Date of Award

Spring 4-23-2013

Degree Type


Degree Name

Doctor of Philosophy (PhD)


Computer Science

First Advisor

WenZhan Song

Second Advisor

Xiaolin Hu

Third Advisor

Yingshu Li

Fourth Advisor

Yichuan Zhao


In a battery-less sensor network, all the operation of sensor nodes are strictly constrained by and synchronized with the fluctuations of harvested energy, causing nodes to be disruptive from network and hence unstable network connectivity. Such wireless sensor network is named as energy-synchronized sensor networks. The unpredictable network disruptions and challenging communication environments make the traditional communication protocols inefficient and require a new paradigm-shift in design. In this thesis, I propose a set of algorithms on collaborative data communication and storage for energy-synchronized sensor networks. The solutions are based on erasure codes and probabilistic network codings. The proposed set of algorithms significantly improve the data communication throughput and persistency, and they are inherently amenable to probabilistic nature of transmission in wireless networks.

The technical contributions explore collaborative communication with both no coding and network coding methods. First, I propose a collaborative data delivery protocol to exploit the optimal performance of multiple energy-synchronized paths without network coding, i.e. a new max-flow min-variance algorithm. In consort with this data delivery protocol, a localized TDMA MAC protocol is designed to synchronize nodes' duty-cycles and mitigate media access contentions. However, the energy supply can change dynamically over time, making determined duty cycles synchronization difficult in practice. A probabilistic approach is investigated. Therefore, I present Opportunistic Network Erasure Coding protocol (ONEC), to collaboratively collect data. ONEC derives the probability distribution of coding degree in each node and enable opportunistic in-network recoding, and guarantee the recovery of original sensor data can be achieved with high probability upon receiving any sufficient amount of encoded packets. Next, OnCode, an opportunistic in-network data coding and delivery protocol is proposed to further improve data communication under the constraints of energy synchronization. It is resilient to packet loss and network disruptions, and does not require explicit end-to-end feedback message. Moreover, I present a network Erasure Coding with randomized Power Control (ECPC) mechanism for collaborative data storage in disruptive sensor networks. ECPC only requires each node to perform a single broadcast at each of its several randomly selected power levels. Thus it incurs very low communication overhead. Finally, I propose an integrated algorithm and middleware (Ravine Stream) to improve data delivery throughput as well as data persistency in energy-synchronized sensor network.