Date of Award
Fall 12-18-2014
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Mathematics and Statistics
First Advisor
Alexandra Smirnova, PhD
Abstract
In the case of a linear ill-posed problem with noisy data, a version of an a posteriori parameter selection discrepancy principle (DP) is justified for an arbitrary regularization strategy under very general assumptions on the operator and the stabilizer. Its efficiency is demonstrated for a practically important inverse problem in avian influenza. We refer to our result as an abstract discrepancy principle (ADP), which shows that applicability of the DP largely depends on the level of noise in the data rather than the method used for the construction of a specific regularization procedure.
DOI
https://doi.org/10.57709/6426884
Recommended Citation
DeCamp, Linda, "Discrepancy Principle and Stable Parameter Estimation in Avian Influenza." Thesis, Georgia State University, 2014.
doi: https://doi.org/10.57709/6426884