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ABSTRACT 

Polysaccharide isotopes are responsible for many pathophysiological responses and can 

elicit strong immune responses. The first two Chapters demonstrated the chemical synthesis of a 

conserved and all � –linked Escherichia coli R3 outer core pentasaccharide. This pentasaccharide 

was conjugated to carrier protein (CRM197) through a propyl amino linker at the reducing end. 

An immunological analysis demonstrated that this glycoconjugate can elicit specific anti-

pentasaccharide antibodies with in vitro bactericidal activity. In Chapter three, a Core Synthesis/ 

Enzymatic Extension (CSEE) technique for building a comprehensive O-glycan library was 

proposed. Furthermore, a highly efficient and convergent methodology was designed to 

synthesize all eight O-glycan core structures in large scale. These two emerging techniques have 

great potential to enable the investigation of structure-activity relationship between glycans and 

receptor proteins, thus facilitating the identification of biomedically important glycan isotopes. 

 

INDEX WORDS: Glycoconjugate, Vaccine development, Chemical glycosylation, Total 

synthesis, Immunological evaluation, Convergent synthesis, O-glycan library. 
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1 INTRODUCTION AND CHEMICAL SYNTHESIS OF MONOSACCHARIDE 

BUILDING BLOCKS 

1.1 Introduction 

Bacterial infections are evidence of long-lasting conflict between human culture and 

microorganisms ever since there was written record. The solution to this worldwide health 

problem has had little progress due to the lack of efficient diagnostics and increasing antibiotic 

resistance of certain bacteria.1,2 Therefore, surface-located bacterial polysaccharides are 

promising candidates to be explored as vaccines to prevent bacterial infections.3,4 Although these 

polysaccharides can be harvested by isolation from bacteria, it is nearly impossible to achieve the 

required homogeneity for licensed vaccine.5 With recent determinations of structural motifs of 

bacterial polysaccharides, chemically synthesized polysaccharides provide an alternative way to 

develop structurally well-defined polysaccharide based vaccines.6 Moreover, pure chemical 

entities can enable the investigation of structure-activity relationships between a 

polysaccharides’ structural motif and antibody immune responses.7-10 The immunogenicity of 

bacterial polysaccharides is well-studied, and their conjugation to carrier proteins has been 

widely used in industry to produce potent polysaccharide based vaccines.11 An ideal vaccine 

candidate should have the ability to trigger a specific immune response toward a certain bacteria 

strain but with a broad immunogenicity to target various bacterial antigens. E. coli O:157 H:7 is 

an endotoxic strain of E. coli bacteria that can cause severe diseases such as acute hemorrhagic 

diarrhea.12 The chemical structure of E. coli polysaccharides consist of three components – lipid 

A, a core oligosaccharide domain, and an O-antigen. Although the structural configuration of the 

O-antigen varies greatly among different strains, the core oligosaccharide domains have limited 
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variation with five defined structures.13 Therefore, the core oligosaccharide has great potential to 

be explored as a broad spectrum vaccines against endotoxic E. coli infections. Herein, we report 

the first chemical synthesis of outer core oligosaccharide of E. coli R3 strain, and its ability to 

elicit T-cell dependent antibody response.  

1.2 Synthesis of monosaccharide building block A 

The synthesis of outer core pentasaccharide requires the assembly of five selectively 

protected building blocks (Figure 9 and Figure 10). The terminal building block A was 

synthesized was shown in Figure 1. A peracetylated glucose as starting material was reacted 

with thiophenol to give a thioglycosidic bond which is compatible with other orthogonal 

protecting groups and can be selectively removed under NBS catalyzed hydrolysis.14 Global 

deacetylation followed by phenylacetal protection exposed two free hydroxyl groups at C-3 and 

C-2. Dibutyltin oxide coordinates the naphthylmethyl ether protection at C-3 due to the higher 

electronegativity compared with C-2. Benzylation at C-2 afforded a globally protected 

monosaccharide with five orthogonal protecting groups.15 The subsequent removal of 

thioglycosidic bond was easily achieved by using NBS to free the anomeric hydroxyl group. 

Once the anomeric hydroxyl group was freed, the treatment of trichloroacetonitrile with the 

presence of catalytic amount of DBU formed the trichloroacetimidate glycosyl donor 

quatitatively. Due to the presence of the non-participating benzyl ether at the C-2, the formation 

of both kinetically and thermodynamically stable � -anomer is preferred.16,17 Thus the chemical 

glycosylation was performed using a 1:1 mixture of diethyl ether and dichloromethane at -40 oC 

for 45 minutes. The subsequent hydrolysis of phenyl acetal protection was achieved by the 

treatment of TFA with aqueous solution providing a proton and hydroxide source.18,19 The two 

free hydroxyl groups at C-4 and C-6 were capped with benzyl ether protecting groups. The 
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selective removal of the naphthylmethyl ether protecting group was executed by using DDQ as 

the oxidant.20 The overall yield is comparable with literature reports. 

 
Figure 1 Chemical Synthesis of monosaccharide building block A 

 

1.3 Synthesis of monosaccharide building block B 

As depicted in Figure 2, Building block B has a pair of orthogonal protecting groups at 

C-1 and C-3, which can be selectively removed to form the glycosyl acceptor at either C-1 or C-

3 in a well-controlled manner. The 4-methoxyphenyl (MP) protection was installed using 4-

methoxyphenol in the presence of catalytic amount of Lewis acid. Protecting group manipulation 

freed the hydroxyl groups at C-2 and C-3.21-23 Due to the higher electronegativity of C-2 position 

of galactose, the benzoate protection was selectively incorporated at C-2 to afford the building 

block B, which acted as the glycosyl acceptor in the linear assembly of the pentasaccharide to 

overcome the steric hindrance in the problematic 3 + 2 fragment coupling strategy. The overall 

yield is comparable with literature reports. 
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Figure 2 Chemical synthesis of monosaccharide building block B 

1.4 Synthesis of monosaccharide building block C 

The chemical synthesis of building block C is illustrated in Figure 3. The acetal protection of the 

starting material isopropylidene glucofuranose allowed the selective protection of C-3 with 

benzyl group. The acetal protecting groups were removed under acidic conditions, and the 

resulting free hydroxyl groups were immediately protected with acetyl groups. Phenyl 

thioglycosidic bond was incorportated using thiophenol in the presence of catalytic amount of 

Lewis acid. In the subsequent protecting group manipulation, the C-4 and C-6 were co-protected 

with phenyl acetal to afford the free C-2 as the glycosyl acceptor. The overall yield was 

comparable with literature reports.24 

 

Figure 3 Chemical synthesis of monosaccharide building block C 
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1.5 Synthesis of monosaccharide building block D 

The � -glycosidic linkage between building block D and B requires a non-participating 

protecting group at C-2 of the glycosyl donor D. Therefore, the N-acetyl group of the N-acetyl 

glucosamine (GlcNAc) needs to be protected by an azide functional group. The chemical 

synthesis of building block D was demonstrated in Figure 4. The amine functional group of the 

precursor glucosamine was protected with carboxylbenzyl (Cbz) group, which allowed the tosyl 

(Ts) group to be selectively added to the primary alcohol C-6. With an excellent leaving group 

Ts, the base-catalyzed intramolecular SN2 reaction in the presence of a catalytic amount of DBU 

afforded the cyclic ether at C-1 and C-6. The removal of Cbz protecting group was executed 

using palladium catalyzed hydrogenolysis, and the resulting free amine was converted into azide 

using a freshly made azide transfer reagent.25 The two hydroxyl groups were capped with acetyl 

benzyl groups, followed by the breaking of the cyclic ether under acidic condition to form the 

diol. The resulting free hydroxyl groups were protected by acetyl groups, which enabled the 

selective exposure of the anomeric hydroxyl group in base-catalyzed deacetylation. The resulting 

hemiacetal was treated with trichloroacetonitrile to give the non-neighboring participating 

glycosyl donor D for the installation of � -glycosidic bond. The overall yield correlates well with 

literature reports.26 



	  

 

Figure 4 Chemical synthesis of monosaccharide building block D 

1.6 Synthesis of monosaccharide building block E 

The installation of the � -glycosidic bond between glucose moieties C and E requires a 

non-participating group at C-2 of the glycosyl donor E. Therefore, the synthesis of a globally 

benzylated glucosyl donor E was elaborated in Figure 5. The precursor methyl glucoside was 

reacted with benzyl bromide to form a benzylated methyl glucoside. The methyl glycosidic bond 

was easily hydrolyzed under acidic condition to free the anomeric hydroxyl group. The resulting 

hemiacetal was then treated with trichloroacetonitrile to form the globally benzylated glycosyl 

donor E. The overall yield correlates well with literature reports.27 

 

Figure 5 Chemical synthesis of monosaccharide building block E 




  

1.7 Conclusion 

The synthesis of monosaccharide building blocks were accomplished by installing the 

orthogonal protecting groups in a reasonable order. The highly branched and all � -linked E. coli 

R3 outer core pentasaccharide required an optimized glycosylation strategy and non-participating 

protecting groups to install the � -glycosidic bond. The five monosaccharide building blocks were 

synthesized in gram scale beforehand to facilitate the further demanding assembly of outer core 

pentasaccharide. The practice of protecting group manipulation provided a powerful tool to 

control the regio- and stereo-selectivity of the formation of glycosidic bonds.  
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2 CHEMICAL SYNTHESIS OF OUTER CORE OLIGOSACCHARIDE OF 

ESCHERICHIA COLI R3 AND IMMUNOLOGICAL EVALUATION 

2.1 Introduction  

Lipopolysaccharides (LPS) are important cell envelope components of Gram negative 

bacteria, embedded in the outer leaflet of the asymmetric outer membrane and exposed on the 

cell surface.1 LPS contribute to the integrity of outer membrane and protect the cells against 

various environmental stress including lipophilic antibiotics and host immune system.2 LPS are 

responsible for many pathophysiological responses to bacterial infections and are potent 

endotoxins responsible for high rates of mortality due to septic shock.3 LPS also act as strong 

stimulators of innate or adaptive immunity in diverse eukaryotic species ranging from insects to 

humans.2-5 Therefore, the study of LPS has attracted considerable interest with respect to the 

development of vaccines, therapeutics and diagnostics.6-8 LPS typically consists of three parts: an 

endotoxic lipid A comprising a bisphosphorylated and acylated � –(1� 6)–linked glucosamine 

disaccharide backbone, a core oligosaccharide, and a distal polysaccharide named called O–

antigen whose composition widely varies in different bacterial species.3,9,10 Structurally, the core 

oligosaccharide region can be further subdivided into an inner core region typically consisting of 

3–deoxy–D-manno–oct–2–ulosonic acid (Kdo) and L–glycero–D–manno–heptopyranonse 

residues, and outer core region that contains various hexoses and hexosamines 3,11,12(Figure 6). 



2.1.1 Purpose of the study  

In Escherichia coli (E. coli), the core oligosaccharides have limited variation with only five 

core structures named as R1, R2, R3, R4 and K12.

because it is found in most verotoxigenic isolates such as O157:H7,

approximately 210 million cases

year.15 The structure of E. coli O157

typical LPS, it contains a lipid A moiety, a core oligosaccharide (inner core and outer core) and 

an O–antigen. The development of LPS

well-defined oligosaccharides conjugated to carrier proteins for immunological studies

identify the structural motifs that can elicit protective antibod

oligosaccharides can be isolated from

to carrier proteins without destroying critical 

well-defined oligosaccharides can overcome 

reducing end for regulating conjugation to carrier proteins.

various sub–structures for structure

that can elicit protective immune response.

pentasaccharide of E. coli R3 outer core with 

 

Figure 6 The structure of LPS 

), the core oligosaccharides have limited variation with only five 

core structures named as R1, R2, R3, R4 and K12.13 The R3 core type is of biomedical interest 

because it is found in most verotoxigenic isolates such as O157:H7,14

approximately 210 million cases of diarrhea and 380,000 deaths in the developing world each 

O157:H7 LPS has been determined 14,16 (Figure 

typical LPS, it contains a lipid A moiety, a core oligosaccharide (inner core and outer core) and 

antigen. The development of LPS–based vaccines, therapeutics, and diagnostics requires 

oligosaccharides conjugated to carrier proteins for immunological studies

motifs that can elicit protective antibody responses.

can be isolated from bacteria, it is difficult to conjugate these 

to carrier proteins without destroying critical immunogenic components.21 Chemical synthesis of 

defined oligosaccharides can overcome this problem by utilizing an artificial linker at the 

for regulating conjugation to carrier proteins.19,22,23 Moreover, it can provide 

structures for structure–activity relationships study to determine the minimal epitope 

can elicit protective immune response.18,24 Herein, a conserved and all 

R3 outer core with a propyl amino linker at the reducing end was 
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), the core oligosaccharides have limited variation with only five 

The R3 core type is of biomedical interest 

14 which causes 

diarrhea and 380,000 deaths in the developing world each 

(Figure 7A), the same as 

typical LPS, it contains a lipid A moiety, a core oligosaccharide (inner core and outer core) and 

vaccines, therapeutics, and diagnostics requires 

oligosaccharides conjugated to carrier proteins for immunological studies to 

y responses.8,17-20 Although 

 oligosaccharides 

Chemical synthesis of 

an artificial linker at the 

Moreover, it can provide 

o determine the minimal epitope 

Herein, a conserved and all � –linked 

the reducing end was 
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chemically synthesized (Figure 7), and was conjugated to the nontoxic mutant of diphtheria 

toxin CRM197 to afford a glycoprotein. Furthermore, levels of IgG and IgM antibodies against the 

pentasaccharide and in vitro bactericidal activity of these antibodies against E. coli O157:H7 

were evaluated. The significant immunological response suggested great potential of this outer 

core isotope to be developed as potent vaccines for emerging diseases. 

 

Figure 7. (A) The structure of E. coli O157:H7 LPS; (B) The structure of E. coli R3 outer core 

oligosaccharide with propyl amino linker 

 

2.1.2 Experimental design 

The chemical synthesis of outer core pentasaccharide of E. coli R3 is challenging due to 

all � –linked glycosidic bonds and highly branched nature. Furthermore, the pentasaccharide 

contains a number of glycosides that are difficult to install in a stereo–selective fashion. 
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Especially, the introduction of � –glucosides and � –galactosides often leads to the formation of a 

mixture of anomers, which are difficult to separate and result in lower yields of the desired 

products. Installing the highly crowded cis–1,2,3–� –linked galactose (B) with glucose (C) and N-

acetylglucosamine (D) needs to establish an optimal order of glycosylation. As illustrated in 

Figure 8, the fully protected pentasaccharide was initially envisioned to be synthesized by a 

convergent and stereo–controlled [2 + 3] approach. Unfortunately, the desired product was not 

detected by ESI mass spectrometry analysis, and substantial decomposition of the glycosyl donor 

(trichloroacetimidate) and acceptor were observed by TLC. It was considered that steric 

hindrance resulted in inaccessibility of C–2 hydroxy group for the third glycosylation after C–1 

and C–3 hydroxy groups of galactose (B) were glycosylated. Therefore, a [4 + 1] coupling 

approach was carried out by initially installing C–2 hydroxy group of galactose (B), followed by 

glycosylation of C–3 and C–1 hydroxy groups. Stereo–controlled glycosylations were assisted by 

solvent effects and temperature control. C–3 and C–1 of the galactose building block (B) were 

modified by orthogonal protecting groups benzoyl ester (Bz) and 4–methoxyphenyl (MP), 

respectively. The orthogonal protecting groups made it possible to establish the proper order of 

glycosylation to assemble the highly branched pentasaccharide.  
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Figure 8. Retrosynthetic analysis of outer core oligosaccharide of E. coli R3. 
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2.2 Experiment 

2.2.1 Synthesis of disaccharide donor 7 

Having established the optimal order of glycosylation, cis–1,2–� –linked disaccharide 

donor 7 needed to be synthesized (Figure 9). In the case of donor 2 with a nonparticipation 

benzyl ether at C–2, solvent effects (diethyl ether as co-solvent with dichloromethane) assisted 

glycosylation predominantly afforded � -anomer (1JH-H = 3.6 Hz�È� /� =10:1) at –40 oC.25-28 The 

separated disaccharide 4 was contaminated by the rearrangement product of trichloroacetimidate 

donor 2. The contaminated compound 4 was directly subjected to removal of a benzylidene 

acetal using trifluoroacetic acid (TFA) in a mixture of CH2Cl2 and water,29,30 which made it easy 

to separate the byproduct to give desired diol 5. Benzylation of compound 5 with benzyl bromide 

and NaH in DMF gave the purified benzyl ether 6 in 53% yield over three steps. The compound 

6 was treated with N–bromosuccinimide (NBS) to afford the resulting lactol,31,32 which was 

converted into the corresponding trichloroacetimidate 7 using trichloroacetonitrile and 1,8–

diazabicycloundec–7–ene (DBU)  in 68% yield over two steps. 

 

Figure 9. Reagents and conditions: a) TMSOTf, 4 Å MS, Et2O/CH2Cl2 1:1, –40 oC to room 

temperature; b) DCM/TFA/H2O 10:1:0.1; c) NaH, BnBr, DMF, 53% (three steps); (d) i: NBS, 

acetone/H2O 9:1; ii: CCl3CN, DBU, DCM, 68% (two steps) 
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2.2.2 Assembly of pentasaccharide 1 

A successful synthetic strategy of compound 1 was illustrated in Figure 10. With the 

disaccharide donor 7 in hand, coupling of the trichloroacetimidate 7 with the acceptor 8 in the 

presence of catalytic amount of TMSOTf as the promoter in diethyl ether/dichloromethane (1:1) 

solvent system provided the trisaccharide 9 as main � –anomer (1JH-H = 3.6 Hz9Ø�  /�  � 20:1) in a 

yield 55% at –20 oC.25-28  Removal of benzoyl group (Bz) was easily accomplished by treatment 

with base (NaOMe) to afford trisaccharide acceptor 10 in 96% yield. The partially benzylated 

donor 11 was much more stable and easy to use compared to the corresponding extremely 

reactive fully benzylated donor. The trisaccharide 10 was coupled with glycosyl donor 11 using a 

catalytic amount of TMSOTf in diethyl ether/dichloromethane (1:1) solvent system to afford the 

desired � -linked tetrasaccharide 12 (1JH-H = 3.2 Hz) as in 76% yield, no � –anomer byproduct was 

detected. The azide moiety of 12 was reduced with NaBH4 and NiCl2
.H2O to give amine, which 

was immediately acetylated to afford the resulting 13 in an excellent yield (94%).33 Oxidative 

cleavage of the anomeric MP (4–methoxyphenyl) moiety of 13 using ceric ammonium nitrate 

gave a lactol, which was converted into the corresponding trichloroacetimidate 14 using 

trichloroacetonitrile and DBU in 53% yield over two steps.34,35 A TMSOTf–mediated coupling 

of trichloroacetimidate 14 with the acceptor 15 in diethyl ether/dichloromethane (1:1) solvent 

system led to desired � -linked pentasaccharide  16 (1JH-H = 3.2 Hz) in 42% yield. Finally, the 

deprotection of 16 started removal of the acetyl using base (NaOMe), followed by using 

Pearlman’s catalyst (Pd(OH)2/C) and H2 to afford the desired target compound 1  in 72% yield. 
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Figure 10. Reagents and conditions: a) TMSOTf, 4 Å MS, Et2O/CH2Cl2 1:1, –20 oC to 

room temperature, 55%; b) NaOCH3, CH3OH, 45 oC, 96%; c) TMSOTf, 4 Å MS, Et2O/CH2Cl2 

1:1, –20 oC to room temperature, 76%; d) i: NaBH4, NiCl2
.H2O, CH2Cl2/MeOH 1:1.5; ii: Ac2O, 

94% (two steps); e) i: (NH4)2Ce(NO3)6, toluene/CH3CN/H2O 1:1.5:1; ii: CCl3CN, DBU, DCM, 

53% (two steps); f) TMSOTf, 4 Å MS, Et2O/CH2Cl2 1:1, –25 oC to room temperature, 32%; g) i: 

NaOCH3, CH3OH; ii: H2, Pd(OH)2/C, 72%. 

2.2.3 Conjugation pentasaccharide to carrier protein. 

To perform immunological experiments, the outer core pentasaccharide of E. coli R3 was 

conjugated to the nontoxic mutant of diphtheria toxin CRM197.
36-39 CRM197 is an immunogenic 

carrier protein, which can improve the immunogenicity of oligosaccharide antigens and induce a 

T-cell dependent immune response.40 This particular carrier protein has been demonstrated a 

constituent of licensed conjugate vaccines against Neisseria meningitidis, Streptococcus 

pneumoniae and Haemophilus influenzae type B.41 The outer core pentasaccharide–CRM197 

glycoconjugate was prepared as illustrated in Figure 11. In order to obtain the formation of half 

active ester exclusively, the pentasaccharide with propyl amino linker was treated with an excess 
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of di–N–hydroxysuccinimidyl suberate in the presence of triethylamine and DMF.42 The 

modified pentasaccharide with active ester was conjugated to the amino groups of the protein 

(the molar ratio: carbohydrate/protein 50:1) in PBS buffer (pH 7.4) to give the glycoprotein.43 

This glycoprotein was confirmed by SDS–PAGE profiles, displaying a shift toward a higher 

mass of glycoprotein compared with unconjugated CRM197 (Supporting information). The 

corresponding saccharide loading ratio was 17.5 by MALDI–TOF mass spectrometry analysis, 

and the conjugation efficiency was 35%.23 Based on the same procedure, another glycoprotein 

pentasaccharide-BSA was also prepared as coating antigen installed the plates for reflecting 

specific binding between penatsaccharide moiety and the induced anti-penatascchride antibody 

by following ELISA assay. 

Figure 11. Reagents and conditions: (a) Et3N, DMF; (b) CRM197 or BSA, 3 x PBS 
buffer, pH 7.4 
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2.3 Results 

2.3.1 Immunological evaluation of pentasaccharide-CRM197 glycoconjugate 

The resulting pentasaccharide–CRM197 glycoconjugate was evaluated for its ability to 

elicit antibody responses to pentasaccharide 1. Freund’s adjuvant was selected, because it was an 

effective adjuvant in mice that was been successfully used to improve antibodies to a synthetic 

oligosaccharide antigen.44 The initial immunization was performed with Freund’s complete 

adjuvant (FCA), and then consecutive immunizations with Freund’s incomplete adjuvant (FIA). 

Female BALB/c mice were subcutaneously immunized three times at biweekly intervals with 2.5 

� g carbohydrate based doses of pentasaccharide-CRM197 conjugate formulated with adjuvant 

(FCA/FIA). The same dose of CRM197 formulated with adjuvant (FCA/FIA), adjuvant 

(FCA/FIA) and only PBS were used as control, respectively. The antibodies in serum of 

immunized mice against pentasaccharide were estimated by ELISA assay (Figure 12). The titers 

of total IgG was significantly increased in the serum of mice immunized with pentasaccharide–

CRM197 compared with other immunized groups (P<0.001). Moreover, higher titers of IgM was 

also detected in the serum of mice immunized with pentasaccharide–CRM197 compared with 

other immunized groups (P<0.01). It was obvious that the humoral immune responses were 

effectively elicited in the mice immunized with pentasaccharide–CRM197. 
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Figure 12. Evaluation of anti-pentasaccharide antibody titers (IgG and IgM) after the third 

immunization. The cutoff value was OD control�˜ 2.1. Results were expressed as the arithmetic 

mean± SD indicated by error bars. Differences of two groups were generated by t-test and 

indicated with symbols (**: P < 0.01 and ***: P < 0.001). 

In order to illuminate the nature of immune response produced in mice immunized with 

pentasaccharide–CRM197 and its potential relevance to overall T cell phenotype, IgG subclass 

profiles were evaluated by ELISA assay (Figure 13). In pentasaccharide–CRM197 immunized 

mice, the antibody titers of IgG1 and IgG2b were dramatically increased (Figure 13A and C), 

indicating a Th2-type response.45 Moreover, predominantly higher titers of IgG2a were produced 

in serum from mice immunized by pentasaccharide–CRM197 compared with other groups 

(Figure 13B), which indicated that Th1-type response was evoked in mice immunized with 

pentasaccharide–CRM197.
45 In addition, the remarkable enhance of IgG3 titers in group of 

pentasaccharide–CRM197 was also observed (Figure 13D), which is correlated with Th1-type 

response.45 The IgG subclass profiles indicated that not only Th2-type response but also Th1-

type response was induced in immunized mice with pentasaccharide–CRM197. Moreover, the 



ratio of Th2 to Th1 response was close to 1:1, which indicated a balance between 

responses in mice immunized with 

Figure 13. Antibody IgG subclass profiles after the third immunization, (A) IgG1 titers, (B) 

IgG2a titers, (C) IgG2b titers, (D) IgG3 titers. The cutoff value was OD 

point showed the titers for an individual mouse, and the horizontal line

was close to 1:1, which indicated a balance between 

s in mice immunized with pentasaccharide-CRM197. 

Antibody IgG subclass profiles after the third immunization, (A) IgG1 titers, (B) 

IgG2a titers, (C) IgG2b titers, (D) IgG3 titers. The cutoff value was OD negative controls

point showed the titers for an individual mouse, and the horizontal lines indicated the means for 
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was close to 1:1, which indicated a balance between Th2 and Th1 

 

Antibody IgG subclass profiles after the third immunization, (A) IgG1 titers, (B) 

negative controls ×2.1. Each 

s indicated the means for 
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the group of five mice. Results were represented as the arithmetic mean ± SD indicated by error 

bars. Differences of two groups were indicated with symbols (*: P < 0.05, **: P < 0.01 and ***: 

P < 0.001). 

2.3.2 Bactericidal activity 

To evaluate the bactericidal activity induced by pentasaccharide-CRM197 conjugate 

against E. coli O157:H7 strain containing R3 outer core structure, diluted serum samples were 

incubated with E. coli O157:H7 in rabbit sera and then developed by Cell Counting Kit-8 (CCK-

8), which allows sensitive colorimetric assays for the determination of cell viability.46 The 

highest serum dilution fold yielding 50% killing of E. coli O157:H7 in pentasaccharide-CRM197 

group was almost 160, while in other groups 50% bactericidal rate was not achieved even under 

dilution fold 20. When the serum dilution fold of glyco-CRM197 was 20, about 80% bacteria 

were killed (Figure 14). These results suggested that the serum in mice immunized with glyco-

CRM197 showed remarkable bactericidal activity against E. coli O157:H7. 
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Figure 14. Bactericidal activity of serum from the immunized mice against E. coli O157:H7. 

The Bactericidal rate was described as the artithmetic mean ± SD indicated be error bars. 
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2.4 Conclusions 

In summary, we described the first total synthesis of the outer core pentasaccharide of E. 

coli R3 using [4 + 1] coupling strategy. The orthogonal protecting groups modified galactose 

building block (B) made it possible to establish the optimal order of glycosylation for synthesis 

of the highly crowded 1,2,3–cis configured oligosaccharide. Furthermore, solvent effects and 

temperature were exploited to control anomeric selectivity of the glycosylation. These strategies 

will be significant for preparation of other highly branched oligosaccharides. The immunological 

evaluation of the pentasaccharide–CRM197 glycoconjugate indicated that this glycoconjugate was 

able to elicit specific anti-pentasaccharide antibodies with in vitro bactericidal activity against E. 

coli O157:H7. Overall, this report represented a new perspective in design and synthesis of 

carbohydrate antigens to be explored as vaccine candidates. 

 

This chapter has been published verbatim in Shang, W., Xiao, Z., Yu, Z., Wei, N., Zhao, 

G., Zhang, Q., Wei, M., Wang, X., Wang, P., Li, T., (2015), Org. Biomol. Chem. The author’s 

contribution to this work involved the chemical synthesis, purification, and characterization of 

the outer core pentasacchride of E. coli R3 and its glycoconjugate of CRM197 and BSA, as well 

as writing the experimental section of the manuscript. The immunological evaluation was 

contributed by Ms. Wenjing Shang at Shandong University in China. 
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2.6 Appendices  

Chemical synthesis of outer core pentasaccharide 

General procedures 

All reagents were purchased from commercially sources and were used without further 

purification. All solvents were available with commercially dried or freshly dried and distilled 

prior to use. Reactions were monitored by thin layer chromatography (TLC) using silica gel 

GF254 plates with detection by short wave UV light (�  = 254 nm) and staining with 10% 

phosphomolybdic acid in EtOH or p–anisaldehyde solution (ethanol/p–anisaldehyde/acetic 

acid/sulfuric acid 135:5:4:1.5), followed by heating on a hot plate. Column chromatography was 

conducted by silica gel (200–300 mesh) with ethyl acetate and hexane as eluent. 1H NMR and 

13C NMR were recorded with Bruker AV 400 spectrometer at 400 MHz (1H NMR), 100 MHz 

(13C NMR) using CDCl3 and CD3OD as solvents. Chemical shifts were reported in �  (ppm) from 

CDCl3 (7.26 ppm for 1H NMR, 77.00 ppm for 13C NMR), CD3OD (3.31 ppm for 1H NMR, 49.00 

ppm for 13C NMR). Coupling constants were reported in hertz. High–resolution mass spectra 

(HRMS) were obtained on a Varian QFT–ESI mass spectrometer, and glycoproteins were 

analyzed by Bruker ultrafleXtreme MALDI TOF/TOF mass spectrometer.  

Phenyl 2,3,4,6–tetra–O–benzyl–� –D–glucopyranosyl–(1� 2)–O–3,4,6–tri–O–benzyl–

1–thio–� –D–glucopyranoside (6) 

A mixture of donor 2 (1.39 g, 2.03 mmol) and acceptor 3 

(610 mg, 1.36 mmol) and 4 Å molecular sieves (2.0 g) in 10 mL 

dry Et2O/CH2Cl2 (1:1) was stirred at room temperature under Ar 

for 30 min. Then this mixture was cooled –40 oC, and TMSOTf 

(35 µL, 0.20 mmol) was added. The reaction was slowly warmed to room temperature in 1 h, 
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TLC analysis showed complete conversion of starting material to a major product (hexane/ethyl 

acetate 5:1, Rf = 0.36). The reaction was quenched by the addition of 0.1 mL triethylamine and 

filtered. The filtrate was concentrated in vacuum and purified by silica gel chromatography 

(hexane/ethyl acetate 10:1) to afford a syrup 4 (965 mg). ESI HRMS: m/z calcd for C60H64NO10S 

[M +NH4]
+ 990.4251, found 990.4254. 

This disaccharide syrup 4 (965 mg, 0.99 mmol) was dissolved in 10 mL CH2Cl2, 1 mL 

trifluoroacetic acid and 0.1 mL water was added. The mixture was stirred for 30 min at room 

temperature. TLC analysis showed complete conversion of starting material to a major product 

(hexane/ethyl acetate 1:1, Rf = 0.42). The reaction was quenched by the addition of 1.0 mL 

triethylamine. The mixture was washed with water, the organic layer was dried (Na2SO4) and 

filtered. The filtrate was concentrated in vacuum and purified by silica gel chromatography 

(hexane/ethyl acetate 2:1) to afford corresponding diol 5 as syrup (698 mg). ESI HRMS: m/z 

calcd for C53H56O10SNa [M +Na]+ 907.3492, found 907.3478. 

The above isolated diol (698 mg, 0.79 mmol) was dissolved in 10 mL DMF, and benzyl 

bromide (0.28 mL, 2.36 mmol) was added. Sodium hydride (60% dispersion in mineral oil, 94 

mg, 2.36 mmol) was then added slowly at 0 oC. The reaction mixture was stirred at room 

temperature overnight. TLC analysis showed complete conversion of starting material to a major 

product (hexane/ethyl acetate 8:1, Rf = 0.17). The reaction was quenched with MeOH and 

concentrated in vacuum. The residue was dissolved with CH2Cl2, and the organic layer was 

washed with water, followed by drying and filtration. The filtrate was concentrated in vacuum 

and purified by silica gel chromatography (hexane/ethyl acetate  8:1) to afford a syrup 6 (768 

mg, 53% from 3, three steps). 1H NMR (CDCl3, 400 MHz): �  3.14 (dd, J = 2.0 Hz, J = 10.4 Hz, 

1 H), 3.25 (d, J = 10.0 Hz, 1 H), 3.53–3.55 (m, 1 H), 3.64–3.78 (m, 6 H), 3.92–4.01 (m, 2 H), 
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4.09 (d, J = 10.4 Hz, 1 H), 4.24 (d, J = 12.0 Hz, 1 H), 4.36 (d, J = 11.2 Hz, 1 H), 4.48–4.60 (m, 4 

H), 4.73 (d, J = 11.6 Hz, 1 H), 4.76–4.83 (m, 4 H), 4.87 (d, J = 9.6 Hz, 1 H, H–1), 4.92 (d, J = 

11.6 Hz, 1 H), 4.98 (d, J = 10.8 Hz, 1 H), 5.94 (d, J = 3.6 Hz, 1 H, H–1'), 7.00–7.05 (m, 4 H), 

7.10–7.14 (m, 3 H), 7.17–7.32 (m, 31 H), 7.50–7.52 (m, 2 H); 13C NMR (CDCl3, 100 MHz): �  

67.75, 68.73, 70.08, 73.05, 73.21, 73.30, 74.51, 74.65, 74.75, 75.43, 75.52, 77.45, 78.52, 78.77, 

79.61, 81.67, 84.62, 86.86 (C–1), 95.61(C–1'), 127.12, 127.18, 127.22, 127.33, 127.39, 127.42, 

127.46, 127.57, 127.67, 127.76, 127.87, 127.94, 127.99, 128.09, 128.17, 128.26, 128.81, 131.11, 

133.34, 137.66, 137.70, 137.74, 137.87, 138.02, 138.61, 138.72; ESI HRMS: m/z calcd for 

C67H72NO10S [M +NH4]
+ 1082.4877, found 1082.4865. 

2,3,4,6–tetra–O–benzyl–� –D–glucopyranosyl–(1� 2)–O–3,4,6–tri–O–benzyl–� –D–

glucopyranosyl trichloroacetimidate (7) 

To a solution of 6 (750 mg, 0.7 mmol) in acetone (10 mL) 

and water (1.0 mL) was added NBS (250 mg, 1.4 mmol) at 0 oC. 

The mixture was stirred for 3 h at room temperature. TLC analysis 

showed complete conversion of starting material to a major product 

(hexane/ethyl acetate 3:1, Rf = 0.25). The reaction was quenched by the addition of 10 mL 

Na2S2O3(sat.) solution. The acetone was removed in vacuum, the crude product was diluted with 

CH2Cl2 (30 mL), washed with H2O (10 mL). And the aqueous phase was extracted by CH2Cl2 

(20 mL), the organic fractions were combined, dried over Na2SO4 and filtered. The filtrate was 

concentrated in vacuum and purified by silica gel chromatography (hexane/ethyl acetate 3:1) to 

afford corresponding hemiacetal as syrup (540 mg). ESI HRMS: m/z calcd for C61H68NO11 [M 

+NH4]
+ 990.4792, found 990.4805. 



��  

A mixture of the above isolated hemiacetal (540 mg, 0.55 mmol), CCl3CN (1 mL) and 

DBU (0.1 mL) in anhydrous CH2Cl2 (8 mL) was stirred for 2 h at room temperature. TLC 

analysis showed complete conversion of starting material to a major product (hexane/ethyl 

acetate 3:1, Rf = 0.70). The mixture was concentrated in vacuum and purified by silica gel 

chromatography (hexane/ethyl acetate 5:1) to afford a syrup 7 (532 mg, 68%, two steps) for next 

coupling step quickly. 

4–Methoxyphenyl 2,3,4,6–tetra–O–benzyl–� –D–glucopyranosyl–(1� 2)–O–3,4,6–tri–

O–benzyl–� –D–glucopyranosyl–(1� 2)–3–O–benzoyl–4,6–O–benzylidene–� –D–

galactopyranoside (9) 

A mixture of donor 7 (503 mg, 0.45 mmol) and acceptor 8 

(258 mg, 0.54 mmol) and 4 Å molecular sieves (1.0 g) in 8 mL 

anhydrous Et2O/CH2Cl2 (1:1) was stirred at room temperature under 

Ar for 30 min. Then this mixture was cooled –20 oC, TMSOTf (12 

µL, 0.068 mmol) was added. The reaction was warmed slowly room 

temperature in 1 h, TLC analysis showed complete conversion of 

starting material to a major product (hexane/ethyl acetate 3:1, Rf = 0.25). The reaction was 

quenched by the addition of 0.1 mL triethylamine and filtered. The filtrate was concentrated in 

vacuum and purified by silica gel chromatography (hexane/ethyl acetate 5:1) to afford a syrup 

trisaccharide 9 (354 mg, 55%). 1H NMR (CDCl3, 400 MHz): �  3.26 (dd, J = 3.6 Hz, J = 9.6 Hz, 

1 H), 3.46 (dd, J = 3.2 Hz, J = 10.0 Hz, 1 H), 3.54–3.64 (m, 3 H), 3.67–3.70 (m, 2 H), 3.74 (s, 3 

H), 3.86–3.87 (m, 2 H), 3.95–4.08 (m, 4 H), 4.18 (d, J = 12.4 Hz, 1 H), 4.23 (d, J = 11.6 Hz, 1 

H), 4.31 (d, J = 11.6 Hz, 1 H), 4.40–4.43 (m, 3 H), 4.46–4.52 (m, 2 H), 4.57–4.66 (m, 5 H), 

4.67–4.72 (m, 2 H, H–1 and PhCH2–1H), 4.74–4.86 (m, 4 H),  5.06 (d, J = 3.6 Hz, 1 H,  H–1'), 
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5.28 (dd, J = 3.6 Hz, J = 10.0 Hz, 1 H), 5.48 (s, 1 H, PhCH), 5.92 (d, J = 2.0 Hz, 1 H, H–1''), 

6.75–6.85 (m, 6 H), 6.94–6.98 (m, 2 H), 7.08–7.13 (m, 3 H), 7.17 (m, 5 H), 7.19–7.25 (m, 10 H), 

7.27–7.36 (m, 14 H), 7.40–7.48 (m, 7 H), 8.01-8.03 (m, 2 H); 13C NMR (CDCl3, 100 MHz): �  

55.55, 65.76, 68.14, 68.34, 68.64, 69.10, 70.21, 70.33, 71.43, 73.07, 73.27, 73.31, 73.44, 73.73, 

74.26, 74.78, 75.33, 76.13, 77.64, 79.45, 80.32, 81.69, 92.88 (C–1'), 93.58 (C–1''), 100.69 

(PhCH), 101.22 (C–1), 114.49, 117.00, 126.17, 127.02, 127.08, 127.29, 127.38, 127.49, 127.51, 

127.67, 127.75, 127.86, 127.95, 128.00, 128.11, 128.18, 128.28, 128.31, 128.63, 128.80, 129.55, 

129.78, 133.18, 137.63, 137.99, 138.15, 138.21, 138.53, 138.68, 138.72, 139.32, 150.37, 154.99, 

166.22; ESI HRMS: m/z calcd for C88H88O18Na [M +Na]+ 1455.5868, found 1455.5809. 

4–Methoxyphenyl 2,3,4,6–tetra–O–benzyl–� –D–glucopyranosyl–(1� 2)–O–3,4,6–tri–

O–benzyl–� –D–glucopyranosyl–(1� 2)–O–4,6–benzylidene–� –D–galactopyranoside (10) 

A solution of trisaccharide (215 mg, 0.15 mmol) in dry 

methanol (4 mL) was added sodium methoxide (10 mg, 0.18 mmol). 

The solution was stirred at 45 oC overnight. TLC analysis showed 

complete conversion of starting material to a major product 

(hexane/ethyl acetate 2:1, Rf = 0.23). Then the acid resin (Dowex® 

50WX2 H+–form) was added and stirred to adjust pH 7, followed by 

filtration. The filtrate was concentrated in vacuum and purified by silica gel chromatography 

(hexane/ethyl acetate 2:1) to afford a syrup 10 (191 mg, 96%). 1H NMR (CDCl3, 400 MHz): �  

3.13 (s, br, 1 H), 3.23–3.26 (m, 2 H), 3.42–3.49 (m, 2 H), 3.63–3.78 (m, 9 H), 3.95 (dd, J = 4.0 

Hz, J = 9.6 Hz, 1 H), 4.01–4.08 (m, 3 H), 4.11 (dd, J = 4.4 Hz, J = 9.2 Hz, 1 H), 4.16 (dd, J = 4.0 

Hz, J = 7.6 Hz, 1 H), 4.23–4.28 (m, 3 H), 4.36 (d, J = 11.6 Hz, 1 H), 4.43–4.49 (m, 3 H), 4.54–

4.61 (m, 2 H), 4.62–4.65 (m, 2 H, H–1 and PhCH2–1H), 4.70 (d, J = 11.6 Hz, 1 H), 4.75–4.79 
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(m, 2 H), 4.81–4.86 (m, 2 H), 4.98 (d, J = 10.4 Hz, 1 H), 5.22 (d, J = 3.2 Hz, 1 H, H–1'), 5.55 (s, 

1 H, PhCH), 5.79 (d, J = 4.0 Hz, 1 H, H–1''), 6.75–6.77 (m, 2 H), 6.85–6.87 (m, 2 H), 7.01–7.05 

(m, 2 H), 7.13–7.17 (m, 10 H), 7.23–7.34 (m, 26 H), 7.48–7.56 (m, 2 H); 13C NMR (CDCl3, 100 

MHz): �  55.57, 66.21, 68.60, 68.79, 70.02, 70.51, 71.38, 73.15, 73.23, 73.95, 74.00, 74.77, 

75.34, 75.73, 76.24, 77.71, 78.15, 79.79, 81.22, 81.58, 92.57 (C–1'), 94.41 (C–1''), 100.61 

(PhCH), 101.37 (C–1), 114.51, 116.92, 126.32, 127.09,  127.30, 127.38, 127.49, 127.61, 127.67, 

127.92, 128.08, 128.13, 128.15, 128.24, 128.30, 128.61, 129.04, 137.49, 137.87, 138.25, 138.35, 

138.37, 138.55, 138.75, 139.15, 150.62, 154.94;  ESI HRMS: m/z calcd for C81H84O17Na [M 

+Na]+ 1351.5606, found 1351.5599. 

4–Methoxyphenyl 2,3,4,6–tetra–O–benzyl–� –D–glucopyranosyl–(1� 2)–O–3,4,6–tri–

O–benzyl–� –D–glucopyranosyl–(1� 2)–[6–O–acetyl–2–azido–3,4–di–O–benzyl–2–deoxy–� –

D–glucopyranosyl–(1� 3)]–4,6–O–benzylidene–� –D–galactopyranoside (12) 

A mixture of donor 11 (103 mg, 0.18 mmol) and 

acceptor 10 (160 mg, 0.12 mmol) and 4 Å molecular 

sieves (200 mg) in 8 mL anhydrous Et2O/CH2Cl2 (1:1) 

was stirred at room temperature under Ar for 30 min. 

Then this mixture was cooled –20 oC, TMSOTf (3.3 µL, 

0.018 mmol) was added. The reaction was slowly 

warmed room temperature in 2 h, TLC analysis showed 

complete conversion of starting material to a major product (hexane/ethyl acetate 2:1, Rf = 0.18). 

The reaction was quenched by the addition of 0.1 mL triethylamine and filtered. The filtrate was 

concentrated in vacuum and purified by silica gel chromatography (hexane/ethyl acetate 2:1) to 

afford as a syrup tetrasaccharide 12  (158 mg, 76%). 1H NMR (CDCl3, 400 MHz): �  1.95 (s, 3 
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H), 3.12–3.35 (m, 2 H), 3.49 (d, J = 10.4 Hz, 1 H), 3.57 (dd, J = 2.4 Hz, J = 9.2 Hz, 1 H), 3.63–

3.69 (m, 2 H), 3.74–3.76 (m, 4 H), 3.81–3.87 (m, 2 H), 3.88–3.93 (m, 2 H), 3.98–3.99 (m, 2 H), 

4.02–4.08 (m, 3 H), 4.12 (dd, J = 4.4 Hz, J = 10.4 Hz, 1 H), 4.25–4.28 (m, 2 H), 4.31–4.35 (m, 2 

H), 4.38–4.44 (m, 2 H), 4.45–4.50 (m, 3 H), 4.53–4.57 (m, 5 H), 4.59–4.61(m, 2 H), 4.61-4.64 

(m, 2 H, H–1–B and PhCH2-1H), 4.75–4.81 (m, 6 H), 4.84–4.89 (m, 2 H), 5.02 (d, J = 3.2 Hz, 1 

H, H–1–D),  5.25 (d, J = 3.6 Hz, 1 H, H–1–C), 5.56 (s, 1 H, PhCH), 6.06 (s, 1 H, H–1–E), 6.76–

6.78 (m, 2 H), 6.83–6.85 (m, 2 H), 6.97–7.00 (m, 6 H), 7.08–7.13 (m, 10 H), 7.15–7.25 (m, 15 

H), 7.27–7.33 (m, 17 H), 7.54–7.56 (m, 2 H); 13C NMR (CDCl3, 100 MHz): �  20.79, 55.56, 

62.19, 63.20, 65.85, 68.31, 68.47, 68.96, 69.66, 70.07, 70.27, 70.43, 71.68, 73.27, 73.49, 74.43, 

74.80, 75.05, 75.11, 75.35, 75.94, 77.22, 77.74, 78.10, 79.33, 80.17, 81.19, 81.83, 93.01 (C–1–

E), 93.15 (C–1–C),   93.26 (C–1–D), 100.58 (PhCH),  101.71 (C–1–B), 114.55, 117.16, 126.01, 

127.09, 127.18, 127.27, 127.31, 127.37, 127.43, 127.47, 127.62, 127.73, 127.82, 127.90, 127.96, 

128.09, 128.17, 128.24, 128.36, 128.49, 128.75, 137.43, 137.49, 137.84, 138.16, 138.24, 138.44, 

138.75, 138.77, 139.05, 150.46, 155.08, 170.20; ESI HRMS: m/z calcd for C103H107N3O22Na [M 

+Na]+ 1760.7244, found 1760.7251. 

4–Methoxyphenyl 2,3,4,6–tetra–O–benzyl–� –D–glucopyranosyl–(1� 2)–O–3,4,6–tri–

O–benzyl–� –D–glucopyranosyl–(1� 2)–[6–O–acetyl–2–acetamido–3,4–di–O–benzyl–2–

deoxy–� –D–glucopyranosyl–(1� 3)]–4,6–O–benzylidene–� –D–galactopyranoside (13) 

To a stirred solution of tetrasaccharide 12 (140 

mg, 0.08 mmol) in 5 mL DCM/MeOH (1:1.5) was cooled 

at 0 oC, NiCl2
.6H2O (114 mg, 0.48 mmol) and NaBH4 (30 

mg, 0.8 mmol) was added. The color of the solution 

changed from green to black. The reaction mixture was 
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maintained at 10 oC for 2 h, TLC analysis showed the starting material disappeared, followed by 

adding Ac2O (0.1 mL) at 10 oC. The reaction mixture was stirred at 10 oC for 1 h, TLC analysis 

showed a major product (hexane/ethyl acetate 1:2, Rf = 0.42), then the reaction was quenched 

with 0.1 mL triethylamine. The mixture was concentrated in vacuo to give a residue, which was 

purified by silica gel chromatography (hexane/ethyl acetate 2:3) to afford a syrup 13 (132 mg, 

94%). 1H NMR (CDCl3, 400 MHz): �  1.33 (s, 3 H), 2.01 (s, 3 H), 3.23 (dd, J = 3.6 Hz, J = 9.6 

Hz, 1 H), 3.29 (dd, J = 8.0 Hz, J = 10.8 Hz, 1 H), 3.56–3.66 (m, 3 H), 3.73 (m, 3 H), 3.76–3.82 

(m, 2 H), 3.89–4.03 (m, 7 H), 4.09–4.15 (m, 2 H), 4.22 (d, J = 12.4 Hz, 1 H), 4.32–4.33 (m, 1 H), 

4.38–4.48 (m, 6 H), 4.51–4.58 (m, 6 H), 4.60–4.66 (m, 5 H), 4.71–4.74 (m, 2 H, H–1–B and 

PhCH2–1H), 4.76–4.88 (m, 6 H), 5.07 (d, J = 3.6 Hz, 1 H, H–1–D), 5.09 (d, J = 4.0 Hz, 1 H, H–

1–C), 5.42 (s, 1 H, PhCH), 5.99 (d, J = 2.8 Hz, 1 H, H–1–E),  6.54 (d, J = 10.0 Hz, 1 H, AcNH), 

6.75–6.83 (m, 4 H), 6.95–7.07 (m, 9 H), 7.09–7.21 (m, 20 H), 7.25–7.30 (m, 17 H), 7.37–7.43 

(m, 4 H); 13C NMR (CDCl3, 100 MHz): �  20.76, 22.20, 52.12, 55.42, 62.32, 65.71, 68.21, 68.41, 

68.86, 69.79, 69.92, 71.67, 72.22, 72.36, 72.90, 73.02, 73.58, 74.75, 74.84, 74.87, 75.21, 76.07, 

76.88, 77.00, 77.55, 77.81, 79.54, 81.29, 81.44, 81.50, 92.31 (C–1–C), 92.65 (C–1–D), 93.01 

(C–1–E), 101.19 (C–1–B), 101.25 (PhCH), 114.44, 116.72, 126.26, 126.75, 127.19, 127.28, 

127.37, 127.44, 127.52, 127.64, 127.89, 127.93, 128.00, 128.06, 128.11, 128.16, 128.24, 128.29, 

129.02, 137.39, 137.61, 137.68, 137.76, 138.02, 138.11, 138.31, 138.34, 138.47, 139.01, 150.20, 

154.96, 170.36, 170.46; ESI HRMS: m/z calcd for C105H111NO23Na [M +Na]+ 1776.7445, found 

1776.7452. 
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2,3,4,6–tetra–O–benzyl–� –D–glucopyranosyl–(1� 2)–O–3,4,6–tri–O–benzyl–� –D–

glucopyranosyl–(1� 2)–[6–O–acetyl–2–acetamido–3,4–di–O–benzyl–2–deoxy–� –D–

glucopyranosyl–(1� 3)]–4,6–O–benzylidene–� –D–galactopyranosyl trichloroacetimidate 

(14) 

To a solution of 13 (123 mg, 0.07 mmol)  in 

1:1.5:1 toluene–MeCN–water (7 ml) was added  ceric 

ammonium nitrate (192 mg, 0.35 mmol) at 0 oC. The 

mixture was stirred vigorous and was warmed room 

temperature in 30 min. TLC analysis showed 

complete conversion of starting material to a major 

product (hexane/ethyl acetate 1:2, Rf = 0.40), then the 

mixture was diluted with ethyl acetate, washed with water, saturated NaHCO3 (aq), and brine, 

dried (Na2SO4) and filtered. The filtrate was concentrated in vacuum and purified by silica gel 

chromatography (hexane/ethyl acetate 2:3) to afford the corresponding hemiacetal (83 mg). ESI 

HRMS: m/z calcd for C98H105NO22Na [M +Na]+ 1670.7026, found 1670.7032. 

To a solution of the above isolated hemiacetal (83 mg, 0.05 mmol) in dry DCM was 

added 0.5 mL CCl3CN and 0.05 mL DBU. The mixture solution was stirred at room temperature 

for 3 h under the Ar atmosphere. TLC analysis showed complete conversion of starting material 

to a major product (hexane/ethyl acetate 1:2, Rf = 0.74). The mixture was concentrated in vacuum 

to give a residue, which was purified by silica gel chromatography (hexane/ethyl acetate 1:1) to 

afford a yellow syrup 14 (66 mg, 53% from 13) for next coupling step quickly. 
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3–Azidopropyl 2,3,4,6–tetra–O–benzyl–� –D–glucopyranosyl–(1� 2)–O–3,4,6–tri–O–

benzyl–� –D–glucopyranosyl–(1� 2)–[6–O–acetyl–2–acetamido–3,4–di–O–benzyl–2–deoxy–

� –D–glucopyranosyl–(1� 3)]–O–4,6–benzylidene–� –D–galactopyranosyl–(1� 3)–2, 4,6–tri–

O–benzyl–� –D–glucopyranoside (16) 

A mixture of donor 14 (65 mg, 

0.036 mmol) and acceptor 15 (28.8 mg, 

0.054 mmol) and 4 Å molecular sieves 

(100 mg) in dry 6 mL Et2O/CH2Cl2 (1:1) 

was stirred at room temperature under Ar 

for 30 min. Then this mixture was cooled 

–25 oC, TMSOTf (1 µL, 0.0054 mmol) was added. The reaction was slowly warmed room 

temperature in 2 h, TLC analysis showed complete conversion of starting material to a major 

product (hexane/ethyl acetate 1:1, Rf = 0.37). The reaction was quenched by the addition of 0.1 

mL triethylamine and filtered. The filtrate was concentrated in vacuum and purified by silica gel 

chromatography (hexane/ethyl acetate 3:2) to afford a syrup 16 (33 mg, 42%). 1H NMR (CDCl3, 

400 MHz): �  1.33 (s, 3 H), 1.72 (s, 3 H), 1.92 (m, 2 H), 3.32 (m, 2 H), 3.43 (m, 3 H), 3.62–3.71 

(m, 8 H), 3.76–3.80 (m, 6 H), 3.91–4.08 (m, 7 H), 4.10–4.14 (m, 2 H), 4.23 (m, 3 H), 4.33–4.38 

(m, 5 H), 4.43–4.90 (m, 3 H), 4.54–4.60 (m, 5 H), 4.66–4.76 (m, 6 H, including H–1–A), 4.83–

4.87 (m, 5 H), 4.89–4.98 (m, 4 H), 5.16 (d, J = 3.6 Hz, 1 H, H–1–C), 5.22 (s, 1 H, PhCH), 5.31 

(d, J = 3.2 Hz, 1 H, H–1–B), 5.51-5.58 (m, 2 H, H–1–D and AcNH), 5.91 (s, 1 H, H–1–E), 6.97–

7.00 (m, 2 H), 7.11–7.22 (m, 24 H), 7.29–7.42 (m, 37 H), 7.57 (m, 2 H); 13C NMR (CDCl3, 100 

MHz): �  20.69, 22.58, 28.79, 48.20, 52.30, 61.43, 62.02, 64.57, 68.48, 68.88, 69.27, 69.57, 

70.00, 70.12, 70.47, 71.73, 72.62, 73.00, 73.44, 74.93, 75.00, 75.20, 75.47, 76.15, 77.26, 77.73, 
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78.89, 79.09, 80.60, 81.37, 81.82, 93.58 (C–1–D), 93.71 (C–1–B), 93.78 (C–1–C), 95.87 (C–1–

E), 95.88 (C–1–A), 100.98 (PhCH), 126.23, 127.19, 127.31, 127.35, 127.44, 127.48, 127.53, 

127.64, 127.75, 127.86, 128.08, 128.12, 128.17, 128.23, 128.26, 128.31, 128.37, 128.44, 128.57, 

128.73, 129.07, 137.72, 137.77, 137.88, 138.13, 138.23, 138.29, 138.40, 138.84, 139.22, 170.04, 

170.08; ESI HRMS: m/z calcd for C128H139N4O27 [M +H]+ 2163.9627, found 2163.9648. 

3–aminopropyl � –D–glucopyranosyl–(1� 2)–� –D–glucopyranosyl–(1� 2)–[2–

acetamido–2–deoxy–� –D–glucopyranosyl–(1� 3)]–� –D–galactopyranosyl–(1� 3)–� –D–

glucopyranoside (1) 

A solution of 16 (22 mg, 0.01 mmol) 

in dry methanol (2 mL) was added catalytic 

amount of sodium methoxide (pH 9–10). The 

solution was stirred at room temperature for 2 

h. TLC analysis showed complete conversion 

of starting material to a major product (hexane/ethyl acetate 1:2 Rf = 0.33). Then the acid resin 

(Dowex® 50WX2 H+–form) was added and stirred to adjust pH 7, followed by filtration. The 

filtrate was concentrated in vacuum to afford a syrup (16 mg). ESI HRMS: m/z calcd for 

C126H137N4O26 [M +H]+ 2121.9521, found 2121.9507. 

To a stirred solution of the above syrup (16 mg, 0.0075 mmol) in 2 mL methanol was 

added Pd(OH)2/C (20 mg) at 50 psi H2 atmosphere for 3 days. The catalyst was filtered off, the 

filtrate was concentrated to afford a white solid 1 (6.7 mg, 72% from 16). 1H NMR (CD3OD, 400 

MHz): �  1.97–2.00 (m, 2 H), 2.02 (s, 3 H), 3.15–3.20 (m, 2 H), 3.35–3.44 (m, 6 H), 3.58–3.61 

(m, 3 H), 3.68–3.77 (m, 10 H), 3.85–3.87 (m, 2 H), 3.91–3.99 (m, 6 H), 4.09 (m, 2 H), 4.25–4.30 

(m, 3 H), 5.04–5.05 (m, 2 H, H–1–A and H–1–C ), 5.17 (d, J = 3.6 Hz, 1 H, H–1–B), 5.47 (d, J = 
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3.2 Hz, 1 H, H–1–D), 5.79 (s, H–1–E), 13C NMR (CD3OD, 100 MHz): �  20.43, 28.34, 37.91, 

52.91, 59.42, 60.10, 60.56, 60.73, 64.29, 66.30, 66.83, 68.93, 69.01, 69.18, 69.60, 70.23, 70.40, 

70.55, 71.03, 71.21, 71.28, 71.49, 71.66, 72.18, 72.57, 75.15, 76.84, 90.77 (C–1–D), 91.96 (C–

1–B), 93.67 (C–1–E), 95.98 (C–1–C), 98.76 (C–1–A), 167.49; ESI HRMS: m/z calcd for 

C35H62N2O26Na [M +Na]+ 949.3489, found 949.3484. 

Preparation of NHS activated pentasaccharide 

A solution of the propyl amino–linked pentasaccharide 1 (2.0 mg, 0.002 mmol) in DMF 

(0.5 mL) containing triethylamine (50 µL), was added dropwise to a stirred solution of di–N–

hydroxysuccinimidyl suberate (7.4 mg, 0.02 mmol) in DMF (0.5 mL). The reaction was kept 

under gentle stirring at room temperature for 3 h. TLC analysis showed complete conversion of 

starting material to a major product (ethyl acetate/methanol/water/acetic acid 5:1.5:0.75:0.15, Rf 

= 0.50). The reaction was then concentrated, the residue was added 0.5 mL water, extracted with 

EtOAc (1 mL x 4). The aqueous layer was lyophilized to give NHS activated pentasaccharide as 

a white power (2.0 mg). ESI HRMS: m/z calcd for C47H77N3O31Na [M +Na]+ 1202.4439, found 

1202.4453. 

Conjugate NHS activated pentasaccharide to CRM197 and BSA 

The NHS activated pentasaccharide was conjugated to CMR197 (or BSA) at a molar ratio 

50:1 in 3 x PBS buffer (pH 7.4). The solution was incubated overnight at room temperature. 

Then the resultant solution was ultrafiltrated and washed with 1 x PBS buffer using Amicon 

Centrifugal Filter Devices (Ultracel 10, 000). The glycoproteins solution was lyophilized to give 

a white solid. Glycoproteins were analyzed by Bruker ultrafleXtreme MALDI TOF/TOF mass 

spectrometer. 
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SDS–PAGE 

The glycoproteins (5 µg) and CRM197 (or BSA)  (5 µg) were suspended in 10 µL of 

sample buffer (5% (w/v) SDS, 10% (v/v) glycerol, 25 mM Tris–HCl, pH 6.8, 10 mM DTT, 

0.01% (w/v) bromophenol blue), loaded into different lanes of a 1.5–mm–thick, 12% (w/v) 

SDS–PAGE gel, and visualized by Coomassie Brilliant Blue R–250 staining. 

MALDI–TOF mass (A) and SDS–PAGE (B) analysis of CRM197 and 

pentasaccharide–CRM197  

 

MALDI–TOF mass (A) and SDS–PAGE (B) analysis of BSA and pentasaccharide–

BSA 



Immunization of mice 

The mice were purchased from Vital River Laboratories. Groups of 5 female

mice (6–8 week old) were subcutaneously (several different sites with a total of 150 µL) 

immunized on days 0, 14, and 28 with 2.5 

pentasaccharide–CRM197 conjugate formulated with Freund’s adjuvant (mixing equa

conjugate and Freund’s adjuvant, v/v,1:1). PBS, Freund’s adjuvant and CRM197/Freund’s 

adjuvant (v/v,1:1�Å were used as controlled groups. For immunizations with Freund’s adjuvant, 

the first immunization was performed with Freund’s complete adjuvant (FCA (Sigma

F5881), and the second and third immunizations with Freund’s incomplete adjuvant (FIA) 

(Sigma–Aldrich, F5506). Seven days after the third immunization, the blood was taken via 

lateral saphenous, and then centrifuged for 20 min at 4,000 RPM to collect the sera (without 

anticoagulants). These collected sera were ready to the following ELISA assay 

activity assay. 

 

The mice were purchased from Vital River Laboratories. Groups of 5 female

8 week old) were subcutaneously (several different sites with a total of 150 µL) 

immunized on days 0, 14, and 28 with 2.5 � g carbohydrate antigen based doses of 

conjugate formulated with Freund’s adjuvant (mixing equa

conjugate and Freund’s adjuvant, v/v,1:1). PBS, Freund’s adjuvant and CRM197/Freund’s 

were used as controlled groups. For immunizations with Freund’s adjuvant, 

the first immunization was performed with Freund’s complete adjuvant (FCA (Sigma

F5881), and the second and third immunizations with Freund’s incomplete adjuvant (FIA) 

Aldrich, F5506). Seven days after the third immunization, the blood was taken via 

lateral saphenous, and then centrifuged for 20 min at 4,000 RPM to collect the sera (without 

anticoagulants). These collected sera were ready to the following ELISA assay 
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The mice were purchased from Vital River Laboratories. Groups of 5 female BALB/c 

8 week old) were subcutaneously (several different sites with a total of 150 µL) 

g carbohydrate antigen based doses of 

conjugate formulated with Freund’s adjuvant (mixing equal volume of 

conjugate and Freund’s adjuvant, v/v,1:1). PBS, Freund’s adjuvant and CRM197/Freund’s 

were used as controlled groups. For immunizations with Freund’s adjuvant, 

the first immunization was performed with Freund’s complete adjuvant (FCA (Sigma–Aldrich, 

F5881), and the second and third immunizations with Freund’s incomplete adjuvant (FIA) 

Aldrich, F5506). Seven days after the third immunization, the blood was taken via 

lateral saphenous, and then centrifuged for 20 min at 4,000 RPM to collect the sera (without 

anticoagulants). These collected sera were ready to the following ELISA assay and bactericidal 
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ELISA assay 

The ELISA 96–well plates (Corning®, #3590) were coated with 1 � g/mL 

pentasaccharide–BSA in 1 x PBS buffer (pH 7.4) overnight at 4 °C. The coated plates were 

washed three times with PBS buffer containing 0.05% (v/v) Tween 20 (PBST) (pH 7.4), and then 

blocked for 2 hours at room temperature with 2% BSA (w/v) in PBST. The coated plates were 

incubated with 100 � L of sera diluted with dilution buffer (1% BSA, PBST) 2–fold from 1:200 

to 204,800 for 2 hours at room temperature after being washed three times with PBST. Then 

quintuple PBST washing  was performed, and 100 � L/well of 1:3000-1:20000 HRP–conjugated 

goat anti-mouse IgG (Invitrogen, USA), IgG1, IgG2a, IgG2b, IgG3 and IgM (Abcam) were 

added respectively, and  incubated 1 hour at room temperature. After the plates were washed 

with PBST, 100 � L/well of enzyme substrate tetramethylbenzidine (TMB) solution was added 

and incubated for 15 min (a blue color developed for the sera with antibodies) before the 

enzymatic reaction was terminated by adding 1 M HCl, and the OD of each sample was 

measured at 450 nm with a microplate spectrophotometer (Biorad). Antibody titers were 

expressed by evaluating the logarithm of the reciprocal of sera dilution based two. The statistical 

and graphical analysis was performed using GraphPad Prism 5 software. 

Bactericidal activity 

Complement-dependent bactericidal activity was measured in serum of day 35 (one week 

after the third immunization). E. coli O157:H7 containing R3 outer core was used as the test 

strain. 104 bacteria per mL suspended in 1% peptone supplemented with 5% 3–week–old rabbit 

sera as the complement source were added to 96–well plates (Costar®, # 3590), and mixed with 

serum diluted with 2–folds PBS (pH 7.4) from 1:20 to 1:12,800. The mixture was incubated at 

37°C for 1hour. 10 � L/well of the CCK8 was added, and plates were incubated for 6 hours. The 
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absorbance of plates at 450 nm was read by a microplate spectrophotometer (Biorad). Percent 

bactericidal activity was calculated as the proportion of the dead bacteria exposed to immunized–

serum compared with the number of bacteria in control culture condition. 

Statistical analysis 

All the statistical analyses and figures were generated by GRAPHPAD PRISM software 

version 5.0. Data were shown as means ± standard deviation (SD).The difference between two 

groups was compared by t test. For multiple comparisons, One–way ANOVA was used. A 

probability (P) value �…0.05 was considered statistically significant. 

 

1H NMR and 13C NMR spectra 
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ESI HRMS of 1 and active ester modified pentasaccharide 
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3 CORE STRUCTURE ENZYMATIC EXTENSION (CSEE) AND CONVERGENT 

SYNTHESIS OF O-GLYCAN LIBRARY 

3.1 Introduction 

With the development of synthetic glycochemistry, a large number of protecting and 

deprotecting strategies have been developed, allowing for the synthesis of highly complex 

oligosaccharides.1-3 Since the birth of solid phase chemistry in 1960s, the dream of automated 

synthesis of oligosaccharide has been sought after for decades.4-14 However, little progress was 

has been made for synthesizing highly complex and diverse glycans and glyco-conjugates. 

Unlike the linear assembly of amino acids in peptide synthesis, current regio- and stereo-

selective glycosylation reactions are far from perfect, giving impure and low-yielding 

products.15-22 This limitation makes the synthesis of large oligosaccharides challenging and time-

consuming. Although the chemical structures of oligosaccharides are daunting in size and 

diversity, most oligosaccharides are derived from some common core structures.23-25 These 

common core structures normally are comprised of two or three glyco-moieties, and their 

chemical synthesis is well established and documented.23,25-28 Furthermore, glycosyltransferases 

– nature’s instruments for glycosylation – proves to be a powerful tool to add diversity and 

complexity to a core structure, thus creating a nearly infinite number of possible variations.29-39 

One unrivaled aspect of glycosyltransferases is their strict regio- and stereo-specificity, which 

precludes laborious protecting group manipulation. This chemoenzymatic approach has been 

widely explored to synthesize biomedically important oligosaccharides and glycoconjugates. 

Therefore, in light of this emerging technique, we designed a Core Synthesis /Enzymatic 

Extension (CSEE) approach and proved it to be highly practical and efficient for synthesizing 
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complex oligosaccharides. Herein, we report a facile synthesis of O-glycans by employing the 

CSEE technique, and its potential application in synthesizing highly complex oligosaccharides. 

3.2 Result and discussion 

O-glycosylation is found ubiquitously in mucins that are expressed extensively on the 

surface of epithelial cells, playing an important role in protecting cells from certain chemical and 

physical attacks.40,41 O-glycans are covalently � -linked GalNAc residue with the side chain of 

serine or threonine. Simple GalNAc linked O-glycan structures are often modified with sialic 

acid, Gal, GlcNAc, or Fuc to form complex O-glycosylations.42,43 Many terminal isotopes of O-

glycans are antigens that can trigger specific immune responses.44-47 Therefore, a comprehensive 

O-glycan library can enable high throughput screening of potential antigens and antibody 

binding affinity, thus facilitating the development of carbohydrate based therapeutics, 

diagnostics, and vaccines. Although complex O-glycans vary greatly in structures, most O-

glycans can be categorized into eight core structures, each core structure containing two or three 

glycan residues with limited variation (Figure 15).42 



Figure 15
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-glycans, we designed a highly convergent strategy of building 

block assembly by using five glycosyl donors and one acceptor (Figure 16)
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peracetylated cores 1-8 starts with a common glycosyl receptor 10, which is ready for 3-O-

glycosylation. Furthermore, the phenyl acetal protection can be readily converted into glycosyl 

receptor 11, which allows for 6-O-glycosylation. The five glycosyl donors can be easily 

synthesized by established protocols. In order to introduce variation, the symmetrical structure of 

core 4 was dissected into two asymmetrical core structures to allow for the synthesis of site 

specific glycosidic bond by enzymatic extension. It is noteworthy that the end product of each 

route is a globally protected glyco-amino acid, which can be readily used in solid phase peptide 

synthesis. To demonstrate the viability of this convergent synthesis design, we successfully 

synthesized the core 2 O-glycan in preparative scale. Furthermore, enzymatic extension is 

underway for the proof-of-conceptof the CSEE approach; some preliminary data is shown in this 

report.
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Figure 16 Convergent synthesis strategy for module assembly of O-glycan core structures 
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Among these eight core structures, the core 2 structure is of great biomedical interest because it 

is a major component of P-selectin glycoprotein ligand-1 (PSGL-1). PSGL-1 binds to P-selectin 

with extraordinarily high affinity to support leukocyte rolling under blood flow.56,57 This 

interaction plays an important role in anti-inflammation process to recruit leukocytes to sites of 

inflammation.58 PSGL-1 is a homodimer, heavily glycosylated mucin that is joined together by a 

disulfide bond. Each monomer is comprised of 351 amino acids with three potential N-

glycosylation sites and 70 O-glycosylation sites.58,59 It has been identified that an extended core 

2 O-glycan at Thr57 of PSGL-1 is essential for binding to P-selectin (Figure 17).60 Absence of 

this core 2 O-glycosylation will result in severe deficiency of immune system response during 

the inflammatory process. Although the existence of the extended core 2 O-glycan was proved to 

be crucial for ligand binding, the minimal structural motif that necessitates binding remains 

unclear. Therefore, a chemically synthesized extended core 2 O-glycan provides a powerful tool 

to probe the structure-activity relationship between PSGL-1 and P-selectin.  
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Figure 17 Molecular interactions between P-selectin and the amino terminus of PSGL-1 

(referenced from the book “Essentials of Glycobiology (2000): 552-553”) 

The chemical synthesis of core 2 was carried out based on the proposed convergent 

strategy. The detailed synthesis route is illustrated in Figure 18. A glycosyl donor coupled with 

the side chain of an N- and C- terminal protected threonine in the presence of catalytic amount of 

TMSOTf in diethyl ether/CH2Cl2 at -20 oC afforded the � -anomer as the major product (� /�  3:1 

determined by NMR). The acetyl groups were easily removed under Zemplén’s condition, 

followed by phenyl acetal protection at 4-O and 6-O to afford the essential glycosyl acceptor 10. 

Then the Gal� 1-3GalNAc glycosidic bond was formed using peracetylated trichloroacetimidate 
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donor 12 in the presence of a catalytic amount of TMSOTf in CH2Cl2. The phenyl acetal 

protection was removed to give the free diol 26 as the acceptor, which was coupled with donor 

13 in the presence of promoter TMSOTf to form the trisaccharide. Protecting group manipulation 

was executed to give the peracetylated module 28. In order to perform enzymatic extension, 

acetyl groups were removed along with allyl deprotection in one-pot reaction. Interestingly, we 

found the deacetylation under Zemplén condition not compatible with Fmoc protection. After 

reacting for two hours, a large portion of Fmoc removed product was detected by TLC. We infer 

that this incompatibility was due to the presence of too many acetyl groups (more than two 

sugars) which requires more basic condition and longer reaction time. This incident led to the 

reinstallment of Fmoc by using Fmoc-OSu in methanol to form the deprotected trisaccharide 29 

for the subsequent enzymatic reactions. 

  

Figure 18 Chemical synthesis of core 2 O-glycan. 

With the chemically synthesized trisaccharide 29 in hand, enzymatic extension was 

performed using three glycosyltransferases – Sia � 2-3T, Gal � 1-4T, and Fuc � 1-3T. The stepwise 
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enzymatic elongation is illustrated in Figure 19. The � 2-3 sialylaion of trisaccharide threonine 

acceptor was executed on semi-preparative scales (44 mg) in 100 mM Tris HCl buffer (pH 8.0) 

in the presence of sialic acid, sialic acid synthetase (NmCSS) and � 2-3-sialyltransferase 

(PmST1) at 37 oC for 45 minutes. The promiscuity of PmST1 has been well demonstrated in 

synthesis of various � 2-3-linked sialylglycosidic bonds.31,61 To our delight, the trisaccharide 

threonine substrate 29 can be well tolerated by PmST1 to give the desired tetrasaccharide 

threonine in 83% yield after size exclusion column chromatography (BioGel P-2, Bio-Rad). 

With successful demonstration of � 2-3 sialylaion using trisaccharide acceptor 29, we then 

expected the resulting tetrasaccharide would also be tolerated by Neisseria meningitidis � Gal1-

4T (NmLgtB) to form the desired pentasaccharide. Therefore, the next enzymatic extension was 

performed in 100 mM Tris HCl buffer (pH 8.0) in the presence of UDP-Gal and Shrimp Alkaline 

Phosphatase (rSAP) at 37 oC for 24 hours. However, the product was barely detectable on TLC, 

indicating inefficient formation of � 1-4-galastosidic bond. We inferred that the bacteria-

expressed NmLgtB was not tolerant enough for the tetrasaccharide acceptor due to the increased 

complexity and steric hindrance. However, the formation of the desired pentasaccharide was 

indeed confirmed by MALDI-MS. Attempts to change the outcome by second incubation did not 

improve the yield. Therefore, optimization of the reaction condition is currently underway and 

the improved methodology will be disclosed in due course. 
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Figure 19 Enzymatic synthesis of extended core 2 O-glycan. 

3.3 Experimental procedures 

All reagents were purchased from commercial sources and were used without further 

purification. All anhydrous solvents were purchased from Sigma-Aldrich and used directly. 

Reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates with 

detection by short wave UV light (254 nm)and staining with p-anisaldehyde solution (ethanol/p-

anisaldehyde/acetic acid/ sulfuric acid 135:5:4:1.5), followed by heating on a hot plate. Column 

chromatography was performed by silica gel (200-300 mesh). 1H and 13C NMR were recorded 

with Bruker AV 400 spectrometer at 400 MHz (1H NMR) and 100 MHz (13C NMR), or with 

Varian 600 spectrometer at 600 MHz (1H NMR) and 150 MHz (13C NMR). Chemical shifts were 

reported in �  (ppm) and were calibrated based on solvent peak CDCl3 (7.26 ppm for 1H NMR, 



	  

77.00 ppm for 13C NMR), or D2O (4.76 ppm for 1H NMR). Coupling constants were reported in 

hertz. High-resolution mass spectra (HRMS) were obtained on a Thermo Fisher Orbitrap ESI 

mass spectrometer, or Bruker ultrafleXtreme MALDI TOF/TOF mass spectrometer. 

N� -(Fluoren-9-ylmethoxycarbonyl)-O-(2-azido-2-deoxyl-� -D-galactopyranosyl)-L-

threonine allyl ester (24) 

A mixture of acceptor 22 (1.15 g, 3.02 mmol), donor 21 (1.72 

g, 3.63 mmol) and 4Å molecular sieves in 20 mL anhydrous 

Et2O/CH2Cl2 (1:1) was stirred at room temperature under Ar for 30 

min. Then this mixture was cooled to -40 oC, and TMSOTf (0.05 mL) 

was added. The reaction was slowly warmed to room temperature in 1 

h. TLC analysis showed complete conversion of starting material to a major product 

(hexane/ethyl acetate 3:1, Rf = 0.25). The reaction was quenched by addition of DIPEA (0.1 mL) 

and filtered through a layer of celite. The residue was collected in vacuo and purified by silica 

gel gel chromatography (hexane/ethyl acetate 3:1) to afford a syrup 23 contaminated by the 

unreacted acceptor 22 (1.312 g). ESI HRMS: m/z calcd for C33H36N4NaO12 [M + Na+] 703.2227, 

found 703.2239. 

To a solution of monosaccharide amino acid conjugate 23 (1.312 g, 1.89 mmol) in 20 mL 

anhydrous MeOH was added sodium methoxide, and was stirred under room temperature for 1.5 

h. The pH of the solution was carefully controlled to maintain 8.5 in order to prevent cleavage of 

the Fmoc group. TLC analysis indicated complete conversion of starting material to the major 

product (hexane/ethyl acetate 1:3, Rf = 0.18). Then the reaction was added acid resin (Dowex® 

50WX2 H+ form) and stirred to adjust pH to neutral, followed by filtration. The filtrate was 

collected in vacuo and chromatographed on a silica gel column (hexane/ethyl acetate 3:1) to give 




  

free triol 24 (820 mg, 1.44 mmol, 47% from 22) as white syrup. 1H NMR (CDCl3, 400 MHz): �  

7.773 (d, J = 7.2 Hz, 2H), 7.640 (d, J = 7.2 Hz, 2H), 7.419 (d, J = 7.2 Hz, 2H), 7.392-7.308 (m, 

2H), 5.962-5.919 (m, 2H), 5.379 (d, J = 16.8 Hz, 1H), 5.281 (d, J = 10.4 Hz, 1H), 5.020 (d, J = 

3.6 Hz, 1H), 4.709 (d, J = 5.6 Hz, 2H), 4.469 (d, J = 8.0 Hz, 2H), 4.374-4.290 (m, 1H), 4.418 (d, 

J = 8.0 Hz, 2H), 3.884 (s, 3H), 3.571 (dd, J = 3.2 Hz, 13.6 Hz, 1H), 1.314 (d, 6.4 Hz, 3H); 13C 

NMR (CDCl3, 100 MHz): �  170.32, 156.90, 143.85, 143.68, 141.30, 127.79, 127.12, 125.16, 

120.04, 119.44, 99.55, 76.30, 66.71, 62.66, 60.62, 58.85, 47.10, 18.66 ppm. ESI HRMS m/z 

calcd for C28H32N4NaO9 [M + Na+] 591.2067, found 591.2098. 

N� -(Fluoren-9-ylmethoxycarbonyl)-O-(2-azido-4,6-O-benzylidene-2-deoxyl-� -D-

galactopyranosyl)-L-threonine allyl ester(10) 

A solution of triol 5 (816 mg, 1.438 mmol)in DMF was added 

benzaldehyde dimethyl acetal and catalytic amount of camphorsulfonic 

acid. The reaction was agitated on a rotavapor under reduced pressure 

(100 mbar) at 50 oC overnight. After the TLC analysis showed 

complete conversion (hexane/ethyl acetate 2:1, Rf = 0.21), the reaction 

was quenched by addition of DIPEA. The solvent was removed under 

vaccum and extracted with DCM. The residue was collected in vacuo 

and purified by silica gel column (hexane/ethyl acetate 2:1) to afford the title compound 10 (745 

mg, 79%) as white syrup. 1H NMR (CDCl3, 400 MHz): �  7.800 (d, J = 8.0 Hz, 2H), 7.683-7.656 

(m, 2H), 7.519-7.504 (m, 2H), 7.432-7.404 (m, 6H), 7.356(t, J = 7.2 Hz, 2H), 6.014-5.931 (m, 

1H), 5.789 (d, J = 5.2 Hz, 1H), 5.587 (s, 1H), 5.400 (dd, J = 16 Hz, J = 0.8 Hz, 1H), 5.303 (d, J = 

5.2 Hz, 1H), 5.070 (d, J = 3.6 Hz, 1H), 4.730 (d, J = 5.6 Hz, 2H), 4.540-4.450 (m, 3H), 4.413-

4.368 (m, 1H), 4.317-4.269 (m, 3H), 4.166 (d, J = 7.2 Hz, 1H), 4.083 (d, J = 12 Hz, 1H), 3.782 
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(s, 1H), 3.632 (dd, J = 10.8, J = 3.6 Hz, 1H), 2.630 (d, J = 10.8 Hz, 1H), 1.340 (d, J = 5.4 Hz, 

3H); 13C NMR (CDCl3, 100 MHz): �  169.98, 156.83, 143.93, 143.74, 141.33, 141.32, 137.25, 

128.37, 127.16, 126.22, 125.19, 120.03, 120.01, 119.34, 101.26, 99.67, 76.46, 75.37, 67.44, 

66.62, 63.31, 61.14, 58.80, 47.17, 18.83 ppm; ESI HRMS m/z calcd for C35H37N4O9 [M + H+] 

657.2555, found 657.2567. 

N� -(Fluoren-9-ylmethoxycarbonyl)-O-[O-(2’,3’,4’,6’-tetra- O-acetyl-� -D-

galactopyranosyl)-(1’� 3)-2-azido-4,6-O-benzylidene-2-deoxyl-� -D-galactopyranosyl]-L-

threonine allyl ester (25) 

To a mixture of acceptor 10 (740 mg, 1.128 mmol), 

donor 12 (720 mg, 1.466 mmol), and 4Å molecular sieves in 20 

mL anhydrous CH2Cl2 was stirred at room temperature under 

Ar for 30 min. Then the reaction was cooled to 0 oC and was 

added TMSOTf (0.01 mL), followed by vigorous stirring for 1 

h. TLC showed complete conversion of the starting material to 

the final product (hexane/ethyl acetate 3:2, Rf = 0.23). The 

reaction was quenched by addition of DIPEA (0.1 mL), followed by filtration, and concentrated 

in vacuo. The residue was purified by silica gel column (hexane/ethyl acetate 3:2) to give the 

disaccharide 25 (830 mg, 75%) as white foam. 1H NMR (CDCl3, 400 MHz): �  7.771 (d, J = 8.0 

H, 2H), 7.631 (t, J = 6.4 Hz, 2 H), 7.526 (d, J = 6.4 Hz, 2H), 7.419-7.298 (m, 8H), 5.975-5.891 

(m, 1H), 5.771 (d, J = 5.2 Hz, 1H), 5.550 (s, 1H), 5.412 (d, J = 3.2 Hz, 1H), 5.354 (d, J = 9.2 Hz, 

1H), 5.323 (dd, J = 10 Hz, J = 2.8 Hz, 1H), 5.264 (d, J = 6.8 Hz, 1H), 5.068 (s, 1H), 4.805 (d, J = 

8.0 Hz, 1H), 4.685 (d, J = 6.0 Hz, 2H), 4.545-4.442 (m, 3H), 4.406 (d, J = 2.4 Hz, 1H), 4.368-

4.324 (m, 1H), 4.269 (s, 1H), 4.233 (s, 1H), 4.193 (d, J = 6.4 Hz, 1H), 4.052-4.018 (m, 1H), 
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3.951 (t, J = 6.4 Hz, 1H), 3.825 (dd, J = 10.8 Hz, J = 3.2 Hz, 1H), 3.716 (s, 1H), 2.145 (s, 3H), 

2.058 (s, 3H), 1.983 (s, 3H), 1.328 (d, J = 6.4 Hz, 3H); 13C NMR (CDCl3, 100 MHz): �  171.02, 

170.24, 170.19, 170.07, 169.90, 169.31, 143.85, 143.64, 141.29, 137.57, 131.30, 125.06, 120.01, 

119.37, 102.33, 100.64, 99.66, 76.17, 75.82, 75.60, 68.68, 66.99, 63.51, 60.32, 58.70, 47.15, 

20.99, 20.68, 20.66, 20.54 ppm; ESI HRMS m/z calcd for C49H54N4NaO18 [M + Na+] 1009.3331, 

found 1009.3346. 

N� -(Fluoren-9-ylmethoxycarbonyl)-O-[O-(2’,3’,4’,6’-tetra- O-acetyl-� -D-

galactopyranosyl)-(1’� 3)-2-azido-2-deoxyl-� -D-galactopyranosyl]-L-threonine allyl ester 

(26) 

The disaccharide 25 (523 mg, 0.53 mmol) was 

dissolved in 10 mL acetic acid (80% aq), and was stirred at 85 

oC for 2h. The residue was collected in vacuo and purified by 

silica gel column to afford the free diol 26 (400 mg, 84%) as 

white foam. 1H NMR (CDCl3, 400 MHz): �  7.790 (d, J = 7.6 

Hz, 2H), 7.640 (dd, J = 7.2 Hz, J = 2.8 Hz, 2H), 7.423 (t, J = 

7.2 Hz, 2H), 7.329 (t, J = 7.2 Hz, 2H), 6.008-5.909 (m, 1 H), 5.698 (d, J = 5.2 Hz, 1H), 5.424 (d, 

J = 3.2 Hz, 1H), 5.340 (d, J = 16.8 Hz, 1H), 5.301 (s, 1H), 5.278 (d, J = 4.0 Hz, 1H), 5.057 (dd, J 

= 10.4 Hz, J = 3.2 Hz, 1H), 5.020 (d, J = 3.6 Hz, 1H), 4.758 (d, J = 8.0 Hz, 1H), 4.704 (d, J = 6.4 

Hz, 2H), 4.541-4.463 (m, 3H), 4.381-4.336 (m, 1H), 4.289 (d, J = 7.2 Hz, 1H), 4.216 (b, 1H), 

4.179 (d, J = 7.2 Hz, 1H), 3.989 (b, 1H), 3.964 (d, J = 7.2 Hz, 1H), 3.923 (b, 1H), 3.611 (dd, J = 

6.4 Hz, J = 3.2 Hz, 1H), 2.183 (s, 3H), 2.111 (s, 3H), 2.065 (s, 3H), 2.014 (s, 3H), 1.354 (d, 6.0 

Hz, 3H); 13C NMR (CDCl3, 100 MHz): �  170.47, 170.14, 170.08, 169.96, 169.60, 156.75, 

143.87, 143.66, 141.31, 127.79, 127.07, 125.12, 120.05, 119.50, 101.87, 99.53, 77.93, 76.28, 
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69.08, 66.63, 62.51, 61.57, 58.71, 47.15, 20.67, 20.64, 20.60, 20.55, 18.76 ppm; ESI HRMS m/z 

calcd for C42H50N4NaO18 [M + Na+] 921.3018, found 921.2978. 

N� -(Fluoren-9-ylmethoxycarbonyl)-O-{O-(2’,3’,4’,6’-tetra- O-acetyl-� -D-

galactopyranosyl)-(1’� 3)-O-[3’’,4’’,6’’-tri- O-acetyl-2’’-deoxyl-2’’-(2,2,2-

trichloroethoxylcabonylamino)-� -D-glucopyranosyl-(1’’� 6)]-2-azido-2-deoxyl-� -D-

galactopyranosyl}-L-threonine allyl ester (27) 

To a mixture of acceptor 26 (400 mg, 0.445 mmol), 

donor 13 (331 mg, 0.533 mmol) and 4Å molecular sieves in 

10 mL anhydrous CH2Cl2 was stirred at room temperature 

under Ar for 30 min. Then the reaction was cooled to 0 oC and 

TMSOTf (0.01mL) was added, followed by vigorous stirring 

for 1 h. TLC showed complete conversion of the starting 

material to the final product (hexane/ethyl acetate 1:1, Rf = 

0.26). The reaction was neutralized by addition of DIPEA (0.1 

mL), filtered and concentrated in vacuo. The residue was purified by silica gel column 

(hexane/ethyl acetate 1:1) to afford the trisaccharide 27 (470 mg, 77%) as white foam. 1H NMR 

(CDCl3, 400 MHz): �  7.786 (d, J = 7.6 Hz, 2H), 7.637 (d, J = 7.2 Hz, 2H), 7.419 (t, J = 7.2 Hz, 

2H), 7.325 (t, J = 7.6 Hz, 2H), 6.009-5.910 (m, 1H), 5.670 (d, 5.6 Hz, 1H), 5.549 (d, J = 8.8 Hz, 

1H), 5.421 (d, J = 3.2 Hz, 1H),5.382 (d, J = 16.8 Hz, 1H), 5.299-5.264 (m, 2H), 5.120-5.083 (m, 

1H), 5.058 (s, 1H), 4.950 (d, J = 3.6 Hz, 1H), 4.854 (t, J = 12.0 Hz, 1H), 4.768 (t, J = 8.0 Hz, 

1H), 4.704 (d, J = 5.6 Hz, 2H), 4.593 (d, J = 12.0 Hz, 1H), 4.539-4.498 (m, 1H), 4.448 (b, 1H), 

4.332-4.243 (m, 3H), 4.185-4.159 (m, 1H), 4.083 (d, J = 7.6 Hz, 1H), 4.010-3.983 (m, 3H), 

3.713 (d, J = 12.0 Hz, 1H), 3.560 (dd, J = 10.4 Hz, J = 3.6 Hz, 1H), 2.186 (s, 3H), 2.104 (s, 3H), 
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2.100 (s, 3H), 2.068 (s, 3H), 2.021 (s, 3H), 2.006 (b, 6H), 1.340 (d, J = 6.4 Hz, 3H); 13C NMR 

(CDCl3, 100 MHz): �  170.62, 170.50, 170.46, 170.17, 170.07, 170.01, 169.93, 169.56, 169.47, 

156.70, 154.05, 143.86, 143.68, 141.30, 127.78, 127.06, 125.15, 120.05, 119.60, 101.97, 101.18, 

100.97, 99.17, 95.50, 71.88, 70.72, 68.59, 67.42, 66.68, 61.30, 60.40, 58.65, 47.11, 20.75, 20.70, 

20.68, 20.64, 20.61, 20.55, 18.63 ppm; MALDI-MS m/z calcd for C57H68Cl3N5NaO27 [M + Na+] 

1382.3065, found 1382.3245. 

N� -(Fluoren-9-ylmethoxycarbonyl)-O-{O-(2’,3’,4’,6’-tetra- O-acetyl-� -D-

galactopyranosyl)-(1’� 3)-O-[2’’-acetamido-3’’,4’’,6’’-tri- O-acetyl-2’’-deoxyl-� -D-

glucopyranosyl-(1’’� 6)]-2-acetamido-2-deoxyl-� -D-galactopyranosyl}-L-threonine allyl 

ester (28) 

To a solution of trisaccharide 27 (470 mg, 0.346 

mmol) in MeOH/AcOH/DCM 2:1:1 was slowly added zinc 

dust (899 mg), activated by washing with 1 M HCl. The 

reaction was stirred at room temperature for 40 min. TLC 

showed complete conversion of the starting material to the 

major product (DCM/acetone 2:1). The reaction was filtered 

and the filtrate was co-concentrated with tolune. To a solution 

of this residue in 10 mL anhydrous pyridine was added acetic 

anhydride (5 mL). The TLC showed completion of the reaction after being stirred at room 

temperature for 12 h. The solvent was removed under vacuum. The residue was extracted with 

CH2Cl2 and collected in vacuo, followed by silica gel column chromatography (DCM/acetone 

2:1) to afford the title compound 28 (364.5 mg, 82%)as white foam. 1H NMR (CDCl3, 400 

MHz): �  7.771 (d, J = 4.8 Hz, 2H), 7.604 (t, J = 4.8 Hz, 2H), 7.407 (t, J = 4.8 Hz, 2H), 7.315 (t, J 
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= 4.8 Hz, 2H), 5.885-5.830 (m, 1H), 5.715 (d, J = 5.6 Hz, 1H), 5.354-5.327 (m, 2H), 5.286 (s, 

2H), 5.088-5.058 (m, 2H), 5.010 (t, J = 6.4 Hz, 1H), 4.924 (dd, J = 7.2 Hz, J = 2.0 Hz, 1H), 4.828 

(d, J = 2.0 Hz, 1H), 4.653 (b, 2H), 4.547 (d, J = 5.2 Hz, 1H), 4.504 (d, J = 4.4 Hz, 1H), 4.468 (b, 

1H), 4.363 (d, J = 6.4 Hz, 1H), 4.293 (dd, J = 8.0 Hz, J = 3.2 Hz, 1H), 4.231 (t, J = 4.4 Hz, 1H), 

4.209 (d, J = 3.6 Hz, 1H), 4.096-4.074 (m, 2H), 3.850-3.838 (m, 2H), 3.792-3.762 (m, 2H), 

3.679 (b, 1H), 3.470 (t, J = 6.4 Hz, 1H), 2.154 (s, 1H), 2.130 (s, 3H), 2.098 (s, 3H), 2.065 (s, 

3H), 2.065 (s, 3H), 2.046 (s, 3H), 2.000(s, 6H), 1.991 (s, 3H), 1.958 (s, 3H), 1.894 (s, 3H), 1.305 

(d, J = 4.4 Hz, 3H); 13C NMR (CDCl3, 100 MHz): �  170.70, 170.68, 170.54, 170.44, 170.32, 

170.21, 170.16, 170.14, 169.61, 169.41, 156.46, 143.59, 141.32, 141.29, 127.85, 127.10, 124.92, 

120.08, 119.65, 100.70, 100.67, 99.53, 71.88, 70.69, 69.09, 68.72, 67.03, 66.26, 61.00, 54.66, 

48.71, 47.16, 30.95, 29.29, 23.29, 20.78, 20.76, 20.69, 20.67, 20.65, 20.61, 20.55, 18.25 ppm; 

MALDI-MS m/z calcd for C60H75N3NaO28 [M + Na+] 1308.4435, found 1308.7568. 

N� -(Fluoren-9-ylmethoxycarbonyl)-O-{� -D-galactopyranosyl-(1’� 3)-O-[2’’-

acetamido-2’’-deoxyl-� -D-glucopyranosyl-(1’’� 6)]-2-acetamido-2-deoxyl-� -D-

galactopyranosyl}-L-threonine allyl ester (29) 

To a solution of compound 12 (110 mg, 0.085 mmol) 

in 6 mL anhydrous CH2Cl2 was added Tetrakis (10 mg, 0.01 

mmol) and phenylsilane (0.12 mL, 1.1 mmol). The reaction 

was stirred under room temperature for 40 min. TLC 

indicated full conversion of the starting material 

(DCM/acetone 1:2). Then the solvent was removed under 

vacuum. The residue was redissolved in anhydrous MeOH, 

and added sodium methoxide to pH 9. The reaction was ��
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stirred under room temperature for 10 h, and neutralized by addition of acid resin (Dowex® 

50WX2 H+ form). Then the mixture was filtered and the filtrate was concentrated in vacuo. This 

residue was redissolved in 1,4-dioxane/H2O 1:1, followed by addition of NaHCO3 to adjust the 

pH to 8. This mixture was cooled to 0 oC and Fmoc-OSu (40 mg, 0.12 mmol) was slowly added. 

The reaction was stirred for 4 h, TLC showed complete conversion of the starting material to the 

major product (ethyl acetate/MeOH/H2O/AcOH 5:2:1:0.2). 1,4-Dioxane was removed under 

vacuum, followed by addition of acid resin (Dowex® 50WX2 H+ form) to adjust the pH to 6. The 

residue was chromatographed on a Bio-Gel® P2 column and eluted with DI water to afford the 

deprotected trisaccharide 29 (54.5 mg, 70%) as white powder after lyophilization. 1H NMR 

(D2O, 600 MHz): �  7.602 (d, J = 6.3 Hz, 1H), 7.590 (d, J = 4.8 Hz, 1H), 7.506 (d, J = 6.3 Hz, 

1H), 7.452 (d, J = 6.3, 1H), 7.274-7.178 (m, 4H), 4.616 (d, J = 4.8 Hz, 1H), 4.598 (d, J = 4.8 Hz, 

1H), 4.387 (d, J = 8.4 Hz, 1H), 4.370-4.345 (m, 1H), 4.151 (d, J = 6.4 Hz, 1H), 4.028-4.000 (m, 

2H), 3.974 (b, 1H), 3.879 (m, 1H), 3.817-3.804 (m, 1H), 3.762-3.748 (m, 1H), 3.657 (s, 1H), 

3.525-3.489 (m, 1H), 3.411-3.389 (m, 1H), 3.357 (t, J = 8.0 Hz, 1H), 3.341-3.270 (m, 3H), 1.786 

(d, J = 1.8 Hz, 3H); 13C NMR (D2O, 150 MHz): �  174.54, 174.10, 157.97, 143.98, 141.57, 

141.02, 140.93, 127.89, 127.46, 124.78, 120.05, 119.99, 104.63, 101.07, 99.05, 75.90, 74.31, 

70.53, 69.30, 68.79, 65.69, 60.80, 55.42, 48.46, 47.19, 22.28, 22.255, 18.22 ppm; MALDI-MS 

m/z calcd for C41H55N3NaO20 [M + Na+] 932.3277, found 932.3569. 
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N� -(Fluoren-9-ylmethoxycarbonyl)-O-{[ � -N-Acetylneuraminic acid-(2’’’ � 3) � -D-

galactopyranosyl-(1’� 3)]-O-[2’’-acetamido-2’’-deoxyl-� -D-glucopyranosyl-(1’’� 6)]-2-

acetamido-2-deoxyl-� -D-galactopyranosyl}-L-threonine allyl ester (30) 

A total volume of 12 mL of aqueous 

solution in a centrifuge tube containing the 

following reaction components (indicated in 

concentration): trisaccharyl threonine (12 mg, 

10 mM), sialic acid (2-3 mg), PmST (5 mM), 

NmCSS (5 mM), CTP (12 mM), MgCl2 (20 

mM), Tris-HCl buffer (200 mM, pH 8.0) was 

incubated at 37 oC for 45 min. The product 

formation and reaction progress was monitored by TLC (EtOAc/MeOH/H2O/AcOH = 5:2:1:0.2, 

v/v) using UV absorption at 254 nm. The reaction was stopped by adding an equal volume of 

ice-cold ethanol, and let it set for 30min. The precipitated enzymes were removed using 

centrifugation (7000 rpm, 20 min). The supernatant was concentrated and redissolved in water 

and loaded onto a Bio-Gel® P2 column and eluted with DI water to obtain the pure 

tetrasaccharide as a white foam after lyophilization (13.1 mg, 83%). 1H NMR (D2O, 600 MHz): 

�  7.833 (d, J = 7.2 Hz, 1H), 7.811 (d, J = 7.2 Hz, 1H), 7.693 (d, J = 7.2 Hz, 1H), 7.636 (d, J = 7.2 

Hz, 1H), .437 (t, J = 7.2 Hz, 1H), 7.420-7.390 (m, 2H), 7.336 (t, J = 7.2 Hz, 1H), 4.838 (dd, J = 

10.8Hz, 4.2 Hz, 1H), 4.535 (dd, J = 11.4 Hz, J = 4.8 Hz, 1H), 4.493 (d, J = 8.4 Hz, 1H), 4.353 (d, 

J = 7.8 Hz, 1H), 4.250 (t, J = 4.2 Hz, 1H), 4.102 (s, 1H), 4.084 (d, J = 4.2 Hz, 1H), 4.040 (d, J = 

4.8 Hz, 1H), 4.011-3.981 (m, 2H), 3.910 (d, J = 2.4 Hz, 1H), 3.892-3.864 (m, 1H), 3.864 (b, 1H), 

3.828-3.785 (m, 3H), 3.769 (s, 1H), 3.724 (dd, J = 10.8 Hz, J = 2.4 Hz, 1H), 3.693 (d, J = 3.0 Hz, 
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1H), 3.672 (s, 1H), 3.623 (b, 1H), 3.568 (b, 1H), 3.565-3.548 (m, 1H), 3.527 (b, 1H), 3.441 (t, J 

= 8.4 Hz, 1H), 3.426 (d, J = 7.2 Hz, 1H), 3.375 (s, 1H), 2.681 (dd, J = 12.0 Hz, 4.2 Hz, 1H), 

1.956 (s, 3H), 1.885 (s, 3H), 1.846 (s, 3H), 0. 837 (d, J = 6.0 Hz, 3H); 13C NMR (D2O, 150 

MHz): �  176.44, 174.98, 174.52, 174.16, 173.99, 158.53, 114.15, 143.69, 141.13, 125.08, 

124.89, 120.08, 104.39, 101.08, 99.82, 99.04, 96.37, 75.93, 70.19, 69.29, 69.07, 68.56, 68.06, 

67.29, 63.27, 60.93, 60.44, 55.53, 51.69, 48.44, 47.45, 39.61, 39.36, 22.30, 22.07, 22.03, 18.30 

ppm; MALDI-MS m/z calcd for C52H72N4NaO28 [M + Na+] 1223.4225, found 1223.6475. 
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