Document Type
Article
Publication Date
2014
Abstract
How cancer cells shift metabolism to aerobic glycolysis is largely unknown. Here, we show that deficiency of a/b-hydrolase domain-containing 5 (Abhd5), an intracellular lipolytic activator that is also known as comparative gene identification 58 (CGI-58), promotes this metabolic shift and enhances malignancies of colorectal carcinomas (CRCs). Silencing of Abhd5 in normal fibroblasts induces malignant transformation. Intestine-specific knockout of Abhd5 in ApcMin/+ mice robustly increases tumorigenesis and malignant transformation of adenomatous polyps. In colon cancer cells, Abhd5 deficiency induces epithelial-mesenchymal transition by suppressing the AMPKa-p53 pathway, which is attributable to increased aerobic glycolysis. In human CRCs, Abhd5 expression falls substantially and correlates negatively with malignant features. Our findings link Abhd5 to CRC pathogenesis and suggest that cancer cells develop aerobic glycolysis by suppressing
Recommended Citation
Ou, Juanjuan; Miao, Hongming; Ma, Yinyan; Guo, Feng; Deng, Jia; Wei, Xing; Zhou, Jie; Xie, Ganfeng; Shi, Hang; Xue, Bingzhong; Liang, Houjie; and Yu, Liqing, "Loss of Abhd5 Promotes Colorectal Tumor Development and Progression by Inducing Aerobic Glycolysis and Epithelial-Mesenchymal Transition" (2014). Biology Faculty Publications. 10.
https://scholarworks.gsu.edu/biology_facpub/10
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Comments
Originally Posted in:
Cell Rep, 9 (5), 1798-811, DOI: 10.1016/j.celrep.2014.11.016