Date of Award
11-28-2007
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Computer Science
First Advisor
Saeid Belkasim - Chair
Second Advisor
Yi Pan
Third Advisor
Rajshekhar Sunderraman
Fourth Advisor
Yichuan Zhao
Abstract
Image segmentation is one of the most difficult tasks in image processing. Segmentation algorithms are generally based on searching a region where pixels share similar gray level intensity and satisfy a set of defined criteria. However, the segmented region cannot be used directly for partial image retrieval. In this dissertation, a Contour Based Image Structure (CBIS) model is introduced. In this model, images are divided into several objects defined by their bounding contours. The bounding contour structure allows individual object extraction, and partial object matching and retrieval from a standard CBIS image structure. The CBIS model allows the representation of 3D objects by their bounding contours which is suitable for parallel implementation particularly when extracting contour features and matching them for 3D images require heavy computations. This computational burden becomes worse for images with high resolution and large contour density. In this essence we designed two parallel algorithms; Contour Parallelization Algorithm (CPA) and Partial Retrieval Parallelization Algorithm (PRPA). Both algorithms have considerably improved the performance of CBIS for both contour shape matching as well as partial image retrieval. To improve the effectiveness of CBIS in segmenting images with inhomogeneous backgrounds we used the phase congruency invariant features of Fourier transform components to highlight boundaries of objects prior to extracting their contours. The contour matching process has also been improved by constructing a fuzzy contour matching system that allows unbiased matching decisions. Further improvements have been achieved through the use of a contour tailored Fourier descriptor to make translation and rotation invariance. It is proved to be suitable for general contour shape matching where translation, rotation, and scaling invariance are required. For those images which are hard to be classified by object contours such as bacterial images, we define a multi-level cosine transform to extract their texture features for image classification. The low frequency Discrete Cosine Transform coefficients and Zenike moments derived from images are trained by Support Vector Machine (SVM) to generate multiple classifiers.
DOI
https://doi.org/10.57709/1059439
Recommended Citation
Li, Yong, "Contour Based 3D Biological Image Reconstruction and Partial Retrieval." Dissertation, Georgia State University, 2007.
doi: https://doi.org/10.57709/1059439