Author ORCID Identifier
Date of Award
12-11-2023
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Computer Science
First Advisor
Ashwin Ashok
Second Advisor
Xiaojun Cao
Third Advisor
Rajshekhar Sunderraman
Fourth Advisor
Shubham Jain
Abstract
Ubiquitous usage of cameras and LEDs in modern road and aerial vehicles open up endless opportunities for novel applications in intelligent machine navigation, communication, and networking. To this end, in this thesis work, we hypothesize the benefit of dual-mode usage of vehicular built-in cameras through novel machine perception capabilities combined with optical camera communication (OCC). Current key conception of understanding a line-of-sight (LOS) scenery is from the aspect of object, event, and road situation detection. However, the idea of blending the non-line-of-sight (NLOS) information with the LOS information to achieve a see-through vision virtually is new. This improves the assistive driving performance by enabling a machine to see beyond occlusion. Another aspect of OCC in the vehicular setup is to understand the nature of mobility and its impact on the optical communication channel quality. The research questions gathered from both the car-car mobility modelling, and evaluating a working setup of OCC communication channel can also be inherited to aerial vehicular situations like drone-drone OCC. The aim of this thesis is to answer the research questions along these new application domains, particularly, (i) how to enable a virtual see-through perception in the car assisting system that alerts the human driver about the visible and invisible critical driving events to help drive more safely, (ii) how transmitter-receiver cars behaves while in the mobility and the overall channel performance of OCC in motion modality, (iii) how to help rescue lost Unmanned Aerial Vehicles (UAVs) through coordinated localization with fusion of OCC and WiFi, (iv) how to model and simulate an in-field drone swarm operation experience to design and validate UAV coordinated localization for group of positioning distressed drones. In this regard, in this thesis, we present the end-to-end system design, proposed novel algorithms to solve the challenges in applying such a system, and evaluation results through experimentation and/or simulation.
DOI
https://doi.org/10.57709/36319512
Recommended Citation
Ashraf, Khadija, "Perception Intelligence Integrated Vehicle-to-Vehicle Optical Camera Communication.." Dissertation, Georgia State University, 2023.
doi: https://doi.org/10.57709/36319512
File Upload Confirmation
1