Date of Award

Spring 5-10-2014

Degree Type


Degree Name

Doctor of Philosophy (PhD)


Physics and Astronomy

First Advisor

Mukesh Dhamala

Second Advisor

Vadym M Apalkov

Third Advisor

Richard W Briggs

Fourth Advisor

Gennady S Cymbalyuk

Fifth Advisor

Brian D Thoms


Recent experimental studies point to the notion that the brain is a complex dynamical system whose behaviors relating to brain functions and dysfunctions can be described by the physics of network phenomena. The brain consists of anatomical axonal connections among neurons and neuronal populations in various spatial scales. Neuronal interactions and synchrony of neuronal oscillations are central to normal brain functions. Breakdowns in interactions and modifications in synchronization behaviors are usual hallmarks of brain dysfunctions. Here, in this dissertation for PhD degree in physics, we report discoveries of brain oscillatory network activity from two separate studies. These studies investigated the large-scale brain activity during tactile perceptual decision-making and epileptic seizures.

In the perceptual decision-making study, using scalp electroencephalography (EEG) recordings of brain potentials, we investigated how oscillatory activity functionally organizes different neocortical regions as a network during a tactile discrimination task. While undergoing EEG recordings, blindfolded healthy participants felt a linear three-dot array presented electromechanically, under computer control, and reported whether the central dot was offset to the left or right. Based on the current dipole modeling in the brain, we found that the source-level peak activity appeared in the left primary somatosensory cortex (SI), right lateral occipital complex (LOC), right posterior intraparietal sulcus (pIPS) and finally left dorsolateral prefrontal cortex (dlPFC) at 45, 130, 160 and 175 ms respectively. Spectral interdependency analysis showed that fine tactile discrimination is mediated by distinct but overlapping ~15 Hz beta and ~80 Hz gamma band large-scale oscillatory networks. The beta-network that included all four nodes was dominantly feedforward, similar to the propagation of peak cortical activity, implying its role in accumulating and maintaining relevant sensory information and mapping to action. The gamma-network activity, occurring in a recurrent loop linked SI, pIPS and dlPFC, likely carrying out attentional selection of task-relevant sensory signals. Behavioral measure of task performance was correlated with the network activity in both bands.

In the study of epileptic seizures, we investigated high-frequency (> 50 Hz) oscillatory network activity from intracranial EEG (IEEG) recordings of patients who were the candidates for epilepsy surgery. The traditional approach of identifying brain regions for epilepsy surgery usually referred as seizure onset zones (SOZs) has not always produced clarity on SOZs. Here, we investigated directed network activity in the frequency domain and found that the high frequency (>80 Hz) network activities occur before the onset of any visible ictal activity, andcausal relationships involve the recording electrodes where clinically identifiable seizures later develop. These findings suggest that high-frequency network activities and their causal relationships can assist in precise delineation of SOZs for surgical resection.