Date of Award


Degree Type


Degree Name

Master of Science (MS)


Computer Science

First Advisor

Dr. Yan-Qing Zhang - Chair

Second Advisor

Dr. Rajshekhar Sunderraman

Third Advisor

Dr. Michael Weeks


People with severe motor-impairments due to Spinal Cord Injury (SCI) or Spinal Cord Dysfunction (SCD), often experience difficulty with accurate and efficient control of pointing devices (Keates et al., 02). Usually this leads to their limited integration to society as well as limited unassisted control over the environment. The questions “How can someone with severe motor-impairments perform mouse pointer control as accurately and efficiently as an able-bodied person?” and “How can these interactions be advanced through use of Computational Intelligence (CI)?” are the driving forces behind the research described in this paper. Through this research, a novel fuzzy mouse cursor control system (FMCCS) is developed. The goal of this system is to simplify and improve efficiency of cursor control and its interactions on the computer screen by applying fuzzy logic in its decision-making to make disabled Internet users use the networked computer conveniently and easily. The FMCCS core consists of several fuzzy control functions, which define different user interactions with the system. The development of novel cursor control system is based on utilization of motor functions that are still available to most complete paraplegics, having capability of limited vision and breathing control. One of the biggest obstacles of developing human computer interfaces for disabled people focusing primarily on eyesight and breath control is user’s limited strength, stamina, and reaction time. Within the FMCCS developed in this research, these limitations are minimized through the use of a novel pneumatic input device and intelligent control algorithms for soft data analysis, fuzzy logic and user feedback assistance during operation. The new system is developed using a reliable and cheap sensory system and available computing techniques. Initial experiments with healthy and SCI subjects have clearly demonstrated benefits and promising performance of the new system: the FMCCS is accessible for people with severe SCI; it is adaptable to user specific capabilities and wishes; it is easy to learn and operate; point-to-point movement is responsive, precise and fast. The integrated sophisticated interaction features, good movement control without strain and clinical risks, as well the fact that quadriplegics, whose breathing is assisted by a respirator machine, still possess enough control to use the new system with ease, provide a promising framework for future FMCCS applications. The most motivating leverage for further FMCCS development is however, the positive feedback from persons who tested the first system prototype.