Loading...
Thumbnail Image
Item

Neurocognitive Mechanisms of Statistical-Sequential Learning: what do Event-Related Potentials Tell Us?

Daltrozzo, Jerome
Conway, Christopher M.
Citations
Altmetric:
Abstract

Statistical-sequential learning (SL) is the ability to process patterns of environmental stimuli, such as spoken language, music, or one’s motor actions, that unfold in time. The underlying neurocognitive mechanisms of SL and the associated cognitive representations are still not well understood as reflected by the heterogeneity of the reviewed cognitive models. The purpose of this review is: (1) to provide a general overview of the primary models and theories of SL, (2) to describe the empirical research – with a focus on the event- related potential (ERP) literature – in support of these models while also highlighting the current limitations of this research, and (3) to present a set of new lines of ERP research to overcome these limitations. The review is articulated around three descriptive dimensions in relation to SL: the level of abstractness of the representations learned through SL, the effect of the level of attention and consciousness on SL, and the developmental trajectory of SL across the life-span. We conclude with a new tentative model that takes into account these three dimensions and also point to several promising new lines of SL research.

Description
Date
2014-01-01
Journal Title
Journal ISSN
Volume Title
Publisher
Research Projects
Organizational Units
Journal Issue
Keywords
sequential learning, statistical learning, implicit learning, procedural learning, artificial grammar, ERP, P300, P600
Citation
Daltrozzo, J., & Conway, C. M. (2014). Neurocognitive mechanisms of statistical-sequential learning: what do event-related potentials tell us? Frontiers in Human Neuroscience, 8, 437. http://doi.org/10.3389/fnhum.2014.00437
Embedded videos