Date of Award

4-22-2009

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Physics and Astronomy

First Advisor

Harold A. McAlister - Chair

Second Advisor

Russel J. White

Third Advisor

Brian D. Mason

Fourth Advisor

Douglas R. Gies

Fifth Advisor

David W. Latham

Sixth Advisor

A. G. Unil Perera

Seventh Advisor

Todd J. Henry

Abstract

I present the results of a comprehensive assessment of companions to 454 solar-type stars within 25 pc. New observational aspects of this work include surveys for (1) very close companions with long-baseline interferometry at the Center for High Angular Resolution Astronomy (CHARA) Array, (2) close companions with speckle interferometry, and (3) wide proper motion companions identified by blinking multi-epoch archival images. I have also obtained and included unpublished results from extensive radial velocity monitoring programs. The many sources utilized enable a thorough evaluation of stellar and brown dwarf companions. The results presented here include eight new companion discoveries, four of which are wide common proper motion pairs discovered by blinking archival images, and four more are from the spectroscopic data. The overall observed fractions of single, double, triple, and higher order systems are 57%±3%, 33%±2%, 8%±1%, and 3%±1%, respectively, counting all stellar and brown dwarf companions. The incompleteness analysis indicates that only a few undiscovered companions remain in this well-studied sample, showing that a majority of the solar-type stars are single. Bluer, more massive stars are more likely to have companions than redder, less massive ones. I confirm earlier expectations that more active stars are more likely to have companions. A preliminary, but important indication is that brown dwarfs, like planets, prefer stars with higher metallicity, tentatively suggesting that brown dwarfs may form like planets when they are companions to stars. The period distribution is unimodal and roughly Gaussian with peak and median values of about 300 years. The period-eccentricity relation shows a roughly flat distribution beyond the circularization limit of about 12 days. The mass-ratio distribution shows a clear discontinuity near a value of one, indicating a preference for twins, which are not confined to short orbital periods, suggesting that stars form by multiple formation mechanisms. The ratio of planet hosts among single, binary, and multiple systems are statistically indistinguishable, suggesting that planets are as likely to form around single stars as they are around components of binary or multiple systems at sufficiently wide separations.

Share

COinS