Ning YuFollow

Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)


Computer Science

First Advisor

Yi Pan

Second Advisor

Raj Sunderraman

Third Advisor

Robert Harrison

Fourth Advisor

Jing Zhang


With the advent of high-throughput genomics, biological big data brings challenges to scientists in handling, analyzing, processing and mining this massive data. In this new interdisciplinary field, diverse theories, methods, tools and knowledge are utilized to solve a wide variety of problems. As an exploration, this dissertation project is designed to combine concepts and principles in multiple areas, including signal processing, information-coding theory, artificial intelligence and cloud computing, in order to solve the following problems in computational biology: (1) comparative gene structure detection, (2) DNA sequence annotation, (3) investigation of CpG islands (CGIs) for epigenetic studies. Briefly, in problem #1, sequences are transformed into signal series or binary codes. Similar to the speech/voice recognition, similarity is calculated between two signal series and subsequently signals are stitched/matched into a temporal sequence. In the nature of binary operation, all calculations/steps can be performed in an efficient and accurate way. Improving performance in terms of accuracy and specificity is the key for a comparative method. In problem #2, DNA sequences are encoded and transformed into numeric representations for deep learning methods. Encoding schemes greatly influence the performance of deep learning algorithms. Finding the best encoding scheme for a particular application of deep learning is significant. Three applications (detection of protein-coding splicing sites, detection of lincRNA splicing sites and improvement of comparative gene structure identification) are used to show the computing power of deep neural networks. In problem #3, CpG sites are assigned certain energy and a Gaussian filter is applied to detection of CpG islands. By using the CpG box and Markov model, we investigate the properties of CGIs and redefine the CGIs using the emerging epigenetic data. In summary, these three problems and their solutions are not isolated; they are linked to modern techniques in such diverse areas as signal processing, information-coding theory, artificial intelligence and cloud computing. These novel methods are expected to improve the efficiency and accuracy of computational tools and bridge the gap between biology and scientific computing.