Date of Award

Summer 8-7-2018

Degree Type


Degree Name

Doctor of Philosophy (PhD)


Computer Science

First Advisor

Zhipeng Cai

Second Advisor

Wei Li


In the past few years, the popularity of Mobile Crowdsensing Systems (MCSs) has been greatly prompted, in which sensory data can be ubiquitously collected and shared by mobile devices in a distributed fashion. Typically, a MCS consists of a cloud platform, sensing tasks, and mobile users equipped with mobile devices, in which the mobile users carry out sensing tasks and receive monetary rewards as compensation for resource consumption ( e.g., energy, bandwidth, and computation) and risk of privacy leakage ( e.g., location exposure). Compared with traditional mote-class sensor networks, MCSs can reduce the cost of deploying specialized sensing infrastructures and enable many applications that require resources and sensing modalities beyond the current mote-class sensor processes as today’s mobile devices (smartphones (iPhones, Sumsung Galaxy), tablets (iPad) and vehicle-embedded sensing devices (GPS)) integrate more computing, communication, and storage resources than traditional mote-class sensors. The current applications of MCSs include traffic congestion detection, wireless indoor localization, pollution monitoring, etc . There is no doubt that one of the most significant characteristics of MCSs is the active involvement of mobile users to collect and share sensory data.

In this dissertation, we study the incentive mechanism design in mobile crowdsensing system with consideration of economic properties.

Firstly, we investigate the problem of joining sensing task assignment and scheduling in MCSs with the following three considerations: i) partial fulfillment, ii) attribute diversity, and iii) price diversity. Then, we design a distributed auction framework to allow each task owner to independently process its local auction without collecting global information in a MCS, reducing communication cost. Next, we propose a cost-preferred auction scheme (CPAS) to assign each winning mobile user one or more sub- working time durations and a time schedule-preferred auction scheme (TPAS) to allocate each winning mobile user a continuous working time duration.

Secondly, we focus on the design of an incentive mechanism for an MCS to minimize the social cost. The social cost represents the total cost of mobile devices when all tasks published by the MCS are finished. We first present the working process of a MCS, and then build an auction market for the MCS where the MCS platform acts as an auctioneer and users with mobile devices act as bidders. Depending on the different requirements of the MCS platform, we design a Vickrey-Clarke-Groves (VCG)-based auction mechanism for the continuous working pattern and a suboptimal auction mechanism for the discontinuous working pattern. Both of them can ensure that the bidding of users are processed in a truthful way and the utilities of users are maximized. Through rigorous theoretical analysis and comprehensive simulations, we can prove that these incentive mechanisms satisfy economic properties and can be implemented in reasonable time complexcity.

Next, we discuss the importance of fairness and unconsciousness of MCS surveillance applications. Then, we propose offline and online incentive mechanisms with fair task scheduling based on the proportional share allocation rules. Furthermore, to have more sensing tasks done over time dimension, we relax the truthfulness and unconsciousness property requirements and design a (ε, μ)-unconsciousness online incentive mechanism. Real map data are used to validate these proposed incentive mechanisms through extensive simulations.

Finally, future research topics are proposed to complete the dissertation.