the exception of one star with questionable membership, these stars show a 1-σ spread in age of 56 Myr. This agreement validates our technique and provides a new estimate of the age for the group of 414 ± 23 Myr. We apply this validated technique to the directly-imaged `planet' host star κ Andromedae and determine its age to be 47+27-40 Myr. This implies the companion has a mass of 22+8-9 MJup and is thus more likely a brown dwarf than a giant planet. In total, we present new age and mass estimates for 55 nearby A-stars including six members of the Hyades open cluster, five stars with the λ Boötis chemical peculiarity, nine stars which have an infrared excess, possibly from a debris disk, and nine pulsating stars.

  • Item
    Statistical Modeling Of Effective Temperature With Cosmic Ray Flux
    (2016-08-12) Zhang, Xiaohang; Xiaochun He

    The increasing frequency of sporadic weather patterns in the last decade, especially major winter storms, demands improvements in current weather forecasting techniques. Recently, there are growing interests in stratospheric forecasting because of its potential enhancements of weather forecasts. The dominating factors of northern hemisphere wintertime variation of the general circulation in the stratosphere is a phenomenon called stratospheric sudden warming (SSW) events. It is shown in multiple studies that SSW and cosmic ray muon flux variations are strongly correlated with the effective atmospheric temperature changes, which suggests that cosmic ray detectors could be potentially used as meteorological applications, especially for monitoring SSW events.

    A method for determining the effective temperature with cosmic ray flux measurements is studied in this work by using statistical modeling techniques, such as k-fold cross validation and partial least square regression. This method requires the measurement of the vertical profile of the atmospheric temperature, typically measured by radiosonde, for training the model. In this study, cosmic ray flux measured in Atlanta and Yakutsk are chosen for demonstrating this novel technique.

    The results of this study show the possibility of realtime monitoring on effective temperature by simultaneous measurement of cosmic ray muon and neutron flux. This technique can also be used for studying the historical SSW events using the past world wide cosmic ray data.

  • Item
    Exoplanets in Open Clusters and Binaries: New Constraints on Planetary Migration
    (2016-08-12) Quinn, Samuel N; Dr. Russel J. White; Dr. David W. Latham; Dr. Douglas R. Gies; Dr. Sebastien Lepine; Dr. Joshua Von Korff; Georgia State University

    In this dissertation, we present three complementary studies of the processes that drive planetary migration. The first is a radial-velocity survey in search of giant planets in adolescent (<1 >Gyr) open clusters. While several different mechanisms may act to drive giant planets inward, only some mechanisms will excite high eccentricities while doing so. Measuring the eccentricities of young hot Jupiters in these clusters (at a time before the orbits have had a chance to circularize due to tidal friction with their host stars) will allow us to identify which mechanisms are most important. Through this survey, we detect the first 3 hot Jupiters in open clusters (and at least 4 long-period planets), and we measure the occurrence rate of hot Jupiters in clusters to be similar to that of the field (~1%). We determine via analyses of hot Jupiter eccentricities and outer companions in these systems that high eccentricity migration mechanisms (those requiring the presence of a third body) are important for migration. The second project, an adaptive optics imaging survey for stellar companions to known hot Jupiter hosts, aims to determine the role that stellar companions in particular play in giant planet migration. Through a preliminary analysis, we derive a lower limit on the binary frequency of 45% (greater than that of the typical field star), and we find that the presence of a companion is correlated with misalignment of the spin-orbit angle of the planetary system, as would be expected for stellar Kozai-Lidov migration: at least 74% of misaligned systems reside in binaries. We thus conclude that among high eccentricity migration mechanisms, those requiring a stellar companion play a significant role. Finally, we describe simulations of measurements of the planet population expected to be discovered by TESS, and use these to demonstrate that a strong constraint on the obliquity distribution of small planets can be derived using only TESS photometry, Gaia astrometry, and vsin(i) measurements of the host stars. This obliquity distribution will be a key piece of evidence to help detemine the likely formation and migration histories of small planets, and can contribute to the assessment of the potential for Earth-like planets to harbor life.

  • Item
    Optical and Transport Properties of Quantum Dots in Dot-In-A-Well Systems and Graphene-Like Materials
    (2015-12-17) Chaganti, Venkata; Vadym Apalkov; Unil Perera; Mukesh Damala; Ramesh Mani; Russel White; Brian Thoms

    Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery. This motivated our present research work on QDIPs, DWELLs, and graphene like QDs. The intention of this research was to study the size dependent achievements of QDIPs, DWELLs, and graphene like QDs with those of competitive technologies, with the emphasis on the material properties, device structure, and their impact on the device performance.

    In this dissertation four research studies pertaining to optical properties of quantum dot and dot-in-a-well infrared photodetectors, I-V characteristics of graphene quantum dots, and energy and spin texture of germanene quantum dots are presented. Improving self-assembled QD is a key issue in the increasing the absorption and improving the performance. In the present research work, an ideal self-assembled QD structure is analyzed theoretically with twenty-hole levels (Intraband optical transitions within the valence band) and twenty-electron energy levels (DWELL). Continuing the efforts to study self-assembled QDs we extended our work to graphene like quantum dots (graphene and germanene) to study the electronic transport properties.

    We study numerically the intraband optical transitions within the valence band of InxGa1-xAs/GaAs pyramidal quantum dots. We analyze the possibility of tuning of corresponding absorption spectra by varying the size and composition of the dots. Both ‘x ’ and the size of the quantum dot base are varied. We have found that the absorption spectra of such quantum dots are more sensitive to the in-plane incident light.

    We present numerically obtained absorption optical spectra of n-doped InAs/In0.15Ga0.85As/GaAs quantum dot-in-a-well systems. The absorption spectra are mainly determined by the size of the quantum dot and have weak dependence on the thickness of the quantum well and position of the dot in a well. The dot-in-a-well system is sensitive to both in-plane and out-of-plane polarizations of the incident light with much stronger absorption intensities for the in-plane-polarized light.

    We also present theoretically obtained I-V characteristics of graphene quantum dots, which are realized as a small piece of monolayer graphene. We describe graphene within the nearest-neighbor tight-binding model. The current versus the bias voltage has typical step-like shape, which is due to discrete energy spectrum of the quantum dot. The current through the dot system also depends on the position of the electrodes relative to the quantum dot.

    In relation to graphene quantum dots, we present our study of buckled graphene-like materials, like germanene and silicene. We consider theoretically germanene quantum dot, consisting of 13, 27, and 35 germanium atoms. Due to strong spin-orbit interaction and buckled structure of the germanene layer, the direction of the spin of an electron in the quantum dot depends on both the electron energy and external perpendicular electric field. With variation of energy, the direction of spin changes by approximately 4.50. Application of external electric field results in rotation of electron spin by approximately 0.50, where the direction of rotation depends on the electron energy.

  • Item
    First Science with JouFLU
    (2015-12-17) Scott, Nicholas Jon; Hal McAlister; Theo ten Brummelaar; Vincent Coudé du Foresto; Stephen T. Ridgway; Brian D. Thoms; Douglas R. Gies

    Jouvence of FLUOR (JouFLU) is a major overhaul of the FLUOR (Fiber Linked Unit for Optical Recombination) beam combiner built by the Laboratoire d’études spatiales et d’instrumentation en astrophysique (LESIA) and installed at the CHARA Array. These upgrades improve the precision, observing efficiency, throughput, and integration of FLUOR with the CHARA Array as well as introduce new modes of operation to this high-precision instrument for interferometry. Such high precision observations with FLUOR have provided the first unambiguous detections of hot dust around main sequence stars, showing an unexpectedly dense population of (sub)micrometer dust grains close to their sublimation temperature, 1400 K. Competing models exist to explain the persistence of this dust; some of which suggest that dust production is a punctuated and chaotic process fueled by asteroid collisions and comet infall that would show variability on timescales of a few years. By re-observing stars from the exozodiacal disks survey we have searched for variations in the detected disks. We have found evidence that for some stars the amount of circumstellar flux from these previously detected exozodiacal disks, or exozodis, has varied. The flux from some exozodis has increased, for some the flux has decreased, and for a few the amount has remained constant. These results are intriguing and will be no doubt useful for future modeling of this phenomenon. Furthermore, long-term monitoring is suggested for some of these objects to confirm detections and determine the rate of variation.

  • Item
    Measurement of Phi Meson Production and Nuclear Modification in Cu+Au Collisions at √(sNN) = 200 GeV with the PHENIX Detector at RHIC
    (2015-12-17) Jezghani, Margaret Annette; Xiaochun He; Murad Sarsour; Raphael Tieulent; Russel White; Georgia State University

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured ϕ meson production and nuclear modification in asymmetric Cu+Au heavy-ion collisions at 200 GeV at both forward Cu-going direction (1.2 < y < 2.2) and backward Au-going direction (-2.2 < y < -1.2) rapidities. Due to its very short lifetime, the ϕ meson is an excellent probe for studying the hot and dense state of nuclear matter, referred to as the quark-gluon plasma (QGP), that is produced in high-energy heavy-ion collisions, such as those at RHIC. Furthermore, the absence of strong interactions between muons and the surrounding hot hadronic matter makes the ϕ decay channel particularly useful for studying nuclear matter effects on ϕ meson production. Additionally, the rapidity dependence of ϕ meson production in asymmetric heavy-ion collisions provides a unique means of accessing the entanglement of hot and cold nuclear matter effects. However, the large combinatorial background produced at forward and backward rapidities in heavy-ion collisions results in a very challenging environment for extracting the ϕ meson signal. Accordingly, previous measurements at RHIC were limited to smaller collision species, p+p and d+Au. In this paper, a procedure for modeling and removing the backgrounds is detailed, and the first ϕ meson measurement at forward and backward rapidites in heavy-ion collisions at RHIC is presented. The ϕ meson invariant yield and nuclear-modification factor are reported as a function of the number of participating nucleons, rapidity, and transverse momentum in the kinematic region 1.2 < |y| < 2.2 and 1 < pT < 5 GeV/c. Results of this analysis provide insight into the mixture of hot and cold nuclear matter effects on ϕ meson production in asymmetric heavy-ion collisions, bringing scientists one step closer to understanding the QGP.