Date of Award

Spring 4-30-2018

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mathematics and Statistics

First Advisor

Igor Belykh

Second Advisor

Vladimir Bondarenko

Third Advisor

Yaroslav Molkov

Fourth Advisor

Alexandra Smirnova

Abstract

Inherent randomness and unpredictability is an underlying property in most realistic phenomena. In this work, we present a new framework for introducing stochasticity into dynamical systems via intermittently switching between deterministic regimes. Extending the work by Belykh, Belykh, and Hasler, we provide analytical insight into how randomly switching network topologies behave with respect to their averaged, static counterparts (obtained by replacing the stochastic variables with their expectation) when switching is fast. Beyond fast switching, we uncover a highly nontrivial phenomenon by which a network can switch between two asynchronous regimes and synchronize against all odds. Then, we establish rigorous theory for this framework in discrete-time systems for arbitrary switching periods (not limited to switching at each time step). Using stability and ergodic theories, we are able to provide analytical criteria for the stability of synchronization for two coupled maps and the ability of a single map to control an arbitrary network of maps. This work not only presents new phenomena in stochastically switching dynamical systems, but also provides the first rigorous analysis of switching dynamical systems with an arbitrary switching period.

Share

COinS