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Distinguishing Viral Infected Biological Cells 
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TIAN TANG 

 

Under the Direction of Yu-Sheng Hsu 

 

ABSTRACT 

Fourier Transform Infrared (FTIR) microscopy is a sensitive method for detecting 

difference in the morphology of biological cells. In this study FTIR spectra were obtained for 

uninfected cells, and cells infected with two different viruses. The spectra obtained are difficult 

to discriminate visually. Here we apply advanced statistical methods to the analysis of the 

spectra, to test if such spectra are useful for diagnosing viral infections in cells.  Logistic 

Regression (LR) and Partial Least Squares Regression (PLSR) were used to build models which 

allow us to diagnose if spectral differences are related to infection state of the cells. A three-fold, 

balanced cross-validation method was applied to estimate the shrinkages of the area under the 

receiving operator characteristic curve (AUC), and specificities at sensitivities of 95%, 90% and 

80%. AUC, sensitivity and specificity were used to gauge the goodness of the discrimination 

methods. Our statistical results shows that the spectra associated with different cellular states are 

very effectively discriminated. We also find that the overall performance of PLSR is better than 



                                                                                          
            
 
that of LR, especially for new data validation. Our analysis supports the idea that FTIR 

microscopy is a useful tool for detection of viral infections in biological cells.  

 

INDEX WORDS: Wilcoxon Rank Sum Test, Logistic Regression, Partial Least Square 

Regression, Area under the ROC Curve, Sensitivity and specificity, 

Cross-validation, Infrared spectroscopy  
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Chapter I 

Introduction 

 

Patients can be benefit from the early detection of infectious disease, because more effective 

treatments can be performed at the early stage. Unfortunately, current methods of disease 

detection, such as detection of pathogen-specific macromolecules or host antibody production, 

require days before a diagnosis can be made. As a result, it would be more desirable to obtain a 

method which can detect infection before the onset of symptoms. Fortunately, scientists have 

already begun exploring the application of Fourier transform infrared (FTIR) spectroscopy in 

Biomedicine (Cohenford et al., 1997; wong et al., 1991; Jackson et al., 1998; Mantsch et al., 

1996). Infrared (IR), a kind of electromagnetic radiation, with a longer wavelength than UV and 

visible radiation, can penetrate to a greater depth and be absorbed with less scattering by the 

tissue. In addition, many of the vibration bands in the IR region are well resolved; thus, during 

development of the disease, subtle changes in the molecular structure could be detected (Yazdi et 

al., 1996; Benedetti et al., 1997; Chiriboga et al, 1998; Yang et al., 1995). These features of IR 

techniques show that FTIR could be applied as an accurate and sensitive method for the 

diagnosis and study of different diseases. 

 To investigate the effectiveness of FTIR spectroscopy for early detection of infections by 

viruses, we use Herpes family of viruses and Adenoviruses in our study. Herpes family of 

viruses, which contains several members like Herpes simplex types 1 and 2 (HSV1, HSV2),  

and Varicella zoster (VZV) viruses, is involved in many severe infections (disorders) in animals 

and humans. Adenoviruses, a group of viruses which infect the membranes (tissue linings) of the 
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respiratory tract, the eyes, the intestines, and the urinary tract, are responsible for 5-10% of upper 

respiratory infections in children and many infections in adults as well. We use HSV1 virus 

(HSV1) and Adenoviruses (Adeno) in our study. 

Various studies have been done to investigate the possibility of developing FTIR 

microscopy as a diagnostic method. Salmn et al. (2002) have applied Cluster analysis to show 

that FTIR microscopic signatures can be used to differentiate normal cells from herpes-infected 

cells. According to Alam et al. (2004), activated murine (mouse) macrophage cells can be 

distinguished from live cells before activation using Principal Components Analysis (PCA) 

coupled with Linear Discriminate Analysis (LDA) and K-Nearest Neighbor (K-NN) models. 

Burattini et al. (2008) have applied two multivariate statistical analysis methods - Hierarchical 

Cluster Analysis (HCA) and PCA - to compare the spectral behavior of S. cerevisiae in model 

wine medium and base wine, before and after 5 days of autolysis. It was proven by this study that 

FTIR microspectroscopy is a rapid and accurate tool to simultaneously probe the major 

biochemical events associated with the autolytic process. However, most of the studies were only 

focused on the differentiation between normal cells and infected cells. In this study, we will use 

Logistic Regression (LR) and Partial Least Square Regression (PLSR) to perform the diagnosis 

of two different viruses (HSV1 and Adeno). In addition, we also compare normal cells (Mock) 

and viruses-infected cells. 

In this study, monkey kidney (Vero) cells were grown at 37��  in an RPMI medium 

supplemented with 10% new-born calf serum (NBCS) and the antibiotics penicillin, 

streptomycin and neomycin. HSV1 and Adeno were used for infecting the cells. FTIR 

measurements were performed in transmission mode with a liquid nitrogen-cooled MCT detector 

of FTIR microscope, coupled to the FTIR spectrometer. The spectra were obtained in the 
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wavenumber range of 700-2000 cm-1 in the mid-IR region. A spectrum was taken as an average 

of 64 scans to increase the signal to noise ratio, and the spectral resolution was at 2 cm-1. All of 

the FTIR measurements included in our study were all taken at 24 hours postinfection (24 hp.i). 

The data used to build models were all obtained on March 28, 2008, and that used to validate 

these models were obtained on April 16, 2008.The former data include 79 HSV1, 94 Adeno, and 

69 Mock samples. The latter data include 79 HSV1, 84 Adeno, and 80 Mock samples.  

The thesis is organized as follows: In Chapter II, we will introduce the whole process and 

the methodologies used in the thesis, including variable pre-selection and stabilization, LR and 

PLSR, Area under the ROC Curve (AUC), sensitivity and specificity, cross-validation and how 

to use new data to validate an existing model. In Chapter III, we will respectively present the 

results of comparison between Mock and viruses-infected cells, or between two different kinds 

of viruses-infected cells. Chapter IV discusses possible future studies. All SAS code involved in 

the thesis are attached as Appendices.  

 

 

 

 

 

 

 

\ 
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Chapter II 

Methodology 

 

2.1 Data Standardization 

In this study, monkey kidney (Vero) cells were infected by HSV1 and Adeno viruses, and 

the absorbances of spectra on the wavenumber range of 800-1500 cm-1 are studied. For each 

observation point for mock or infected cells, 728 FTIR measurements were taken respectively. 

At the first step we would like to standardize all observations, because it will make the data easy 

to compare. The standardized data obtained by subtracting the mean and then being divided by 

the standard deviation of each cell. That is, for each point in the same batch, the standardized 

data is 

i
i

x

x x
y

s
��

�  , 

where 728,,2,1, ��� ixi  are the 728 absorbance at one point, 
1

1 n

i
i

x x
n � 

� �¦  is the mean, and 

2

1

1
( )

1

n

x i
i

s x x
n � 

�  � �
�� �¦  is the standard deviation.  

2.2 Variable Pre-selection by Wilcoxon Rank Sum Test 

For every two kinds of cells, we can use the standardized data to draw a graph, in which 

every cell is shown as a curve connecting 728 standardized FTIR measurements. Because of the 

overlapping between these curves, it is difficult to differentiate between two kinds of cells with 

visual judgment. However, if we use Wilcoxon Rank Sum Test (WRST) to calculate the 
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standardized test statistic for the set of spectra taken on every specific wavenumber, we may find 

some wavenumber ranges which can discriminate two kinds of cells we want to compare.  

In statistics, Wilcoxon Rank Sum Test, or Mann-Whitney test, is one of the non-parametric 

tests for assessing whether two samples of observations come from the distribution with same 

mean. Being different with two-sample t-test, which tests for differences in means, the WRST 

test is more robust against outliers, and is more sensitive to the distributions.  

We assume that we have independent random samples mxxx ,,, 21 ��  and nyyy ,,, 21 �� , of 

sizes m and n respectively, from each population. We then rank the pooled sample from 

lowest to highest. All sequences of ties are assigned an average rank. The Wilcoxon test statistic 

W is the sum of the ranks from population X. For large samples, the distribution of W can be 

approximated by a Normal distribution ),( �V�PN . The mean and standard deviation �Pand �V 

are given by  

2
)1( ����

� 
nmm

�P  

and 

12
)1( ��

� 
Nmn

�V  

where nmN ��� .  

We test the null hypothesisoH : No difference in means. A two-sided alternative isaH : there 

is a difference in means. In this case, the p-value is given by 

�� ��zZP �! , 
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where 
�V

�P��
� 

w
z .  

 

Graph-1 Z-score for Mock vs. HSV1 

 

 For any two different kinds of cells, A and B, with sample sizesm and n respectively, we 

can obtain the Z-score of a group of measurements with sample size m n��  for each specific 

wavenumber by WRST. Because 728 FTIR measurements were taken in the wavenumber range 

of 800-1500 cm-1 for each cell, we will have 728 Z-scores. As can be seen in Graph-1, these 728 

Z-scores can be connected by a smoothed curve. We can then apply Bonferroni method to obtain 

the critical value 0.05/(2 728)z �u , which is approximately equal to 4, since here we have 728 

dependent multiple significant tests. For those Z-scores which are larger than 4 or smaller than -4, 

the data on corresponding wavenumbers are significant at level of 0.05 simultaneous, which 
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means that we can differentiate the two kinds of cells on those significant wavenumbers. As 

shown in Graph-1, we can easily find the significant ranges of wavenumbers by using reference 

lines 4y �  � r . That is, the ranges which are above the upper line or below the bottom line are 

significant.  

2.3 Model Building with Logistic Regression and Partial Least Square Regression 

After finding out which parts of wavenumbers are significant, we would like to build a 

Logistic Regression or Partial Least Squares Regression models. In order to stabilize the data and 

reduce the noise, we take the average of every neighboring five spectrums in the ranges selected 

from the WRST. Those averages are used as independent or predictor variables in the regression. 

The response variable is binary, which usually denoted by either 1 (disease) or 0 (non-disease). 

For example, when we would like to diagnose viruses-infected cells from Mock, the response 

variable should equal to 1 if the data come from viruses-infected cells and equal to 0 if the data 

come from Mock. Therefore, instead of applying Multiple Ordinary Linear Regression (MOLR) 

models, we use two popular statistical methods, LR and PLSR to discriminate cells.  

LR is a type of predictive model that can be used when the target variable is categorical. LR 

model yields the probability of occurrence of an event by fitting data to a logistic curve. In other 

words, LR is estimates )( XYp , where Y is discrete, and ),,,( 21 nXXXX ���  is any vector 

containing discrete or continuous variables.  

The relationship between the predictor and response variables is not a linear function in LR. 

Instead, the LR finds a linear combinations of X, which is the logit transformation of the 

probability of successg , i.e.  
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where�Dis the constant of the equation, and nii ,,1, ��� �E are the coefficients of the predictor 

variables.  

 Variable selection is important in any model building process especially in case that the 

number of variables is large. After the Variable Pre-selection by WRST and data stabilization by 

taking the average of every neighboring five spectrums, we still have around 100 variables. We 

can use stepwise regression method in LR to select variables.   

PLSR is a method for constructing predictive models when the predictor variables are many, 

and are highly correlated. In PLSR, we extract linear combinations of the predictors, called 

factors, or latent variables, which can reach two goals-explaining response variation and 

explaining predictor variation.  

For Principal Component Regression (PCR), we use principal components 1U (the first 

component), 2U (the second component),�� , nU (the nth component) as predictor variables, 

where principal components are linear combinations of X, such that their variances are 

maximized and are all independent. However, PLSR uses variable combinations 1U (the first 

factor), 2U (the second factor), �� , nU (the nth factor), such that 
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where niXU ii ,,1, ��� � �D , S is the sample covariance matrix, X is a JI �u  matrix which 

contains all the values of J predictor variables collected on I observations, and Y is a 1�uI  

matrix storing the I observations described by the dependent variable. The conditions 

1,,1,0 ��� � ilS l
T
i ���D�D  ensure that ii XU �D� is uncorrelated with all the previous linear 

combinations 1,1, ��� � ilXU ll ���D . 

A PLSR model can be shown as  

nnn EUfUfUfY ��������� ��2211 , 

where niUi ,,1, ���  are factors, and nifi ��,1, �  are the coefficients of them.   

 Variable reduction is also used in PLSR. It extracts latent factors which are linear 

combinations of the original predictor variables. There are many ways to select the number of 

factors included in the PLSR model. We simply use the number of factors which count about 95% 

of the total variation. 

2.4 Area under the Curve, Sensitivity and Specificity   

After building a model, we then need to evaluate its diagnostic performance, the ability to 

correctly classify two categories. Usually we can use sensitivity and specificity, and the area 

under the Receiver Operating Characteristic (ROC) curve to make the evaluation. 

Sensitivity and specificity are closely related to the concepts of type I and type II errors. 

Sensitivity measures the proportion of correct identifications among actual positives, such as the 
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probability of a positive test among patients with disease; and the specificity measures the 

proportion of correct identifications among all negatives, such as the probability of a negative 

test among patients without disease.  

 

Graph-2 ROC Curve 

 

A complete description of classification is given by the area under the ROC curve, which is 

a plot of the sensitivity against 1-specificity for the different possible cut-off points of a 

diagnostic model. Each point on the ROC curve represents a sensitivity and specificity pair 

corresponding to a particular decision threshold. As shown in Graph-2, when the sensitivity 

increases, the corresponding specificity will decrease. If the objective is to choose an optimal 

cut-off point for the purpose of discrimination, one might select a cut-off point that maximizes 

both sensitivity and specificity. An area of 1 represents the high accuracy of discrimination, and 
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an area of 0.5 represents very low accuracy. A rough guide for classifying the accuracy of 

discrimination is the traditional academic point system. That is, Area Under the Curve (AUC) 

between 0.90 and 1 represents excellent discrimination; AUC between 0.80 and 0.90 represents 

good discrimination; AUC between 0.70 and 0.80 represents fair discrimination; AUC between 

0.60 and 0.70 represents poor discrimination; and AUC between 0.50 and 0.60 represents no 

discrimination. 

 In this study, we consider AUC and the specificities corresponding to the sensitivities 95%, 

90% and 80%. 

2.5 Three-fold Balanced Cross-validation 

Most model fitting procedures often yield over-fitting problem. In other words, the goodness 

of the procedure obtained from the sample is frequently over-rated. This is what we usually 

referred as the shrinkage. Calculating the shrinkages of AUC and the specificities corresponding 

to the sensitivities 95%, 90% and 80% is certainly necessary for the next step of this study. 

Cross-validation, a method of estimating sampling error, can be used to assess the shrinkage 

of the AUC and specificities of the model we built. In K-fold cross-validation, the original 

sample is randomly divided into K approximately equal size subsets. Of the K subsets, a single 

subset is retained as the validation data, and the remaining K-1 subsets as a whole are used as 

training data which is used to build the model. The cross-validation process is then repeated K 

times, with each of the K subsets used exactly once as the validation data. The K results then can 

be averaged to produce a single estimation. 

  We employ three-fold balanced cross-validation to examine the accuracy of the AUC and 

specificity found in the models. The original data are randomly divided into three balanced 

subsets in which not only the three subsets have approximately equal size but also each subset 
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has almost same number of observations in both categories. AUC and specificities which 

correspond to the sensitivities 95%, 90% and 80% are calculated by validation data and training 

data respectively. We then obtain the shrinkages by subtracting AUC and specificities for 

validation data from the ones for training data. An average of shrinkage for AUC or specificities 

can be obtained by one cross-validation process. In the end, we can acquire the average of the n 

averages of shrinkage for AUC or specificities by repeating the process for n times. In our study, 

we repeat 100 times. The average shrinkage of AUC or specificities then can be used to subtract 

from original sample estimates to obtain the final estimations.  

2.6 New Data Validation 

The new data validation can be applied to evaluate the model we built from the data set. In 

the process of new data validation, we apply a completely new data set to the final model which 

we built from the old data set, and obtain the AUC and specificities respectively. Because we do 

not change the coefficient and the variables of the model, the new data validation shows the 

shrinkages of the final model. Small shrinkages of AUC and specificities imply that the 

diagnostic performance of the model is very stable. 
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Chapter III 

Results and Conclusion 

 

3.1 Mock versus HSV1 

The original data for Mock and HSV1 are shown in Graph-3, in which the blue curves 

represent Mock cells and the red curves represent HSV1-infected cells. As can be seen in the 

graph, most of the blue curves are above the red curves in the range of 800-1500 cm-1; that is, 

we cannot find the wavenumber ranges in which the two kinds of cells can be easier to be 

differentiated. Graph-4 shows us the standardized data for Mock and HSV, in which blue curves 

also represent Mock cells and red curves represent HSV1-infected cells. In the graph, these two 

kinds of curves overlap each other a lot; however, we can still find some overall trend. For 

instance, in the region of 800-880 cm-1, some of the blue curves are above red curves, and in 

some of regions, such as 1310-1380 cm-1, most of the red curves are below the blue curves. 

Graph-1 shows us the Z-score of Mock and HSV1 obtained by WRST for each spectrum. 

Also, we draw two horizontal lines on 4 and -4, which indicate the threshold of multiple 

statistical significance. As shown in this picture, seven ranges, 800-885 cm-1, 918-1014 cm-1, 

1036-1136 cm-1, 1160-1207 cm-1, 1216-1288 cm-1, 1312-1388 cm-1, and 1410-1500 cm-1, are 

above the top line or below the bottom line; that is, they are significant in the study. For this 

reason, we focus on the data in these ranges. These significant wavenumber ranges include 595 

variables, which can be stabilized into 119 variables (c1-c119) by taking the average of every 

neighboring five variables.  
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Graph-3 Original data of Mock vs. HSV1 

 

 

Graph-4 Standardized data of Mock vs. HSV1 
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Graph-5 Location of chosen variables (Standardized data of Mock vs. HSV1) 

 

 

Graph-6 Location of the chosen variables (Z-score for Mock vs. HSV1) 
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After stepwise selection, we choose c67, c109, and c116 to build the LR model. The 

wavenumbers corresponding to these three variables are 1195.86, 1450.47 and 1484.22 cm-1 

respectively, and their locations are shown in Graph-5 and Graph-6. Graph-5 shows that the 

variables we chose are located at the wavenumbers where the two kinds of lines are partially 

separated, and Graph-6 shows that the z-scores of these variables are below the bottom line and 

also very small. In other words, these selected variables are very significant in the wavenumber 

ranges. Table-1 shows us the estimates of coefficients and p-values of these variables for the LR 

model. As can be seen in the table, the p-values of the three variables as well as the intercept are 

all very small (<0.01), which means that they are quite significant in the model. The final LR 

model is 

( )

( )( 1 )
1

g x

g x

e
p Y X

e
�  �  

����
�È 

and 

( ) -39.5016+24.2216 c67+50.1860 c109-19.3781 c116g x �  � u � u � u. 

 

Table-1 LR for Mock vs. HSV1 

 
Analysis of Maximum Likelihood Estimates 

                                    Standard          Wald 
     Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
     Intercept     1    -39.5016      8.2330       23.0204        <.0001 
     c109        1     50.1860     10.4437       23.0919        <.0001 
     c116        1    -19.3781      5.2112       13.8277        0.0002 
     c67         1     24.2216      6.2265       15.1326        0.0001 

 

As shown in Table-2, the AUC of the final LR model is equal to 0.970, which represents 

excellent discrimination, and the specificities for sensitivities of 95%, 90%, and 80% are equal to 

0.899, 0.957, and 1 respectively, which are large enough to exhibit excellent discrimination of 
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the final model. After estimating the shrinkage from the cross-validation method, the AUC is 

equal to 0.963, which still discriminate well, and for the specificities corresponding to the 

sensitivities of 95%, 90%, and 80%, which equal to 0.820, 0.938 and 0.989, are very close to the 

ones calculated by the final model. After the new data validation process, we obtain that the 

AUC is 0.935, still representing excellent discrimination, and the corresponding specificities are 

0.950, 0.950 and 0.950 respectively, which also show no big difference between the ones 

obtained from the old data. In addition, Graph-7 shows the z-score plot for both of the old data 

(for build model) and new data (for new data validation). We can see from the graph that there is 

no huge difference between the two z-score curves, and the variables in the final model are 

located at very significant wavenumbers for both of the data sets. 

 

Table-2 AUC and specificities corresponding to sensitivities 95%, 90% 

 and 80% for Mock vs. HSV1 

Mock vs. HSV1 
Logistic regression 

 The old dataAfter the shrinkage of 
Cross-validation 

The new validate 
data 

Area under the curve (AUC) 0.970 0.963 0.935 
Specificity for 95% Sensitivity 0.899 0.820 0.950 
Specificity for 90% Sensitivity 0.957 0.938 0.950 
Specificity for 80% Sensitivity 1 0.989 0.950 

PLS regression (Number of Factors=5) 
Percent Variation Accounted for by Partial Least Squares Factors (Model effects)=93.4 

Area under the curve (AUC) 1 0.983 0.989 
Specificity for 95% Sensitivity 1 0.999 0.974 
Specificity for 90% Sensitivity 1 1 0.975 
Specificity for 80% Sensitivity 1 1 0.988 
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We also use the 119 variables to build the PLSR model. The first 5 factors, which count 

about 93.4% of the total variation, contain almost all the information from the original 119 

variables. The coefficients of the variables for the final model are shown in Table-3. As can be 

seen in Table-2, the AUC, the specificities corresponding to 95%, 90%, and 80% sensitivities are 

all equal to 1, which demonstrate super discrimination of the final PLSR model. The AUC and 

the specificities obtained after estimating the shrinkage from the cross-validation method are 

equal to 0.983, 0.999, 1 and 1, which also shows superexcellent discrimination of the PLSR 

method. After the new data validation process, the AUC and the specificities are 0.989, 0.974, 

0.975 and 0.988 respectively, displaying the excellent discrimination of the final PLSR model for 

a new data set. 

 

Graph-7 Location of chosen variables (Z-score for Mock vs.  

HSV1 for both of the old data and new data) 
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Table-3 The coefficients of PLSR model for Mock vs. HSV1 

Name Value Name Value Name Value Name Value 
Intercept -0.06865 c30 0.266898 c60 0.247545 c90 0.064058 
c1 -0.00691 c31 0.305447 c61 0.234613 c91 0.153956 
c2 -0.01992 c32 0.236876 c62 0.165753 c92 0.155152 
c3 -0.0414 c33 0.05054 c63 0.195147 c93 0.096227 
c4 0.030196 c34 -0.02684 c64 0.265544 c94 0.023825 
c5 0.00548 c35 0.027028 c65 0.249903 c95 -0.03997 
c6 0.021325 c36 0.091258 c66 0.226271 c96 -0.07118 
c7 0.035525 c37 0.168579 c67 0.126771 c97 -0.02619 
c8 -0.0076 c38 0.13993 c68 -0.00556 c98 0.030176 
c9 -0.06493 c39 -0.3061 c69 -0.25607 c99 0.073497 
c10 -0.09595 c40 -0.28802 c70 -0.52126 c100 0.122499 
c11 -0.18185 c41 -0.31271 c71 -0.40015 c101 0.116806 
c12 -0.2573 c42 -0.3487 c72 -0.23889 c102 0.135698 
c13 -0.3033 c43 -0.46259 c73 -0.09827 c103 0.166782 
c14 -0.18447 c44 -0.4513 c74 0.033029 c104 0.15481 
c15 -0.11778 c45 -0.29368 c75 0.088522 c105 0.218434 
c16 -0.04112 c46 -0.06974 c76 0.056291 c106 0.361255 
c17 0.000876 c47 0.233254 c77 -0.04852 c107 0.399425 
c18 0.060578 c48 0.415644 c78 -0.09456 c108 0.544927 
c19 0.258256 c49 0.541232 c79 -0.17445 c109 0.597024 
c20 0.326353 c50 0.560327 c80 -0.22963 c110 0.574578 
c21 0.239051 c51 0.49739 c81 -0.33707 c111 0.299601 
c22 0.131728 c52 0.304341 c82 -0.43793 c112 0.344346 
c23 0.089904 c53 0.175074 c83 -0.47945 c113 0.306861 
c24 0.067392 c54 0.08123 c84 -0.51094 c114 -0.08596 
c25 0.052189 c55 -0.02151 c85 -0.39061 c115 -0.25838 
c26 -0.02497 c56 -0.08273 c86 -0.32194 c116 -0.34026 
c27 -0.10927 c57 -0.09028 c87 -0.23766 c117 -0.32037 
c28 -0.06554 c58 -0.11332 c88 -0.12525 c118 -0.31033 
c29 0.091715 c59 -0.11526 c89 -0.04176 c119 -0.20219 

 

3.2 Mock versus Adeno 

 In order to avoid iterant and verbose, we do not repeat the results for other comparisons as 

detailed as what we did for Mock versus HSV1.  

Graph-8 to Graph-10 shows the original data, the standardized data, and the Z-score data 

respectively. As shown in Graph-10, six ranges, 925-953 cm-1, 1021-1136 cm-1, 1173-1206 cm-1, 

1219-1271 cm-1, 1311-1392 cm-1, and 1410-1500 cm-1, are significant in the study. They include 
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420 variables, which can be stabilized into 84 variables (c1-c84) by taking the average of every 

five neighboring variables. 

 

Graph-8 Original data of Mock vs. Adeno 

 

 

Graph-9 Standardized data of Mock vs. Adeno 
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Graph-10 Z-score for Mock vs. Adeno 

 

 

Graph-11 Location of the chosen variables (Standardized data of Mock vs. Adeno) 
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Graph-12 Location of the chosen variables (Z-score for Mock vs. Adeno) 

 

 

Graph-13 Location of chosen variables (Z-score for Mock vs. 

Adeno for both of the old data and new data) 
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In the process of stepwise selection, c14, c30, c78 and c84 were chosen to build the LR 

model. The wavenumbers corresponding to these four variables are 1056.99, 1131.14, 1469.75 

and 1498.69 cm-1 respectively, and their locations are shown in Graph-11 and Graph-12. As can 

be seen in the table-4, the small p-values of the three variables as well as the intercept indicate 

that the variables we chose are quite significant in the model. The final LR model is 

( )

( )( 1 )
1

g x

g x

e
p Y X

e
�  �  

����
�È 

and 

( ) 62.7717 69.6928 14 54.3219 30 121.5 78 70.5545 84g x c c c c�  � � � u � � � u � � � u � � � u. 

 

Table-4 LR for Mock vs. Adeno 

 
Analysis of Maximum Likelihood Estimates 

                                      Standard          Wald 
       Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
       Intercept     1     62.7717     23.1063        7.3802        0.0066 
       c84         1     70.5545     15.6892       20.2232        <.0001 
       c78         1      -121.5     29.7660       16.6510        <.0001 
       c14         1    -69.6928     16.4212       18.0122        <.0001 
       c30         1     54.3219     13.1841       16.9766        <.0001 

 

As shown in Table-5, AUC, specificities for sensitivities 95%, 90%, and 80% of final LR 

model are all large enough to exhibit excellent discrimination. After estimating the shrinkage 

from the cross-validation method, the AUC and specificities are very close to the ones calculated 

by the final model. After the new data validation process, the AUC and specificities do not have 

big difference with the ones obtained from the old data. Graph-13 shows the z-score plot for both 

of the old data (for build model) and new data (for new data validation). We can see from the 

graph that there is some difference between the two z-score curves, and variable c30 is on the 

border of a significant wavenumbers range for old data but even not significant for new data.   
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Table-5 AUC and specificities corresponding to sensitivities 95%, 90% 

 and 80% for Mock vs. Adeno 

Mock vs. Adeno 
Logistic regression 

 The old 
data 

After the shrinkage of 
Cross-validation 

The new validate 
data 

Area under the curve (AUC) 0.992 0.974 0.993 
Specificity for 95% Sensitivity 1 0.951 0.965 
Specificity for 90% Sensitivity 1 0.991 0.980 
Specificity for 80% Sensitivity 1 0.996 1 
PLS regression (Number of Factors=4)  
Percent Variation Accounted for by Partial Least Squares Factors (Model effects)=95.8 

 The old 
data 

After the shrinkage of 
Cross-validation 

The new validate 
data 

Area under the curve (AUC) 0.982 0.955 0.994 
Specificity for 95% Sensitivity 0.958 0.853 0.965 
Specificity for 90% Sensitivity 0.986 0.939 0.993 
Specificity for 80% Sensitivity 1 0.971 1 

 

For PLSR model, the first 4 factors count about 95.8% of the total variation. Table-6 shows 

the coefficients of the variables for the final model. As can be seen in Table-5, the AUC, the 

specificities corresponding to 95%, 90%, and 80% sensitivities are equal to 0.982, 0.958, 0.986, 

and 1, which indicates superexcellent discrimination of the final PLSR model. The AUC and the 

specificities obtained after the shrinkage of the cross-validation equal to 0.955, 0.853, 0.939 and 

0.971, also showing excellent discrimination of the PLSR method. After the new data validation 

process, the AUC and the specificities are 0.994, 0.965, 0.993 and 1, again displaying the 

excellent discrimination of the final PLSR model for a new data set. 
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Table-6 The coefficients of PLSR model for Mock vs. Adeno 

Name Value Name Value Name Value Name Value 
Intercept 0.059213 c22 -0.08519 c43 -0.2922 c64 -0.00393 
c1 0.063366 c23 -0.11195 c44 -0.28043 c65 -0.013 
c2 0.023038 c24 -0.12662 c45 -0.18709 c66 -0.01416 
c3 -0.01617 c25 -0.13175 c46 -0.05161 c67 -0.05976 
c4 0.018954 c26 -0.17537 c47 0.1236 c68 -0.13699 
c5 -0.01622 c27 -0.21926 c48 0.226979 c69 -0.29996
c6 -0.01442 c28 -0.17704 c49 0.302109 c70 -0.47864 
c7 -0.01649 c29 -0.05857 c50 0.317921 c71 -0.39647 
c8 -0.05506 c30 0.073756 c51 0.281883 c72 -0.29478 
c9 -0.1051 c31 0.122552 c52 0.152077 c73 -0.2114 
c10 -0.13255 c32 0.10891 c53 0.065426 c74 -0.13744 
c11 -0.19636 c33 0.011424 c54 -0.0025 c75 -0.11277 
c12 -0.25363 c34 -0.02184 c55 -0.08078 c76 -0.14446 
c13 -0.291 c35 0.024757 c56 -0.13808 c77 -0.21753 
c14 -0.21912 c36 0.078894 c57 -0.15431 c78 -0.23818 
c15 -0.18485 c37 0.143541 c58 -0.18278 c79 -0.28386 
c16 -0.14262 c38 0.141187 c59 -0.189 c80 -0.31866 
c17 -0.12462 c39 -0.19302 c60 0.063388 c81 -0.38273
c18 -0.09285 c40 -0.18759 c61 0.034288 c82 -0.43554 
c19 -0.01309 c41 -0.20106 c62 -0.03439 c83 -0.45446 
c20 0.034067 c42 -0.22015 c63 -0.0385 c84 -0.47054 
c21 -0.01983 ��  ��  ��  ��  ��  ��  

 

 

3.3 HSV1 versus Adeno 

 Graph-14 to Graph-16 shows the original data, the standardized data, and the Z-score data 

respectively. Graph-16 shows that seven ranges, 800-881 cm-1, 915-938 cm-1, 950-1026 cm-1, 

1146-1169 cm-1, 1216-1297 cm-1, 1336-1378 cm-1, and 1413-1455 cm-1, are significant in the 

study. They include 390 variables, which can be stabilized into 78 variables (c1-c78). 
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Graph-14 Original data of HSV1 vs. Adeno 

 

 

Graph-15 Standardized data of HSV1 vs. Adeno 
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Graph-16 Z-score for HSV1 vs. Adneo 

 

Variables c12, c19, c23 and c56 were chosen to build the LR model by stepwise selection. 

The wavenumbers corresponding to these four variables are 854.46, 921.97, 951.87 and 1275.91 

cm-1 respectively, and their locations are shown in Graph-17 and Graph-18. Table-7 shows that 

the p-values of the four variables and the intercept are very small, indicating that these variables 

are significant in the model. The final LR model is 

( )

( )( 1 )
1

g x

g x

e
p Y X

e
�  �  

����
�È 

and 

( ) 61.4356 76.4351 c12-55.3450 c19+88.3002 c23+61.4356 c56g x �  � � � u � u � u � u. 
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Table-7 LR for HSV1 vs. Adeno 

 
Analysis of Maximum Likelihood Estimates 

                                        Standard          Wald 
         Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
         Intercept     1       132.3     42.4598        9.7107        0.0018 
         c56         1     61.4356     13.1783       21.7331        <.0001 
         c23         1     88.3002     18.5274       22.7140        <.0001 
         c12         1     76.4351     16.9445       20.3484        <.0001 
         c19         1    -55.3450     17.9974        9.4566        0.0021 

 

Table-8 AUC and specificities corresponding to sensitivities 

95%, 90%and 80% for HSV1 vs. Adeno 

HSV1 vs. Adeno 
Logistic regression 

 The old dataAfter the shrinkage of 
Cross-validation The new validate data

Area under the curve (AUC) 0.978 0.969 0.882 
Specificity for 95% Sensitivity 0.984 0.955 0.646 
Specificity for 90% Sensitivity 0.987 0.977 0.759 
Specificity for 80% Sensitivity 0.987 0.981 0.848 

PLS regression (Number of Factors=6)  
Percent Variation Accounted for by Partial Least Squares Factors (Model effects)=94.9  

Area under the curve (AUC) 1 0.992 0.913 

Specificity for 95% Sensitivity 1 0.997 0.603 
Specificity for 90% Sensitivity 1 0.998 0.734 
Specificity for 80% Sensitivity 1 0.999 0.911 

 

As can be seen in Table-8, AUC, specificities for sensitivities 95%, 90%, and 80% of final 

LR model are all large enough to exhibit excellent discrimination. After estimating the shrinkage 

from the cross-validation method, the AUC and specificities are very close to the ones calculated 

by the final model. After the new data validation process, the AUC is 0.882, still having good 

discrimination, and specificities at sensitivities of 95%, 90% and 80% are 0.646, 0.759, 0.848 

respectively. All the specificities decrease almost 20%, which means that the discrimination of 
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the final model is not as good as other comparisons, but still not bad. Graph-19 shows the z-score 

plot for both of the old data and new data. As shown in the graph, there is some difference 

between the two z-score curves, but the chosen variables are all at or near the peaks of the 

significant wavenumber ranges.   

 

Graph-17 Location of the chosen variables (Standardized data of HSV1 vs. Adeno) 

 

For PLSR model, the first 6 factors count about 94.9% of the total variation. Table-9 shows 

the coefficients of the variables for the final model. As shown in Table-8, the AUC, and the 

specificities corresponding to 95%, 90%, and 80% sensitivities are all equal to1, indicating 

excellent discrimination of the final PLSR model. The AUC and the specificities obtained after 

the cross-validation equal to 0.992, 0.997, 0.998 and 0.999, with the shrinkages less than 1%, 

also showing excellent discrimination of the PLSR method. However, the AUC and the 

specificities obtained in the new data validation process are equal to 0.913, 0.603, 0.734, and 
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0.911. Except the specificity for the sensitivity 80%, other two specificities all decreased more 

than 25%.  

 

Graph-18 Location of the chosen variables (Z-score for HSV1 vs. Adeno) 

 

 

Graph-19 Location of chosen variables (Z-score for HSV1 vs. Adeno  

for both of the old data and new data) 
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Table-9 The coefficients of PLSR model for HSV1 vs. Adeno 

Name Value Name Value Name Value 
Intercept 0.630386 c27 -1.22813 c54 0.071945 
c1 0.54999 c28 -1.01347 c55 0.655478 
c2 0.145039 c29 -0.38594 c56 1.141181 
c3 -0.11883 c30 0.240592 c57 1.389502 
c4 -0.74925 c31 0.412829 c58 1.440889 
c5 -0.80763 c32 0.057044 c59 1.358339 
c6 -0.91433 c33 -0.39651 c60 1.145496 
c7 -0.8985 c34 -0.43939 c61 -0.65315 
c8 -0.51796 c35 -0.43988 c62 -0.75794 
c9 -0.18848 c36 -0.17699 c63 -0.61421 
c10 0.014216 c37 -0.19892 c64 -0.33556 
c11 0.354223 c38 0.000236 c65 -0.10041 
c12 0.642011 c39 -0.87575 c66 0.192073 
c13 0.950055 c40 -1.36407 c67 0.172209 
c14 0.690383 c41 -1.58419 c68 -0.06312 
c15 0.467151 c42 -1.57394 c69 -0.1944 
c16 0.078162 c43 -1.13158 c70 -1.17825 
c17 -0.24328 c44 0.805104 c71 -1.24443 
c18 -1.23137 c45 0.49141 c72 -1.10589 
c19 -1.4359 c46 0.019265 c73 -0.58697 
c20 -1.11172 c47 -0.48155 c74 -0.33911 
c21 -0.53226 c48 -1.01785 c75 -0.16616 
c22 0.055645 c49 -1.33556 c76 -0.40004 
c23 0.802684 c50 -1.37611 c77 -0.52508 
c24 0.552887 c51 -1.0543 c78 -0.32266 
c25 0.086736 c52 -0.77339��  ��  
c26 -0.58358 c53 -0.31777��  ��  

 

3.4 Mock versus HSV1 and Adeno 

 Graph-20 to Graph-22 shows the original data, the standardized data, and the Z-score data 

respectively. Graph-22 reveals that eight ranges, 800-885cm-1, 921-959 cm-1, 973-1006 cm-1, 

1027-1137 cm-1, 1165-1207 cm-1, 1217-1279 cm-1, 1310-1391 cm-1, and 1410-1500 cm-1, are 

significant in the study. The 570 variables included in these ranges can be stabilized into 114 

variables (c1-c114). 














































































































































































