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Abstract 

This study investigates three alternative machine learning methods to explore influential 

predictors of type 2 diabetes. It compares ridge, lasso, and elastic net regression to linear 

regression, and focuses on 12 outcome variables that include age, sex, race, income, education 

level, body mass index, waist circumference, arm circumference, hip circumference, family 

history, smoking status, sleep duration, high blood pressure, and high-density lipoprotein. 

Ridge, lasso and elastic net regression do not outperform linear regression but do assist in 

choosing a simpler model which could be important for improving future modeling.  
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Chapter 1  

INTRODUCTION  

1.1 Background   

 According to the World Health Organization’s (WHO) annual report, the number of 

people with diabetes has nearly quadrupled since 1980 and is one of the leading causes of 

death around the world. In 2012, there were 1.5 million deaths worldwide directly caused by 

diabetes, and an additional 2.2 million deaths attributed to high blood glucose levels, including 

cardiovascular disease, chronic kidney disease, and tuberculosis. Diabetes is also the number 

one cause of blindness, amputation, and kidney failure. In 2014, approximately 422 million 

people over the age of 18 had diabetes. The substantial increase in cases can be seen in 

countries of all income levels and reflects the gradual rise of obesity levels seen around the 

world (World Health Organization, n.d.).  Symptoms of diabetes progress slowly over a long 

period of time, and thus are commonly overlooked. According to the American Diabetes 

Association (ADA), 34.2 million Americans had diabetes in 2018, and of those, 7.3 million were 

undiagnosed. Left unchecked, diabetes can cause irreversible damage and become a great 

financial burden at an individual and national level. Economic costs of diabetes have increased 

by 26% from 2012 to 2017 (American Diabetes Association, 2018). In 2018, the ADA estimated 

the total costs of diagnosed diabetes had risen to $327 billion in 2017 from $245 billion in 2012. 

This includes $237 billion in direct medical costs and $90 billion in reduced productivity. People 

with diagnosed diabetes incur an average of $16,750 a year in medical bills, which has shown to 

be 2.3 times higher than in those without diabetes.  
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 There are three main types of diabetes: Type 1, Type 2, and gestational diabetes. Most 

cases of diabetes fall under the umbrella of either type 1 or type 2 diabetes. Type 1 diabetes is 

when the body stops making its own insulin; this type cannot be prevented. In type 2 diabetes, 

the body can no longer effectively use insulin to maintain normal blood sugar levels. While 

preventable through a healthy lifestyle, type 2 diabetes accounts for 90-95% of all diagnosed 

cases of diabetes. In addition, 88 million Americans are pre-diabetic, and of those, 84% don’t 

know they have it (Centers for Disease Control and Prevention, n.d.). Therefore, intervention of 

diabetes should focus on the preventative stages, and studies should devote attention to 

determining predictors of this detrimental disease.  

  There have been many studies in the past that have explored predictors of type 2 

diabetes. Turi et al. found that blood pressure, sleep duration, and family history of diabetes 

were all significant predictors of type 2 diabetes (2017). In addition, a study completed in 2014 

found that body mass index (BMI), older age, family history, and hypertension were associated 

with higher risk of type 2 diabetes (Foley et al.). These results correspond with risk factors 

established by the CDC which include overweight/obesity, ages 45 and up, family history of 

diabetes, and physically inactive (Center for Disease Control, n.d.).   

 Unfortunately, establishing causation is an arduous task. In attempts to explore what 

variables are influential to an outcome, most analyses resort to linear or logistic regression, but 

choosing what variables to include in a statistical model can be complicated and distort results. 

More and more researchers are now beginning to experiment with machine learning to get 

over this obstacle of variable selection. Lasso, ridge, and elastic net regression are three types 

of machine learning tool that have risen in popularity to produce predictive models.  
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1.2 Purpose of Study  

 The purpose of this study is to model glycohemoglobin levels to determine what 

variables are most influential, and compare three machine learning methods: ridge, lasso, and 

elastic net against the highly utilized linear regression.  
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Chapter 2 

REVIEW OF LITERATURE 

2.1 Diabetes    

  After consuming food, your blood sugar levels rise, and your pancreas responds by 

releasing a hormone known as insulin. Insulin is responsible for lowering the blood sugar by 

transporting blood glucose into your cells, where it is stored and later used for energy. Over 

time, depending on various precursors, the pancreas can no longer keep up with the high 

demand of insulin, and blood glucose remains at an elevated state. Once muscle, liver, and fat 

cells can no longer use the insulin, the body suffers from a condition described as insulin 

resistance (National Institute of Diabetes and Digestive and Kidney Diseases, 2016). Risks that 

put individuals in danger for developing insulin resistance include being overweight, physically 

inactive, a family history of diabetes, older age, high blood pressure, and high cholesterol 

(Centers for Disease Control and Prevention, n.d.). There are various ways to diagnose diabetes. 

The American Diabetes Association (ADA) advocates for three types of tests: A1C test, fasting 

blood sugar test (FPG), and glucose tolerance test (OGTT). Table 1 shows the various criteria for 

diagnosing diabetes based on the ADA’s recommendations. Due to the inconvenience of 

measuring FPG and OGTT, the A1C test, which measures what percentage of hemoglobin is 

glycated, has risen in popularity. The use of A1C for glycemia control has been intensely 

investigated in the past (Nathan, Kuenen, and Borg 2008) and is also recognized by the Centers 

for Disease Control and Prevention as a suitable diagnostic measure for diabetes.  
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Table 1. Diagnostics criteria for diabetes  

 A1C Test Fasting Blood Sugar 
Test 

Glucose Tolerance 
Test 

Diabetes 6.5% or above 126 mg/dL or above 200 mg/dL or above  
Prediabetes 5.7-6.4%  100-125 mg/dL 140-199 mg/dL  

Normal Below 5.7% 99 mg/dL 140 mg/dL or below  

 

2.3 Predictors  

 Diabetes often does not occur in isolation. A vast majority of patients suffering from 

diabetes also have multiple comorbidities. In 2016, a retrospective study was done using the 

Quintiles Electronic Medical Record database. They found that 97.5% of patients had at least 

one comorbid condition in addition to diabetes, and 88.5% had at least two. Comorbidity 

burden tended to increase with age and was higher in men. The most common conditions 

associated with type 2 diabetes were hypertension (82.1%), obesity (78.2%), hyperlipidemia 

(77.2%), kidney disease (24.1%), and cardiovascular disease (21.6%) (Iglay, Hakima, Patrick, et 

al. 2016). Results such as these show how multifaceted chronic diseases can be, and why 

understanding the cause and treatment for disease such as diabetes can be extremely complex. 

Between September 2011 and June 2013, a cross-sectional survey was done by Hilawe et al 

(2016) targeting adults 25-64 years old in Palau. A sample of 2,216 non-pregnant adults 

participated in the survey, and 301 were dropped due to missing values (N=1915). The 

following measurements were taken following the World Health Organization standards. 

Participants were asked to fast for eight hours before capillary whole blood samples were taken 

from the fingertip to test fasting blood glucose (FBG) and lipid profile. FBG was classified into 

three categories: normal (FBG ≤ 5.6 mmol/L), prediabetes (FBG 5.6-6.9 mmol/L) and diabetes 

(FBG ≥ 7 mmol/L). Body mass index (BMI) was stratified into three groups: underweight/normal 
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(<18.5 or 18.5-24.9), overweight (25.0-29.9) and obese (≥30.0). Abdominal obesity was defined 

as a dichotomous variable having waist circumference (WC) of ≥94 cm for men and ≥80 cm for 

women, and large waist-hip ratio (WHR) was defined as having ≥0.90 for men or ≥85 for 

women. Blood pressure (BP) was split into three groups based on previous studies: normal, pre-

hypertension, and hypertension. Age was considered categorical (25-29, 30-39, 40-49, 50-59, 

and 60-64). Chi-squared, analysis of variance, or nonparametric median tests were used to 

compare characteristics across FBG status. Odds ratios (OR) were estimated by multinomial 

logistic regression using normal FBG as reference. The study identified older age, overall obesity 

(BMI), central obesity (large WC or WHR), hypertension and hypertriglyceridemia as significant 

predictors of prediabetes and/or diabetes. Studies such as these showcase the intricacies in 

determining predictors of type 2 diabetes, and how countless variables can be related to an 

outcome. Machine learning could be one possible solution for minimizing this complexity.  

2.4 Modeling  

 A large part of modeling with machine learning has to do with the idea of bias-variance 

tradeoff. Overfitted models have high variance and will do poorly when generalized to new 

data. In contrast, underfitted models have high bias, meaning the model may be missing 

relationships between X and Y. Thus, a more complex model may have less variance but 

increased bias, and vice versa. The aim is to get the model to generalize and classify new input 

accurately. Ridge, lasso, and elastic net regression can assist in finding a variance-bias balance 

by introducing a penalty parameter called lambda, represented by the λ symbol. Finding the 

best value for λ can be accomplished through cross-validation and can range from any value 

starting from zero to positive infinity. As λ increases, the slope of the line approaches zero, 
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meaning it introduces more and more bias. The main difference between lasso and ridge, is 

that lasso can eliminate insignificant coefficients by shrinking them completely to zero, while 

ridge regression can only shrink close to zero. In other words, lasso can eliminate the effect 

certain variables have on the model. Elastic net regression is a combination of the two. All assist 

in variable selection.   

 In 2019, Farbahari, Dehesh, and Gozashti did a cross-sectional study using machine 

learning techniques to explore influential variables that affect fasting blood sugar (FBS). The 

study consisted of 270 type 2 diabetic patients over 18 years of age from Iran and was based on 

a study done in 1999 by Haffner, Alexander and Cook. The  metabolic variables assumed to be 

affecting FBS included glycated hemoglobin (HbA1c), triglycerides (TG), low-density lipoprotein 

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), thyroid-stimulating hormone 

(TSH), creatinine (Cr), and carbamide (Urea). Characteristic variables included age, gender, 

smoking status, drug use, and heredity, which were all self-reported. BP and BMI were also 

included. Those with other chronic disease or pregnant were excluded from the study, resulting 

in a total of 650 participants all together. Lasso, ridge, and linear regression were all utilized 

and compared by the mean squared error (MSE). Lasso regression had the lowest MSE of all 

three models. Hba1c, age, BMI, gender, smoking status, and urea were found to have a 

significant association with FBS. It should also be noted that all three models jointly introduced 

HbA1c as the most effective predictor of FBS, and the authors go on to state that HbA1c could 

be used instead of FBS in order to diagnose type 2 diabetes. The evidence from this study 

confirm the usage of lasso regression for clinical research.  
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 Another study done by Oh, Yoo, and Park (2013), utilized ridge, lasso, and elastic net 

regression to identify the risk of blindness due to diabetic retinopathy (DR). The health records 

from the Korea National Health and Nutrition Examination Surveys (KNHANES) V-1 were used. 

Out of the 8,958 participants involved in the KNHANES V-1 study, 556 were selected based on 

their diabetic status in accordance to the A1C test criteria, and 66 were excluded because they 

did not receive an eye examination resulting in N = 490. After constructing the models, 

Bayesian information criterion (BIC) was used for model selection. The area under the curve 

(AUC), accuracy, sensitivity, and specificity of the models were calculated using Receiver 

Operator Characteristic curve (ROC) which is assists in evaluates the perforce of a classification 

model. Cut-off points were selected that maximized Youden’s index. Those above the cut-off 

point were classified as being at high risk. Lasso predicted DR most efficiently and found the 

presence of DR was associated with 19 predictors. FPG, TG, low BMI, and insulin therapy were 

all strong predictors. This study concluded that lasso can contribute to our understanding of risk 

factors for DR and supports that lasso can be an effective prediction model in the analysis of 

high-dimensional health records. Studies like the ones mentioned, show how complex 

establishing a cause of diabetes can be, and how utilizing machine learning techniques could be 

advantageous in the explorations of predictors.  
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Chapter 3  

METHODS  

3.1 Data Source and Preparation  

 The National Health and Nutrition Examination Survey (NHANES) years 2017-2018 was 

used for this study. NHANES is a research program that began in the 1960’s by the National 

Center for Health Statistics (NCHS), part of the Centers for Disease Control and Prevention 

(CDC). NHANES is designed to evaluate the health of the United States population through 

physical examination and interviews.  Health interviews are conducted in respondents’ homes 

and consist of socio-economic, demographic, dietary, and health-related questions. Health 

measurements/ laboratory tests are performed by specialists in mobile centers, and consist of 

medical, dental, physical, and physiological measurements. All participants, excluding the very 

young, participate in having blood samples taken. To increase reliability of statistical estimates, 

NHANES over-samples persons 60 and older, African Americans, and Hispanics (NHANES – 

About the National Health and Nutrition Examination Survey, 2018). 

  NHANES 2017-2018 consisted of 9,254 participants. After the sample was limited to 

those who were 21 years and older and who have completed the glycohemoglobin blood test, 

the sample size dropped to 5,193. Variables of interest included demographic variables such as 

age, race, sex, education level, and income. Other variables included were body mass index 

(BMI), waist circumference, arm circumference, hip circumference, family history, smoking 

status, sleeping duration, high blood pressure, and high-density lipoprotein. The dependent 

variable, glycohemoglobin levels, was kept as continuous. Smoking status, family history of 
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diabetes, sleep duration, and a report of high blood pressure were taken from the 

questionnaire branch of NHANES. Smoking status was defined as those who said yes to smoking 

at least 100 cigarettes in their life and said they still smoked cigarettes now. High-density 

lipoprotein and glycohemoglobin levels were taken from the laboratory data.  

 Of the 5,193 observations, 243 were missing. To handle missingness for the 

independent variables, multivariate imputation by chained equations (MICE) was used.  Table 2 

shows the juxtaposition between before and after imputation. As shown, the distribution of 

variables remained nearly identical. The sample was roughly 50% female, with an average age 

of 52 years. The average glycohemoglobin level was 5.9 with a standard deviation of 1.1. Based 

on the American Diabetes Association (ADA) criteria in shown in Table 1,  nearly 16% of the 

sample was diabetic, 29% prediabetic, and 51% falling within the healthy range.  

 To conduct the machine learning methods, the data was split into testing and training 

sets. One third of the data was placed in a testing set (n=1,683), and two thirds was placed in 

the training set (n=3,267). The training dataset was used to train the model, while the testing 

dataset was used to see how well the model performed. All data cleaning for this study was 

done in SAS and analyses in RStudio.  

3.2 Analysis  

 As stated previously, ridge, lasso, and elastic net all incorporate a tuning parameter 

lambda (λ), which is chosen through cross-validation. The tuning parameter, λ , determines how 

much shrinkage will occur, and thus regulates the variable selection. Therefore, a very small 

tuning parameter, where little to no shrinkage is taking place (λ=0), results in a regular linear 
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regression model. For this study, 10-fold cross-validation was used to choose the best lambda 

value for each method, excluding linear regression where lambda was set to zero. To complete 

cross-validation, data is split into ten subsets, also known as folds, and then a model is trained 

on all subsets excluding one. The subset left out is used to evaluate how well the model 

performed. This procedure is repeated k times, while a different subset is reserved for testing 

each time. This entire process can be achieved through the cv.glmnet function in R.  Figure 1 

displays the formula for how this function is performed. When alpha (α) is set to 0, the lasso 

penalty equals 0, and the equation is reduced to ridge regression. When α is set to 1, the ridge 

penalty is set to 0, and the equation is reduced to only lasso regression. When α equals any 

number between 0 and 1, (aka. elastic net), both penalties are incorporated. Table 3 shows the 

best lambda value chosen from each cross-validation procedure.  

Figure 1. Detail on the function cv.glmnet  

 
 
 

λ x [α x (𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡1 + … + 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡x) + (1- α) x (𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡1
2+ … + 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑥

2)] 
 

 

 

 

 

 

 

Lasso penalty Ridge penalty 
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Table 2. Statistics before and after imputation 

Variable  Before imputation After imputation 

Age, mean (SE) 51.6 (17.7)  51.6 (17.7)  

Gender, frequency (%) 
Male 
Female 

 
48.1% 
51.9% 

 
48.1% 
51.9% 

Race, frequency (%) 
Mexican American 
Other Hispanic 
Non-Hispanic White 
Non-Hispanic Black 
Non-Hispanic Asian 
Other 

 
13.6%  
9.6% 

34.8% 
22.9% 
14.1% 
5.0% 

 
13.6% 
9.6% 

34.8% 
22.9% 
14.1% 
5.0% 

Education, frequency (%) 
Less than 9th grade 
9th-11th grade & 12th with no diploma 
High school graduate. GED 
Some college 
College graduate or above 

 
8.6% 

11.4% 
23.9% 
32.4% 
24.7% 

 
8.6% 

11.4% 
23.9% 
32.4% 
23.8% 

Income, frequency (%) 
High 
Middle 
Low 

 
19.2% 
34.4% 
46.3% 

 
19.3% 
34.1% 
46.6% 

Body mass index, frequency (%)  
Underweight  
Normal  
Overweight  
Obese 

 
3.0% 

23.7% 
31.8% 
41.5% 

 
3.0% 

23.7% 
31.8% 
41.5% 

Waist circumference, mean (SE) 100.8 (17.0) 100.6 (17.1) 

Arm circumference, mean (SE) 33.4 (5.3) 33.3 (5.3) 

Hip circumference, mean (SE) 107.1 (14.6) 106.9 (14.7) 

Family history, frequency (%) 
Yes 
No 

 
23.0% 
77.0% 

 
23.4% 
76.6% 

Smoking status, frequency (%) 
Yes 
No 

 
18.0% 
82.0% 

 
18.0% 
82.0% 

Sleeping duration, mean (SD) 7.59 (1.6)  7.59 (1.6)  

High blood pressure, frequency (%) 
Yes 
No 

 
38.8% 
61.2% 

 
38.7% 
61.3% 

High-density lipoprotein, mean (SD) 1.4 (0.4) 1.4 (0.4) 

Glycohemoglobin level, mean (SD) 5.9 (1.1) N/A 
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Chapter 4 

RESULTS  

4.1 Model Comparison 

 After splitting the data into training and test sets, choosing the best lambda values with 

cross validation, and fitting the model with the selected optimal tuning parameter, the mean 

squared prediction error (MSPE) was calculated to compare each model. Results are shown in 

Table 3. As discussed previously in this paper, ridge regression does not have the ability to 

shrink a coefficient to 0, and thus the model includes all 12 variables. Lasso only chose two 

variables: age and waist circumference. Elastic net regression chose 6 variables: age, non-

Hispanic White, waist circumference, family history, high blood pression, and high-density 

lipoprotein. The selected variables align with previously done studies. Linear regression, also 

incapable of shrinking, includes all 12 variables. All four models produced a similar MSPE value 

ranging from the lowest at 0.95 for linear regression and the highest at 0.99 for elastic net 

regression. These results show that all four models performed similarly, and one could choose 

between either.  
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Table 3. Comparison of coefficients between ridge, lasso, and elastic net regression 

Parameters 
Ridge 

regression 
Lasso 

regression 
Elastic net 
regression 

Linear regression 

Intercept 5.27 4.69 5.01 5.38 

Age 0.01 0.01 0.01 0.02 

Gender     

Female -0.01   0.16*** 

Race     

Other Hispanic 0.05   0.05 

Non-Hispanic White -0.11  -0.09 -0.22*** 

Non-Hispanic Black 0.03   0.09 

Non-Hispanic Asian 0.06   0.12 

Other -0.02   -0.03 

Education     

9-11th grade 0.01   -0.24** 

High school 
graduate/GED 

-0.03   -0.26** 

Some college -0.04   -.027*** 

College graduate or 
above 

-0.06   -0.34*** 

Income     

Middle class -0.02   -0.01 

Upper Class -0.02   0.04 

BMI     

Normal -0.05   -0.08 

Overweight -0.01   -0.17 

Obese 0.04   -0.16 

Waist 
circumference 

0.01 0.01 0.01 0.02*** 

Arm circumference 0.00   0.00 

Hip circumference 0.00   -0.01*** 

Family history     

Yes 0.11  0.03 0.20*** 

Smoking status     

Yes -0.05   -0.05 

Sleep duration -0.00   -0.01 

High blood pressure     

Yes -0.20  0.11 0.15*** 

High-density 
lipoprotein 

-0.20  -0.23 -0.40*** 

Lambda 1.25 0.10 0.18 0 

Mean squared error 0.98 0.95 0.99 0.95 
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Chapter 5  

DISCUSSION 

5.1 Discussion of Results  

 Ridge, lasso, and elastic net regression are shrinking techniques that have the potential 

to limit model complexity. Especially in scenarios that include a myriad of variables, methods 

such as linear regression may result in an over-fitted and overly complex model. Thus, a major 

benefit from utilizing shrinkage techniques is the ability to choose a simpler model by selecting 

parameters based on prediction versus linear regression which just fits based on the given data. 

In this scenario, the machine learning methods did not outperform linear regression, but 

nevertheless revealed a model containing only 2 variables instead of all 12.  

5.2 Limitations and Future Directions  

 One limitation of this study was that NHANES survey weights were not used. This may 

have introduced bias into the results of the analysis and interfere with the accuracy of the 

conclusion. Future studies should consider using the survey weights if they wish to have more 

precise outcomes that better describe the population.  

5.3 Conclusion  

 This study’s purpose was to compare three machine learning techniques to linear 

regression in determining possible predictors of high blood sugar levels. Results showed that 

ridge, lasso, and elastic net performed no better than linear regression, but demonstrated the 
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parameter selection capability of said shrinkage methods. Most importantly, these results show 

a different approach for tackling the intricacies of predictive modeling.  
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