Date of Award

Fall 12-18-2014

Degree Type


Degree Name

Doctor of Philosophy (PhD)


Computer Science

First Advisor

Dr. Robert Harrison

Second Advisor

Dr. Rajshekhar Sunderraman

Third Advisor

Dr. Yanqing Zhang

Fourth Advisor

Dr. Irene Weber

Fifth Advisor

Dr. Rafal Angryk


Human learning and classification is a nebulous area in computer science. Classic decisioning problems can be solved given enough time and computational power, but discrete algorithms cannot easily solve fuzzy problems. Fuzzy decisioning can resolve more real-world fuzzy problems, but existing algorithms are often slow, cumbersome and unable to give responses within a reasonable timeframe to anything other than predetermined, small dataset problems. We have developed a database-integrated highly scalable solution to training and using fuzzy decision models on large datasets. The Fuzzy Decision Tree algorithm is the integration of the Quinlan ID3 decision-tree algorithm together with fuzzy set theory and fuzzy logic. In existing research, when applied to the microRNA prediction problem, Fuzzy Decision Tree outperformed other machine learning algorithms including Random Forest, C4.5, SVM and Knn. In this research, we propose that the effectiveness with which large dataset fuzzy decisions can be resolved via the Fuzzy Decision Tree algorithm is significantly improved when using a relational database as the storage unit for the fuzzy ID3 objects, versus traditional storage objects. Furthermore, it is demonstrated that pre-processing certain pieces of the decisioning within the database layer can lead to much swifter membership determinations, especially on Big Data datasets. The proposed algorithm uses the concepts inherent to databases: separated schemas, indexing, partitioning, pipe-and-filter transformations, preprocessing data, materialized and regular views, etc., to present a model with a potential to learn from itself. Further, this work presents a general application model to re-architect Big Data applications in order to efficiently present decisioned results: lowering the volume of data being handled by the application itself, and significantly decreasing response wait times while allowing the flexibility and permanence of a standard relational SQL database, supplying optimal user satisfaction in today's Data Analytics world. We experimentally demonstrate the effectiveness of our approach.