High School CTE in the Atlanta Metro Region: An Overview Focused on Access and Equity

Daniel Kreisman
Georgia State University, dkreisman@gsu.edu

Jesús Villero
Georgia State University, jvilleroaroca1@gsu.edu

Follow this and additional works at: https://scholarworks.gsu.edu/gpl_policybriefs

Part of the Education Policy Commons, Policy Design, Analysis, and Evaluation Commons, and the Public Policy Commons

Recommended Citation
https://scholarworks.gsu.edu/gpl_policybriefs/28

This Policy Brief is brought to you for free and open access by the Georgia Policy Labs at ScholarWorks @ Georgia State University. It has been accepted for inclusion in GPL Policy Briefs by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
High School CTE in the Atlanta Metro Region: An Overview Focused on Access and Equity

February 2021

Daniel Kreisman
Georgia State University

Jesús Villero
Georgia State University

DISCLAIMER: This research was funded by The Annie E. Casey Foundation, Inc., and we thank them for their support; however, the findings and conclusions presented in this report are those of the authors alone, and do not necessarily reflect the opinions of the Foundation. Additionally, all opinions or views expressed herein do not necessarily represent the opinions of any MAPLE school district partner or CTEx consortium member.
HIGHLIGHTS

- Over four-year high school careers, students earn nearly 3.5 credit hours in Career and Technical Education (CTE) courses or about 12 percent of total coursework on average.
- Non-White students and students identified as economically disadvantaged earn disproportionately more CTE credits than their White or non-economically disadvantaged peers on average.
- Racial differences in coursework are largely driven by differences among female students, where White female students have the lowest CTE participation rates and Black female students have the highest.
- These differences across race/ethnicity and economic disadvantage shrink by more than two-thirds when we compare students within the same school.
- While we find many CTE clusters are disproportionately taken by male or female students, few are disproportionately populated along students’ race/ethnicity or economic status.

OVERVIEW

Secondary education in the United States has shifted in recent years toward a framework that acknowledges the importance of work-based skills in preparing students for both college and careers. This shift has, in large part, revolved around advancements in Career and Technical Education (CTE). Where CTE was once considered a “vocational track” for non-college-bound students, it is now interwoven into the fabric of the curriculum—often beginning with introductory courses in grades 6-8 and including hundreds of courses in aligned CTE pathways across 17 broader career clusters. This coursework is explicitly designed to prepare students for both college and careers.

In the following policy brief, we abstract from the big picture question: Is taking CTE courses beneficial to students in the long-run as opposed to taking more non-CTE coursework? We focus on patterns and disparities in CTE course-taking and, to a lesser extent, college enrollment. Our setting is four school districts in the Atlanta metro area. We focus on cohorts of ninth-graders between 2010 and 2014, which allows us to observe whether students enroll in college immediately after graduating from high school (with on-time grade progression). We restrict the analysis sample to students we observe for four consecutive years, allowing us to observe course-taking histories throughout high school for students.

We address the following research questions:

1) How does CTE course-taking vary by student and school characteristics?
2) How do the specific CTE courses taken by students vary by student and school characteristics?

We focus our analysis of student characteristics on students’ race, economic status, and gender and consider how these factors interact. Our economic status measure indicates if a student was ever identified as eligible for public assistance due to family income below specified thresholds. In short, we investigate how CTE course-taking varies along these descriptive indicators. Our approach compares students both across schools and within schools. For example, are students who were ever identified as economically disadvantaged more or less likely to take CTE courses or to take certain types of CTE
coursework? Furthermore, are any differences driven by the fact that economically disadvantaged students are clustered in certain schools, or do these differences exist within schools as well?

Existing research on these research questions is mixed, although the weight of evidence points to short-term benefits of CTE coursework with long-run outcomes more difficult to parse. Dougherty (2018) studies the effect of admissions to specialized Regional Vocational and Technical High Schools in Massachusetts, finding a 7- to 10-percentage-point increase in the likelihood of on-time high school graduation for admitted students. Similarly, Brunner et al. (2019) find that students in Connecticut admitted to stand-alone technical high schools above an application eligibility threshold were 10 percentage points more likely to graduate from high school and were 8 percentage points less likely to enroll in college than students who were just below the admissions threshold (and who were not admitted and enrolled in a comprehensive high school). They also found that admitted male students had 31 percent higher earnings shortly after leaving high school than those not admitted, with no difference in earnings for female students. Kreisman and Stange (2020) use a nationally representative sample and show that CTE coursework is negatively correlated with grades in core subjects. While CTE course-taking is also negatively correlated with college enrollment, it does not appear to affect college graduation. CTE coursework leads to higher earnings but only for students who took advanced CTE coursework beyond the introductory courses in a pathway.

FINDINGS

ANALYSIS SAMPLE DESCRIPTION

The analysis sample comprises students who enrolled in ninth grade between 2010 and 2014 and are observed in the data for at least four years. Compared with students who are not observed for four years, our sample students are slightly more likely to be male and less likely to be Black or identified as economically disadvantaged.

Table 1 reports that students earn, on average, nearly 3.5 credit hours of coursework in CTE courses.\(^1\) These students take, on average, a total of 27.5 credit hours of any coursework; thus, CTE accounts for 12 percent of all credits, although there is wide variability. On average, male and female students take a similar number of CTE credits, while Black and economically disadvantaged students take about two more credit hours on average than White or non-economically-disadvantaged students, respectively.

\(^1\) Our preferred measure is credit hours earned, as opposed to attempted, though results are largely unchanged by this decision. Courses listed as work based learning (WBL) are included as CTE courses.
Table 1. Sample Means

<table>
<thead>
<tr>
<th>Share of Sample</th>
<th>Average CTE Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>0.53</td>
</tr>
<tr>
<td>Male</td>
<td>0.47</td>
</tr>
<tr>
<td>Black</td>
<td>0.61</td>
</tr>
<tr>
<td>White</td>
<td>0.21</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.08</td>
</tr>
<tr>
<td>Other Race/Ethnicity</td>
<td>0.10</td>
</tr>
<tr>
<td>Econ. Disadvantaged</td>
<td>0.62</td>
</tr>
<tr>
<td>Not Econ. Disadvantaged</td>
<td>0.38</td>
</tr>
<tr>
<td>No Disability</td>
<td>0.92</td>
</tr>
<tr>
<td>Disability</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Observations: 68,330

Notes. The sample consists of students who are observed in four metro Atlanta school districts for four years. Econ. Disadvantaged and Disability indicate if students were ever identified in one of these categories. CTE credits are averages for that group.

DIFFERENCES IN CTE CREDIT ACCUMULATION

Figure 1 shows CTE credit accumulation by race and ethnicity and by gender. Panel A shows that students’ gender plays a meaningful role in the accumulation of CTE credits, especially for White students. In particular, White male students take nearly one additional CTE credit than White female students. Among Black students, by contrast, differences in CTE course-taking by gender are minimal. Panel A also shows differences in CTE credits by race and ethnicity. Black male students take 1.6 credit hours, or 67 percent, more than White male students on average, while Black female students take 2.5 credits, or 167 percent, more than White female students. Overall, Black female students take the most CTE credits, and White female students take the fewest.

Figure 1, Panel A. CTE Participation by Race and Gender

Notes: Panel A shows average CTE credit hours. Sample sizes (male, female) are White (7,224; 7,115), Black (19,077; 22,443), Hispanic (2,771; 2,991), Other race (3,375; 3,334).
In Panel B of Figure 1, we calculate the share of students who earn no CTE credits or who take and pass the last course in a CTE pathway sequence. Taken together, this analysis provides a sense of CTE intensity beyond counting CTE credits. Taking the last course in a sequence is a proxy for completing a CTE program of study, typically three consecutive courses. We plot each of these indicators by gender and race, focusing on Black and White students.

White female students are more likely to take no courses than take the last course in a sequence. Moreover, Black students, males and females alike, are unlikely to take no CTE courses, while more than half of Black students take the last course in a pathway sequence. White female students are over four times more likely than Black female students never to take a CTE course, while White male students are three times more likely than Black male students. Given that, among these demographic groups, White female students are most likely to attend college, followed closely by White male students; these differences in CTE credit hours warrant further consideration to understand the forces driving the disparities.

Figure 1, Panel B. CTE Participation by Race and Gender

![Bar chart showing CTE participation by race and gender](image)

Note. Panel B shows the share of students who never took a CTE course or who ever took the last course in a pathway sequence. Sample sizes (male, female) are White (7,224; 7,115), Black (19,077; 22,443), Hispanic (2,771; 2,991), Other race (3,375; 3,334).

ARE SCHOOLS DRIVING DISPARITIES? ACROSS VS. WITHIN SCHOOL DIFFERENCES

In this section, we consider the role schools play in CTE course-taking. To lay the groundwork, we begin with a plot of the average number of CTE courses students take at the school level by the share of students in the school who were identified as economically disadvantaged.\(^2\) In Panel A of Figure 2, we find a strong positive relationship between schools’ rates of economically disadvantaged students and CTE.

\(^2\) We use pre-2014 school-level economic disadvantage rates to account for the fact that after 2014 this measure was not available for many schools with large low-income populations.
credit accumulation. Moreover, this pattern is consistent across the four districts. To put the results in perspective, students in schools in which about 20 percent of students are economically disadvantaged take two CTE credits on average. In schools with roughly 80 percent of students who were ever identified as economically disadvantaged, the average number of CTE credits doubles to four.

Figure 2, Panel A. Average CTE Credit Hours Earned by School Economic Disadvantage Rates

In Panel B of Figure 2, we show that the disparity in CTE course-taking by our measure of economic disadvantage is related to the male-female difference in CTE credit accumulation. In schools with few economically disadvantaged students, female students take fewer CTE courses than male students. In schools with high levels of economically disadvantaged students, female students take more CTE credits, on average, than their male peers. Thus, as school-level economically disadvantage rates increase, CTE credit accumulation increases—and does so more for female students than for male students.

Figure 2, Panel B. Average CTE Credit Hours Earned and Female-Male Difference in CTE Credits

3 We assign students to the school they attended in grade 12. While students may have changed schools before grade 12, most CTE courses are taken in grade 12.
We next analyze whether differences by race, gender, economic status, or other factors are primarily an across-school or within-school phenomenon. We first estimate a regression model predicting the number of CTE credits a student earns based on a host of student characteristics. Estimates from this model are interpreted as differences in CTE credits by student characteristics across schools. We then further control for the school the student attended, which re-estimates the relationship between CTE credits and student characteristics within schools. This second model asks whether differences in CTE credit accumulation across demographic subgroups are a byproduct of, for example, Black or economically disadvantaged students attending schools with high CTE-taking rates or if Black or economically disadvantaged students take more CTE credits regardless of the school they attend.

In column 1 of Table 2, we confirm the pattern of results observed in the descriptive statistics and figures described above. Race and economic status are the strongest predictors of CTE credit accumulation, both in the size of the estimated relationships and their statistical significance. In the second column, we investigate whether those differences also exist among students within the same school. We find that the magnitude of the differences become smaller when comparing demographic subgroups within schools.

For example, across schools, Black students take 1.3 more CTE credits than White students, and economically disadvantaged students take 0.76 more credits than non-economically disadvantaged students, conditional on other demographic factors. Yet, the Black-White difference in CTE credit hours accumulated within schools is only one-third as large as the across school difference. That is, once we compare students within the same school, Black students take only 0.4 more credits than their White classmates on average. A similar pattern emerges for students ever identified as economically disadvantaged: Within schools, economically disadvantaged students take only 0.20 more credits. A similar pattern emerges for the relationship between eighth-grade test scores and CTE credits.
Table 2. CTE Credits Across and Within Schools

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>All</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
<td>-0.193**</td>
<td>-0.195**</td>
<td>(0.0712)</td>
<td>(0.0695)</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>1.281***</td>
<td>0.444**</td>
<td>0.678***</td>
<td>0.219</td>
</tr>
<tr>
<td></td>
<td>(0.155)</td>
<td>(0.141)</td>
<td>(0.147)</td>
<td>(0.144)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.795***</td>
<td>0.406**</td>
<td>0.554***</td>
<td>0.269*</td>
</tr>
<tr>
<td></td>
<td>(0.231)</td>
<td>(0.131)</td>
<td>(0.155)</td>
<td>(0.118)</td>
</tr>
<tr>
<td>Other Race/Ethnicity</td>
<td>0.223</td>
<td>0.0056</td>
<td>0.0861</td>
<td>-0.0571</td>
</tr>
<tr>
<td></td>
<td>(0.168)</td>
<td>(0.100)</td>
<td>(0.0932)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>Ever Econ. Disadvantaged</td>
<td>0.762***</td>
<td>0.204***</td>
<td>0.288***</td>
<td>0.0957</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.050)</td>
<td>(0.0568)</td>
<td>(0.0537)</td>
</tr>
<tr>
<td>Any Disability</td>
<td>0.0507</td>
<td>0.0897</td>
<td>-0.0174</td>
<td>0.204*</td>
</tr>
<tr>
<td></td>
<td>(0.0883)</td>
<td>(0.0819)</td>
<td>(0.106)</td>
<td>(0.0899)</td>
</tr>
<tr>
<td>8th grade ELA (Z)</td>
<td>-0.196***</td>
<td>-0.100***</td>
<td>-0.131***</td>
<td>-0.0432</td>
</tr>
<tr>
<td></td>
<td>(0.0280)</td>
<td>(0.0243)</td>
<td>(0.0286)</td>
<td>(0.0280)</td>
</tr>
<tr>
<td>8th grade Math (Z)</td>
<td>-0.0838*</td>
<td>-0.00663</td>
<td>-0.0483</td>
<td>0.0110</td>
</tr>
<tr>
<td></td>
<td>(0.0325)</td>
<td>(0.0230)</td>
<td>(0.0248)</td>
<td>(0.0303)</td>
</tr>
<tr>
<td>School FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cohort FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Observations</td>
<td>68,330</td>
<td>68,318</td>
<td>35,869</td>
<td>32,441</td>
</tr>
</tbody>
</table>

Notes. The table shows estimates from regression models in which the dependent variable is CTE credit hours earned during high school. ELA/Math are standardized test scores normalized to mean 0, s.d. 1. Cohort FE are ninth-grade cohort; School FE are school-by-ninth-grade cohort fixed effects. Standard errors clustered on schools are in parentheses. [* 0.05; ** 0.01; *** 0.001].

These results suggest that differences in CTE participation with respect to race and economic status are primarily driven by the fact that non-White and poorer students attend schools where students take more CTE credits. In the final two columns of Table 2, we show that this phenomenon is also stronger for female students than for male students. For example, in column 4, we show that within schools, Black and White male students take a similar number of CTE credits; a similar pattern is evident between economically disadvantaged and non-economically disadvantaged male students. Yet, in column 3, even within schools, Black female students or economically disadvantaged female students take more CTE credits than White or non-economically disadvantaged students. Within the same school, Black female students take 0.68 more CTE credits than White female students.

DIFFERENCES IN THE TYPE OF CTE COURSES TAKEN BY STUDENTS

In this section, we examine which clusters students who take CTE coursework choose to study. Figure 3 shows the share of all CTE credits taken by students in each of the 17 CTE clusters. We create an additional eighteenth category, which we call General, that includes courses that are not aligned with any CTE cluster; many of these courses focus on “general” workplace preparation or career exploration and, in total, account for a small percentage of all courses.4 We note that pathways significantly changed in 2013-14. We used the comparison chart provided by the Georgia Department of Education to reconcile the old

4 The most common courses in this group are: Career Awareness, Career Technical Instruction (I-IV), Jobs for GA Graduates Work Ethic (I-IV), Project Success I, and Research, Design and Project Management.
Peach State Program Concentrations with the new Career Cluster Pathways scheme to generate consistent definitions across cohorts.\(^5\)

Figure 3. Share of CTE Credits in Each Cluster

Business Management & Administration is the most popular cluster, accounting for over 15 percent of all CTE credits (students earn about 0.5 credits each on average in this cluster). The second most popular cluster is Government & Public Administration. This cluster is more popular in the four districts in this study than nationally; most of the coursework in the cluster is associated with Junior Reserve Officer Training Corps (JROTC) courses and other service-affiliated coursework. These are followed by coursework in Information Technology (IT); Health Science; Science, Technology, Engineering, & Mathematics (STEM); and Human Services. Relatively few courses are taken in Agriculture, Food & Natural Resources; Manufacturing; or Energy.

CTE clusters, much like the workforce, are highly segregated by gender. In Figure 4, we show the share of all credits taken in each cluster taken by female students. Female students take nearly 80 percent of all credits taken in the Health Science cluster. The Education & Training and Human Services clusters have similarly high shares of credits earned by female students. STEM; Manufacturing; Architecture & Construction; and Transportation, Distribution, & Logistics clusters are dominated by male students.

\(^5\) See the comparison chart here for details: www.gadoe.org/Curriculum-Instruction-and-Assessment/CTAE/Documents/Pathway-Comparison-Chart.pdf
Figure 5 shows the share of credits in each cluster accumulated by students ever identified as economically disadvantaged, recalling that students ever identified as economically disadvantaged take about 1.5 more CTE credits on average than non-economically disadvantaged students. Differences in the share of credits by economically status are smaller than by gender. Key outliers are the Manufacturing and Government & Public Administration clusters, which are heavily weighted toward students from lower-income households. The share of credits earned by economically disadvantaged students is lowest for the STEM, IT, and Arts, A/V Technology, & Communications clusters. Yet, the dispersion of differences by economic status across clusters is relatively small; the difference in the share of CTE credits between Government & Public Administration and STEM is roughly 10 percentage points. This is far smaller than the 60-percentage-point difference by gender between the Health Science and STEM clusters.
CTE AND COLLEGE ENROLLMENT

We next focus on the relationship between CTE coursework and postsecondary college enrollment. We do not have college enrollment data for one of the four districts in this study, as well as for a small number of schools within the remaining three districts. For analyses of college enrollment, we omit the one district and those few schools without postsecondary data. Because the analysis sample is restricted to students who we observe for at least four years of high school, the high school graduation and college enrollment rates are higher than the wider population. For instance, the college enrollment rate in the analysis sample is 75 percent, whereas the same rate for all high school graduates in the three districts is closer to 60 percent.

In Figure 6, we plot the school-average college enrollment rate and the average number of CTE credits students take in that school. We find a strong negative relationship: Schools in which students take more CTE courses send fewer students to college. This does not necessarily mean that CTE courses cause students not to enroll in college, though we cannot rule that out either. Students could choose to take CTE coursework if they prefer not to enroll in college or perceive there to be insurmountable financial barriers to college (among other potential explanations). We also note that schools with higher CTE enrollment rates have more students ever defined as economically disadvantaged. For example, in Figure 2A, schools with higher rates of economic disadvantage have higher CTE enrollment. Hence, much of this relationship is driven by student factors correlated with both CTE take-up, as in Figure 2A and Table 2, and college-going. We note that if we net out the school economic disadvantage rate, the relationship is nearly flat. This highlights the very strong relationship between CTE and economic disadvantage in the sample and
suggests that CTE and college enrollment are weakly related once economic circumstances are factored in.

Figure 6. School-Average College Enrollment and CTE Credit Hours

![Graph showing school-average college enrollment and CTE credit hours.](image)

WHO TAKES COURSES IN HIGH-EARNING CLUSTERS?

Lastly, we analyze which students enroll in high-earnings fields. To operationalize the analysis, we make several assumptions concerning how certain programs lead to specific jobs and the earnings those jobs might offer. We begin by matching CTE clusters to occupations using alignment information from the Georgia Department of Education. We then calculate the median earnings of workers in occupations that require less than college enrollment for typical entry into the field using data from the Bureau of Labor Statistics for the Atlanta-Sandy Springs metro region. For example, to calculate median earnings for the Law, Public Safety, Corrections & Security cluster, we omit earnings data for lawyers, who typically require educational credentials beyond high school. Similarly, we omit CEOs from the Business Management & Administration cluster, and we omit financial advisors from the Finance cluster. The resultant earnings data represent what a high school graduate might expect to earn in an occupation within a particular CTE cluster without further schooling.

In Figure 7, we plot median earnings for each CTE cluster with the share of credit hours in that cluster taken by female students (Panel A) or students identified as economically disadvantaged (Panel B). Circle sizes show the relative popularity of each cluster among all students. Panel A shows a clear negative relationship between the share of female students in a CTE cluster and that cluster’s associated median earnings. The negative association is driven by the Education & Training, Health Science, Human Services, and Hospitality & Tourism clusters—all of which have a high share of female students and relatively low median earnings.
Figure 7A. Median Projected Cluster Earnings and Share Female

Panel B shows no relationship, implying that clusters with a higher share of students ever identified as economically disadvantaged are no more associated with lower-paying occupations than those popular among non-economically disadvantaged students. Yet, this result is contingent on the Government & Public Administration cluster, which features the highest share of economically disadvantaged students and the second-highest median earnings after IT. Absent the Government & Public Administration cluster, the earnings relationship turns negative like the relationship between the share of credit hours for female students and median earnings in Panel A of Figure 7.
SUMMARY, DISCUSSION, AND SUGGESTIONS FOR FUTURE RESEARCH

This study provides a statistical analysis of CTE participation and credit accumulation among students in four metro-Atlanta school districts who enrolled in ninth grade between 2010 and 2014 and for whom we can observe for four or more years. Our analyses focus on differences in CTE credit accumulation and the specific courses students take across student demographic characteristics, and further asks whether any of the observations are driven by the particular school students attend.

We find meaningful differences in CTE participation by race and ethnicity and whether a student was ever identified as economically disadvantaged. The differences are larger for female students than for male students. Black male students take 1.6 (or 67 percent) more CTE credits than White male students on average, while Black female students take 2.5 more credits (or 167 percent) more CTE credit hours than White female students. Overall, across race and gender, White female students take the fewest CTE courses, while Black female students take the most. Results are similar for CTE coursework across economic status.

Differences in CTE participation rates across schools play a strong role in driving CTE credit accumulation discrepancies. When we compare students within the same school, we find little difference in CTE enrollment between Black and White students or economically disadvantaged students and those not identified as economically disadvantaged. Similarly, differences between Black and White female students...
or economically disadvantaged and non-economically disadvantaged female students are dramatically reduced.

We also study how CTE courses relate to college enrollment. We find that schools where students take more CTE credits send far fewer students to college.

Finally, we examine whether differences in CTE course taking across demographic subgroups also hold for the types of CTE courses students take. CTE clusters, much like the labor market itself, are highly segregated by gender. Female students dominate credit accumulation in service clusters such as Health Science, Education & Training, and Human Services. These clusters are associated with lower-paying occupations for terminal high school graduates. Differences in which students enroll in clusters by economic status (or race, which is not shown here) are smaller than differences across gender. One key outlier in the four metro Atlanta area districts is that courses in Government & Public Administration, which almost entirely consists of JROTC training, are heavily dominated by economically disadvantaged students or non-White students. This is also the second most popular cluster in our analysis sample. Thus, whether these particular courses are beneficial toward college and career preparation will influence the magnitude of later disparities in college enrollment and earnings. Along the same lines, we find that the STEM; IT; and Arts, A/V Technology, & Communications clusters are disproportionately taken by White and non-economically disadvantaged students.

Overall, with some exceptions as described above, we find that differences in CTE participation by race or economic status are modest and are largely explained by differences in course-taking across schools. This contrasts with our analysis by gender, where we find meaningful segregation in both participation and course-type across and within schools.

Future research in the metro-Atlanta area districts or other locations should seek to understand why CTE credit accumulation differences across schools are so much larger than within schools. Potential mechanisms might include the cost of programs that require special labs or equipment, such as those in the Arts, A/V Technology, & Communications cluster, or difficulties in staffing certain CTE fields like courses in IT. Furthermore, differences in high school CTE credit accumulation by gender reflect differences by gender in the labor market. This might imply that this stratification begins early, and there might be potential to reduce these later disparities by closing gaps in participation across high school clusters. Finally, connecting students to their labor market outcomes would help researchers, policymakers, and stakeholders understand the implications of taking CTE coursework for later employment and earnings.
REFERENCES

ACKNOWLEDGMENTS

The authors would like to thank our MAPLE school district partners that provided data for this study. We especially recognize Rubye Sullivan’s backing of this exploratory work. We also thank our colleagues at the Georgia Policy Labs for their tireless efforts in preparing this report: Ketisha J. Kinnebrew, Béla Figge, Chris Thayer, Thomas Goldring, Robert McMillan, Annick Simo, and Maggie Reeves.
ABOUT THE AUTHORs

Daniel Kreisman is an associate professor of economics at Georgia State University. His research addresses topics at the intersection of labor economics, education finance, and education policy. He is also the founding director of the Career & Technical Education Policy Exchange (CTEx)—a consortium of researchers and state partners working to inform the future of CTE policy with cutting edge research. Along with publications in top journals, his work has been funded by the Smith Richardson Foundation, Arnold Ventures, the Annie E. Casey Foundation, the Pew Foundation, the Russell Sage Foundation, and the Institute for Research on Poverty. Prior to joining Georgia State University, he earned his Ph.D. and M.P.P. in public policy from the University of Chicago, his B.A. in philosophy and history from Tulane University, and was a high school teacher in New Orleans.

Jesús Villero is an economics doctoral student at Georgia State University studying labor and health economics and a graduate research assistant with the Georgia Policy Labs. His research focuses on the economics of education and family and population economics. Jesús earned his B.A. in economics from the Universidad del Norte in Colombia and his M.A. in economics from Georgetown University and ILADES in Chile.

ABOUT THE GEORGIA POLICY LABS

The Georgia Policy Labs (GPL) is a collaboration between Georgia State University and a variety of government agencies to promote evidence-based policy development and implementation. Housed in the Andrew Young School of Policy Studies, GPL works to create an environment where policymakers have the information and tools available to improve the effectiveness of existing government policies and programs, try out new ideas for addressing pressing issues, and decide what new initiatives to scale. The goal is to help government entities more effectively use scarce resources and make a positive difference in people’s lives. GPL has three components: The Metro Atlanta Policy Lab for Education works to improve K-12 educational outcomes; the Career & Technical Education Policy Exchange focuses on high-school-based career and technical education in multiple U.S. states; and the Child & Family Policy Lab examines how Georgia’s state agencies support the whole child and the whole family. In addition to conducting evidence-based policy research, GPL serves as a teaching and learning resource for state officials and policymakers, students, and other constituents. See more at gpl.gsu.edu.