Date of Award

8-7-2012

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Computer Information Systems

First Advisor

William N. Robinson

Second Advisor

Balasubramaniam Ramesh

Third Advisor

Duane Truex

Fourth Advisor

Walt Scacchi

Abstract

Open source projects do have requirements; they are, however, mostly informal, text descriptions found in requests, forums, and other correspondence. Understanding such requirements provides insight into the nature of open source projects. Unfortunately, manual analysis of natural language requirements is time-consuming, and for large projects, error-prone. Automated analysis of natural language requirements, even partial, will be of great benefit. Towards that end, I describe the design and validation of an automated natural language requirements classifier for open source software development projects. I compare two strategies for recognizing requirements in open forums of software features. The results suggest that classifying text at the forum post aggregation and sentence aggregation levels may be effective. Initial results suggest that it can reduce the effort required to analyze requirements of open source software development projects.

Software development organizations and communities currently employ a large number of software development techniques and methodologies. This implied complexity is also enhanced by a wide range of software project types and development environments. The resulting lack of consistency in the software development domain leads to one important challenge that researchers encounter while exploring this area: specificity. This results in an increased difficulty of maintaining a consistent unit of measure or analysis approach while exploring a wide variety of software development projects and environments. The problem of specificity is more prominently exhibited in an area of software development characterized by a dynamic evolution, a unique development environment, and a relatively young history of research when compared to traditional software development: the open-source domain. While performing research on open source and the associated communities of developers, one can notice the same challenge of specificity being present in requirements engineering research as in the case of closed-source software development. Whether research is aimed at performing longitudinal or cross-sectional analyses, or attempts to link requirements to other aspects of software development projects and their management, specificity calls for a flexible analysis tool capable of adapting to the needs and specifics of the explored context. This dissertation covers the design, implementation, and evaluation of a model, a method, and a software tool comprising a flexible software development analysis framework. These design artifacts use a rule-based natural language processing approach and are built to meet the specifics of a requirements-based analysis of software development projects in the open-source domain. This research follows the principles of design science research as defined by Hevner et. al. and includes stages of problem awareness, suggestion, development, evaluation, and results and conclusion (Hevner et al. 2004; Vaishnavi and Kuechler 2007). The long-term goal of the research stream stemming from this dissertation is to propose a flexible, customizable, requirements-based natural language processing software analysis framework which can be adapted to meet the research needs of multiple different types of domains or different categories of analyses.

DOI

https://doi.org/10.57709/3105490

COinS