Date of Award
Fall 12-18-2013
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Biology
First Advisor
Margo A. Brinton
Abstract
Cellular T-cell intracellular antigen-1 related protein (TIAR) binds to the 3' terminal stem-loop of the West Nile virus minus-strand RNA [WNV 3'(-) SL RNA]. TIAR binding sites were previously mapped on loop 1 (L1) and loop 2 (L2) of the 3' (-) SL RNA and mutations of these sites in a WNV infectious clone inhibited virus replication. In the present study, data from in vitro binding assays suggested that multiple TIAR proteins bind to each WNV 3′ (-) SL RNA in a positively cooperative manner. The tertiary structure of WNV 3′ (-) SL RNA was predicted and it was suggested that L2 forms an exposed loop while L1 forms an embedded loop. We propose that TIAR binds first to L2 and that this interaction facilitates the binding of a second TIAR molecule to L1. Data from in vitro assays also showed that TIAR binds specifically to the WNV 3' (-) SL RNA but not to the complementary WNV 5' (+) SL RNA and that the C-terminal prion domain of TIAR contributes to RNA binding specificity. Immunoprecipitation experiments indicated that TIAR interacts with the WNV 3' (-) SL RNA in cells. Colocalization of TIAR and viral dsRNA in the perinuclear region of WNV-infected cells was visualized using a proximity ligation assay. In WNV-infected, TIAR-overexpressing cells, increased extracellular virus yields, intracellular viral protein and RNA levels, and an increased ratio of viral plus-strand RNA to minus-strand RNA were observed. These data suggest that TIAR enhances WNV plus-strand RNA synthesis from the minus-strand template.
WNV infections induce small TIAR foci formation in primate cells but not rodent cells. The TIAR foci are located in the perinuclear region and differ in size and location from arsenite-induced stress granules (SGs). However, the small TIAR foci contain many SG components, such as G3BP, PABP, and eIF3A, but not HuR. Arsenite-induced SG formation is still inhibited by WNV infection in these cells. eIF2a phosphorylation was observed in some infected cells that contained WNV-induced TIAR foci but viral NS3 protein accumulation was not inhibited. The data suggest that WNV-induced TIAR foci in primate cells are not canonical SGs.
DOI
https://doi.org/10.57709/4867010
Recommended Citation
Liu, Hsuan, "Further Analysis of the Interaction of the Cellular Protein TIAR with the 3' Terminal Stem-Loop of the West Nile Virus (WNV) Minus-Strand RNA." Dissertation, Georgia State University, 2013.
doi: https://doi.org/10.57709/4867010