Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)


Computer Science

First Advisor

Prof. Alexander Zelikovsky - Chair

Second Advisor

Prof. Ludmila Perelygina

Third Advisor

Prof. Yi Pan

Fourth Advisor

Prof. Robert Harrison


Motivation: As the human genome project progresses and some microbial and eukaryotic genomes are recognized, numerous biotechnological processes have attracted increasing number of biologists, bioengineers and computer scientists recently. Biotechnological processes profoundly involve production and analysis of highthroughput experimental data. Numerous sequence libraries of DNA and protein structures of a large number of micro-organisms and a variety of other databases related to biology and chemistry are available. For example, microarray technology, a novel biotechnology, promises to monitor the whole genome at once, so that researchers can study the whole genome on the global level and have a better picture of the expressions among millions of genes simultaneously. Today, it is widely used in many fields- disease diagnosis, gene classification, gene regulatory network, and drug discovery. For example, designing organism specific microarray and analysis of experimental data require combining heterogeneous computational tools that usually differ in the data format; such as, GeneMark for ORF extraction, Promide for DNA probe selection, Chip for probe placement on microarray chip, BLAST to compare sequences, MEGA for phylogenetic analysis, and ClustalX for multiple alignments. Solution: Surprisingly enough, despite huge research efforts invested in DNA array applications, very few works are devoted to computer-aided optimization of DNA array design and manufacturing. Current design practices are dominated by ad-hoc heuristics incorporated in proprietary tools with unknown suboptimality. This will soon become a bottleneck for the new generation of high-density arrays, such as the ones currently being designed at Perlegen [109]. The goal of the already accomplished research was to develop highly scalable tools, with predictable runtime and quality, for cost-effective, computer-aided design and manufacturing of DNA probe arrays. We illustrate the utility of our approach by taking a concrete example of combining the design tools of microarray technology for Harpes B virus DNA data.