Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)


Computer Science

First Advisor

Dr. Yingshu Li

Second Advisor

Dr. Zhipeng Cai

Third Advisor

Dr. Anu G. Bourgeois

Fourth Advisor

Dr. Yanqing Zhang

Fifth Advisor

Dr. Yi Zhao


Large scale social data from online social networks, instant messaging applications, and wearable devices have seen an exponential growth in a number of users and activities recently. The rapid proliferation of social data provides rich information and infinite possibilities for us to understand and analyze the complex inherent mechanism which governs the evolution of the new technology age. Influence, as a natural product of information diffusion (or propagation), which represents the change in an individual’s thoughts, attitudes, and behaviors resulting from interaction with others, is one of the fundamental processes in social worlds. Therefore, influence analysis occupies a very prominent place in social related data analysis, theory, model, and algorithms. In this dissertation, we study the influence analysis under the scenario of big social data. Firstly, we investigate the uncertainty of influence relationship among the social network. A novel sampling scheme is proposed which enables the development of an efficient algorithm to measure uncertainty. Considering the practicality of neighborhood relationship in real social data, a framework is introduced to transform the uncertain networks into deterministic weight networks where the weight on edges can be measured as Jaccard-like index. Secondly, focusing on the dynamic of social data, a practical framework is proposed by only probing partial communities to explore the real changes of a social network data. Our probing framework minimizes the possible difference between the observed topology and the actual network through several representative communities. We also propose an algorithm that takes full advantage of our divide-and-conquer strategy which reduces the computational overhead. Thirdly, if let the number of users who are influenced be the depth of propagation and the area covered by influenced users be the breadth, most of the research results are only focused on the influence depth instead of the influence breadth. Timeliness, acceptance ratio, and breadth are three important factors that significantly affect the result of influence maximization in reality, but they are neglected by researchers in most of time. To fill the gap, a novel algorithm that incorporates time delay for timeliness, opportunistic selection for acceptance ratio, and broad diffusion for influence breadth has been investigated. In our model, the breadth of influence is measured by the number of covered communities, and the tradeoff between depth and breadth of influence could be balanced by a specific parameter. Furthermore, the problem of privacy preserved influence maximization in both physical location network and online social network was addressed. We merge both the sensed location information collected from cyber-physical world and relationship information gathered from online social network into a unified framework with a comprehensive model. Then we propose the resolution for influence maximization problem with an efficient algorithm. At the same time, a privacy-preserving mechanism are proposed to protect the cyber physical location and link information from the application aspect. Last but not least, to address the challenge of large-scale data, we take the lead in designing an efficient influence maximization framework based on two new models which incorporate the dynamism of networks with consideration of time constraint during the influence spreading process in practice. All proposed problems and models of influence analysis have been empirically studied and verified by different, large-scale, real-world social data in this dissertation.