Date of Award
Spring 5-11-2015
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Biology
First Advisor
Susanna F. Greer
Second Advisor
Charlese Garnett-Benson
Third Advisor
Ritu Aneja
Abstract
Transcriptional activation of Major Histocompatability Complex (MHC) I and II molecules by the cytokine interferon gamma (IFN-g) is a key step in cell-mediated immunity against pathogens and tumors. Following IFN-g induction, JAK/STAT signaling triggers activation of MHC genes. Recent evidence suggests suppression of MHC I and II expression on multiple tumor types plays important roles in tumor immunoevasion. One such tumor is malignant melanoma, the leading cause of skin cancer related deaths. Despite awareness of MHC expression defects, the molecular mechanisms by which melanoma cells suppress MHC and escape from immune-mediated destruction remain unknown. Here we analyze dysregulation of the JAK/STAT pathway and its role in suppression of MHC II in melanoma cell lines at the Radial Growth Phase (RGP), the Vertical Growth Phase (VGP) and the Metastatic Phase (MET). RGP and VGP cells express both MHC II and the MHC master regulator, the Class II Transactivator (CIITA). MET cells lack not only MHC II and CIITA, but also both STAT 1 and the STAT 1 coactivator, the Interferon Response Factor (IRF) 1. Our studies have implicated that the suppression of MHCII on the cell surface of metastatic melanoma is due to silencing at the level of STAT1 transcription. Furthermore, we determined that silencing of STAT1 is, in part, due to hemi-methylation of the STAT1 promoter.
DOI
https://doi.org/10.57709/7058782
Recommended Citation
Osborn, Jodi, "Elucidation of Mechanisms Underlying Metastatic Melanoma Immune Escape via Suppression of Major Histocompatibility Complex (MHC) II through Dysregulation of the JAK/STAT Pathway." Dissertation, Georgia State University, 2015.
doi: https://doi.org/10.57709/7058782