Loading...
Thumbnail Image
Item

Cross-Modal Plasticity Results in Increased Inhibition in Primary Auditory Cortical Areas

Mao, Yuting
Pallas, Sarah L.
Citations
Altmetric:
Abstract

Loss of sensory input from peripheral organ damage, sensory deprivation, or brain damage can result in adaptive or maladaptive changes in sensory cortex. In previous research, we found that auditory cortical tuning and tonotopy were impaired by cross-modal invasion of visual inputs. Sensory deprivation is typically associated with a loss of inhibition. To determine whether inhibitory plasticity is responsible for this process, we measured pre- and postsynaptic changes in inhibitory connectivity in ferret auditory cortex (AC) after cross-modal plasticity.We found that blocking GABAA receptors increased responsiveness and broadened sound frequency tuning in the cross-modal group more than in the normal group. Furthermore, expression levels of glutamic acid decarboxylase (GAD) protein were increased in the cross-modal group. We also found that blocking inhibition unmasked visual responses of some auditory neurons in cross-modal AC. Overall, our data suggest a role for increased inhibition in reducing the effectiveness of the abnormal visual inputs and argue that decreased inhibition is not responsible for compromised auditory cortical function after cross-modal invasion. Our findings imply that inhibitory plasticity may play a role in reorganizing sensory cortex after cross-modal invasion, suggesting clinical strategies for recovery after brain injury or sensory deprivation.

Description
Date
2013-01-01
Journal Title
Journal ISSN
Volume Title
Publisher
Research Projects
Organizational Units
Journal Issue
Keywords
Citation
Yu-Ting Mao and Sarah L. Pallas, “Cross-Modal Plasticity Results in Increased Inhibition in Primary Auditory Cortical Areas,” Neural Plasticity, vol. 2013, Article ID 530651, 18 pages, 2013. doi: http://dx.doi.org/10.1155/2013/530651
Embedded videos