Date of Award

8-17-2009

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Kinesiology and Health

First Advisor

Yong Tai Wang - Chair

Second Advisor

Laurie L. Tis - Co-Chair

Third Advisor

Deborah R. Shapiro

Fourth Advisor

Mark D. Geil

Fifth Advisor

Jansheng Ren

Abstract

The purpose of this dissertation was to analyze shoulder joint kinematics and electromyographic activities of wheelchair propulsion between two stroke patterns. Twenty physical therapy students (14 females and 6 males, age 27.4 ± 5.9 years, body mass 64.41 ± 9.37 Kg and body height 169.32 ± 9.12 cm) participated. Eleven reflective markers were placed on thorax and right scapula, humerus, third metacarpophalangeal joint and wheelchair axle. Surface electrodes were placed on right pectoralis major, anterior and posterior deltoids, infraspinatus, middle trapezius, biceps brachialis long head and triceps brachialis. Participants propelled a standard wheelchair on a stationary roller system at 0.9 m/s and 1.8 m/s with semicircular (SC) and single loop (SL) stroke patterns for 20 seconds. Three-dimensional body movement and muscle activities were recorded at 100 and 1000 Hz, respectively. All data were compared for differences between two patterns and two speeds using 2-way repeated measures ANOVA (α < .05). Results showed longer drive phase and shorter recovery phase in SC when compared to SL, with no difference found on cycle time. Smaller release angles in SC caused longer angle ranges of hand contact on the pushrim while initial contact angles did not change. During drive phase, smaller scapular protraction range of motion (ROM) was found in SC. Shoulder abduction in drive phase was larger in terms of the maximal angle and ROM. In the recovery phase, minimal scapular tilting, protraction, and shoulder abduction and internal rotation were larger in SC when compared to SL pattern. Shoulder linear velocities and accelerations were higher in both phases for abduction/adduction and flexion/extension in SC. For SC pattern, pectorals major and middle trapezius showed lower activities during drive phase while posterior deltoid and triceps showed higher activities during both phases when compared to SL. Although posterior deltoid and triceps muscles work harder in SC pattern, longer drive phase and lower muscle activities in pectorals major and middle trapezius during the drive phase may make SC the better stroke pattern in wheelchair propulsion when compared to SL.

DOI

https://doi.org/10.57709/1059147

Included in

Kinesiology Commons

Share

COinS