Date of Award

8-12-2016

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Biology

First Advisor

Aaron Roseberry

Second Advisor

Bingzhong Xue

Third Advisor

Laura Carruth

Fourth Advisor

Vitaly Ryu

Abstract

Studies have suggested the possibility that there is sensory (SS) afferent signaling from white adipose tissue (WAT) to the brain, which may play an important role in communication with the brain sympathetic nervous system (SNS) outflow to WAT. Therefore, we tested whether the SNS-SS feedback loop between the subcutaneous inguinal WAT (IWAT) and the epididymal WAT (EWAT) exists. These fat pads were chosen due to 1) their divergent role in manifestation of metabolic disorders with the IWAT being beneficial and the EWAT being detrimental, as well as 2) different lipolytic response to glucoprivic 2-deoxyglucose (2DG). By using retrograde tract tracers Fast Blue (FB) and Fluorogold (FG), we found that the IWAT is more innervated than EWAT by both the SS and SNS ganglia (T13-L3). Surprisingly, we found ~12-17% of double-labeled cells in the SNS and SS ganglia innervating fat depots, implying SNS-SS crosstalk loops between the IWAT and EWAT. Increased neuronal activation by 2DG was observed in the SNS ganglia to both IWAT and EWAT but not in the SS dorsal root ganglia. In addition, 2DG induced lipolysis in both fat pads with greater lipolytic properties in the IWAT as a result of higher density of the SNS-SS fibers. Collectively, our results show neuroanatomical reality of the IWAT and EWAT SNS-SS neural crosstalk with a coordinated control of lipolytic function.

DOI

https://doi.org/10.57709/8867060

COinS