Date of Award

5-4-2007

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Mathematics and Statistics

First Advisor

Guantao Chen - Chair

Second Advisor

Michael Stewart

Third Advisor

Yi Zhao

Abstract

Ramsey Theorem, in the most simple form, states that if we are given a positive integer l, there exists a minimal integer r(l), called the Ramsey number, such any partition of the edges of K_r(l) into two sets, i.e. a 2-coloring, yields a copy of K_l contained entirely in one of the partitioned sets, i.e. a monochromatic copy of Kl. We prove an extension of Ramsey's Theorem, in the more general form, by replacing complete graphs by multipartite graphs in both senses, as the partitioned set and as the desired monochromatic graph. More formally, given integers l and k, there exists an integer p(m) such that any 2-coloring of the edges of the complete multipartite graph K_p(m);r(k) yields a monochromatic copy of K_m;k . The tools that are used to prove this result are the Szemeredi Regularity Lemma and the Blow Up Lemma. A full proof of the Regularity Lemma is given. The Blow-Up Lemma is merely stated, but other graph embedding results are given. It is also shown that certain embedding conditions on classes of graphs, namely (f , ?) -embeddability, provides a method to bound the order of the multipartite Ramsey numbers on the graphs. This provides a method to prove that a large class of graphs, including trees, graphs of bounded degree, and planar graphs, has a linear bound, in terms of the number of vertices, on the multipartite Ramsey number.

Included in

Mathematics Commons

Share

COinS