Date of Award

Spring 5-15-2015

Degree Type


Degree Name

Doctor of Philosophy (PhD)


Kinesiology and Health

First Advisor

Jeffrey S. Otis

Second Advisor

Christopher P. Ingalls

Third Advisor

Brett J. Wong

Fourth Advisor

Jeffrey C. Rupp


Skeletal muscle injury results in functional deficits that can take several weeks to fully recover. Ultimate recovery of function is dependent on the muscle’s ability to regenerate, a highly coordinated process that involves transient muscle inflammation and the replacement of damaged myofibers. Instrumental in the inflammatory response, is the pro-inflammatory cytokine TNF-α. Expression of TNF-α is thought to be regulated, in part, by the stress sensing 70 kDa heat shock protein (Hsp70). However, it remains unclear how Hsp70 alters TNF-α following injury, and if so, how these changes affect skeletal muscle repair. Therefore, we up-regulated Hsp70 expression using 17-allylamino-17-demethoxygeldanamycin (17-AAG) prior to and following BaCl2-induced injury, and assessed TNF-α and myogenin content. Regenerating fiber cross-sectional area (CSA) and in vivo isometric torque were also analyzed in the weeks following the injury. Treatment of 17-AAG resulted in a ~5 fold increase in Hsp70 of the uninjured muscle, but did not affect any other biochemical, morphological or functional variables compared to controls. In the days following the injury, TNF-α and myogenin were elevated and directly correlated. At these earlier time points (≤7 days), treatment of 17-AAG increased TNF-α above that of the injured controls and resulted in a sustained increase in myogenin. However, no differences were observed in regenerating fiber CSA or in vivo torque production between the groups. Together, these data suggest that Hsp70 induction increases TNF-α and myogenin content following BaCl2-induced injury, but does not appear to alter skeletal muscle regeneration or attenuate functional deficits in otherwise healthy young mice.