Author ORCID Identifier
https://orcid.org/0000-0003-0385-1831
Date of Award
8-10-2021
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Computer Science
First Advisor
Alex Zelikovsky
Second Advisor
Pavel Skums
Third Advisor
Robert Harrison
Fourth Advisor
William M. Switzer
Abstract
The deep coverage offered by next-generation sequencing (NGS) technology has facilitated the reconstruction of intra-host RNA viral populations at an unprecedented level of detail. However, NGS data requires sophisticated analysis dealing with millions of error-prone short reads. This dissertation will first review the challenges and methods for viral NGS genomic data analysis in the NGS era. Second, it presents a software tool CliqueSNV for inferring viral quasispecies based on extracting pairs of statistically linked mutations from noisy reads, which effectively reduces sequencing noise and enables identifying minority haplotypes with a frequency below the sequencing error rate. Finally, the dissertation describes algorithms VOICE and MinDistB for inference of relatedness between viral samples, identification of transmission clusters, and sources of infection.
DOI
https://doi.org/10.57709/23989068
Recommended Citation
Knyazev, Sergey, "Methods for Viral Intra-Host and Inter-Host Data Analysis for Next-Generation Sequencing Technologies." Dissertation, Georgia State University, 2021.
doi: https://doi.org/10.57709/23989068
File Upload Confirmation
1