Date of Award
11-6-2007
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Computer Science
First Advisor
Alex Zelikovsky - Chair
Second Advisor
XiaoLing Hu
Third Advisor
Raj Sunderraman
Abstract
This study focuses how the MLR-tagging for statistical covering, i.e. either maximizing average R2 for certain number of requested tags or minimizing number of tags such that for any non-tag SNP there exists a highly correlated (squared correlation R2 > 0.8) tag SNP. We compare with tagger, a software for selecting tags in hapMap project. MLR-tagging needs less number of tags than tagger in all 6 cases of the given test sets except 2. Meanwhile, Biologists can detect or collect data only from a small set. So, this will bring a problem for scientists that the estimates accuracy of tag SNPs when constructing the complete human haplotype map. This study investigates how the MLR-tagging for statistically coverage performs under unbias study. The experiment results shows MLR-tagging still select small amount of SNPs very well even without observing the entire SNP in the sample.
DOI
https://doi.org/10.57709/1059396
Recommended Citation
Zhang, Jun, "Genotype/Haplotype Tagging Methods and their Validation." Thesis, Georgia State University, 2007.
doi: https://doi.org/10.57709/1059396