Document Type
Conference Proceeding
Publication Date
2017
Abstract
Social media platforms are commonly employed by law enforcement agencies for collecting Open Source Intelligence (OSNIT) on criminals, and assessing the risk they pose to the environment the live in. However, since no prior research has investigated the relationships between hackers’ use of social media platforms and their likelihood to generate cyber-attacks, this practice is less common among Information Technology Teams. Addressing this empirical gap, we draw on the social learning theory and estimate the relationships between hackers’ use of Facebook, Twitter, and YouTube and the frequency of web defacement attacks they generate in different times (weekdays vs. weekends) and against different targets (USA vs. non-USA websites). To answer our research questions, we use hackers’ reports of web defacement they generated (available on http://www.zone-h.org), and complement with an independent data collection we launched to identify these hackers’ use of different social media platforms. Results from a series of Negative Binomial Regression analyses reveal that hackers’ use of social media platforms, and specifically Twitter and Facebook, significantly increases the frequency of web defacement attacks they generate. However, while using these social media platforms significantly increases the volume of web defacement attacks these hackers generate during weekdays, it has no association with the volume of web defacement they launch over weekends. Finally, although hackers’ use of both Facebook and Twitter accounts increase the frequency of attacks they generate against non-USA websites, the use of Twitter only increases significantly the volume of web defacement attacks against USA websites.
Recommended Citation
Maimon, David, Andrew Fukuda, Steve Hinton, Olga Babko-Malaya, and Rebecca Cathey. 2017. "On the relevance of social media platforms in predicting the volume and patterns of web defacement attacks." Conference Proceeding - 2017 IEEE International Conference on Big Data (Big Data), pp. 4668-4673.