Loading...
Thumbnail Image
Item

Numerical Solutions to Two-Dimensional Integration Problems

Carstairs, Alexander
Citations
Altmetric:
Abstract

This paper presents numerical solutions to integration problems with bivariate integrands. Using equally spaced nodes in Adaptive Simpson's Rule as a base case, two ways of sampling the domain over which the integration will take place are examined. Drawing from Ouellette and Fiume, Voronoi sampling is used along both axes of integration and the corresponding points are used as nodes in an unequally spaced degree two Newton-Cotes method. Then the domain of integration is triangulated and used in the Triangular Prism Rules discussed by Limaye. Finally, both of these techniques are tested by running simulations over heavily oscillatory and monomial (up to degree five) functions over polygonal regions.

Description
Date
2015-12-16
Journal Title
Journal ISSN
Volume Title
Publisher
Research Projects
Organizational Units
Journal Issue
Keywords
Delaunay Triangulation, Voronoi Sampling, Simpson's Rule, Adaptive Simpson's Rule, Quadrature
Citation
Embedded videos